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Abstract
Graph spanners are well-studied and widely used both in theory and practice. In a recent break-
through, Chechik and Wulff-Nilsen [11] improved the state-of-the-art for light spanners by construct-
ing a (2k − 1)(1 + ε)-spanner with O(n1+1/k) edges and Oε(n1/k) lightness. Soon after, Filtser and
Solomon [19] showed that the classic greedy spanner construction achieves the same bounds. The
major drawback of the greedy spanner is its running time of O(mn1+1/k) (which is faster than [11]).
This makes the construction impractical even for graphs of moderate size. Much faster spanner
constructions do exist but they only achieve lightness Ωε(kn1/k), even when randomization is used.

The contribution of this paper is deterministic spanner constructions that are fast, and achieve
similar bounds as the state-of-the-art slower constructions. Our first result is an Oε(n2+1/k+ε′

)
time spanner construction which achieves the state-of-the-art bounds. Our second result is an
Oε(m+ n logn) time construction of a spanner with (2k − 1)(1 + ε) stretch, O(log k · n1+1/k) edges
and Oε(log k · n1/k) lightness. This is an exponential improvement in the dependence on k compared
to the previous result with such running time. Finally, for the important special case where k = logn,
for every constant ε > 0, we provide an O(m+ n1+ε) time construction that produces an O(logn)-
spanner with O(n) edges and O(1) lightness which is asymptotically optimal. This is the first known
sub-quadratic construction of such a spanner for any k = ω(1).

To achieve our constructions, we show a novel deterministic incremental approximate distance
oracle. Our new oracle is crucial in our construction, as known randomized dynamic oracles require
the assumption of a non-adaptive adversary. This is a strong assumption, which has seen recent
attention in prolific venues. Our new oracle allows the order of the edge insertions to not be fixed
in advance, which is critical as our spanner algorithm chooses which edges to insert based on the
answers to distance queries. We believe our new oracle is of independent interest.
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1 Introduction

A fundamental problem in graph data structures is compressing graphs such that certain
metrics are preserved as well as possible. A popular way to achieve this is through graph
spanners. Graph spanners are sparse subgraphs that approximately preserve pairwise shortest
path distances for all vertex pairs. Formally, we say that a subgraph H = (V,E′, w) of an
edge-weighted undirected graph G = (V,E,w) is a t-spanner of G if for all u, v ∈ V we have
dH(u, v) ≤ t · dG(u, v), where dX is the shortest path distance function for graph X and w is
the edge weight function. Under such a guarantee, we say that our graph spanner H has
stretch t. In the following, we assume that the underlying graph G is connected; if it is not,
we can consider each connected component separately when computing a spanner.

Graph spanners originate from the 80’s [24, 25] and have seen applications in e.g. synchron-
izers [25], compact routing schemes [30, 26, 8], broadcasting [18], and distance oracles [32].

The two main measures of the sparseness of a spanner H is the size (number of edges) and
the lightness, which is defined as the ratio w(H)/w(MST (G)), where w(H) resp. w(MST (G))
is the total weight of edges in H resp. a minimum spanning tree (MST) of G. It has been
established that for any positive integer k, a (2k − 1)-spanner of O(n1+1/k) edges exists for
any n-vertex graph [3]. This stretch-size tradeoff is widely believed to be optimal due to a
matching lower bound implied by Erdős’ girth conjecture [16], and there are several papers
concerned with constructing spanners efficiently that get as close as possible to this lower
bound [31, 5, 28].

Obtaining spanners with small lightness (and thus total weight) is motivated by applica-
tions where edge weights denote e.g. establishing cost. The best possible total weight that
can be achieved in order to ensure finite stretch is the weight of an MST, thus making the
definition of lightness very natural. The size lower bound of the unweighted case provides
a lower bound of Ω(n1/k) lightness under the girth conjecture, since H must have size and
weight Ω(n1+1/k) while the MST has size and weight n−1. Obtaining this lightness has been
the subject of an active line of work [2, 7, 14, 11, 19]. Throughout this paper we say that a
spanner is optimal when its bounds coincide asymptotically with those of the girth conjecture.
Obtaining an efficient spanner construction with optimal stretch-lightness trade-off remains
one of the main open questions in the field of graph spanners.

Light spanners. Historically, the main approach of obtaining a spanner of bounded lightness
has been through different analyses of the classic greedy spanner. Given t ≥ 1, the greedy
t-spanner is constructed as follows: iterate through the edges in non-decreasing order of
weight and add an edge e to the partially constructed spanner H if the shortest path distance
in H between the endpoints of e is greater than t times the weight of e. The study of this
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spanner algorithm dates back to the early 90’s with its first analysis by Althöfer et al. [2].
They showed that this simple procedure with stretch 2k − 1 obtains the optimal O(n1+1/k)
size, and has lightness O(n/k). The algorithm was subsequently analyzed in [7, 14, 19] with
stretch (1 + ε)(2k − 1) for any 0 < ε < 1. Recently, a break-through result of Chechik and
Wulff-Nilsen [11] showed that a significantly more complicated spanner construction obtains
nearly optimal stretch, size and lightness giving the following theorem.

I Theorem 1 ([11]). Let G = (V,E,w) be an edge-weighted undirected n-vertex graph and
let k be a positive integer. Then for any 0 < ε < 1 there exists a (1 + ε)(2k − 1)-spanner of
size O(n1+1/k) and lightness Oε(n1/k).1

Following the result of [11] it was shown by Filtser and Solomon [19] that this bound is
matched by the greedy spanner. In fact, they show that the greedy spanner is existentially
optimal, meaning that if there is a t-spanner construction achieving an upper bound m(n, t)
resp. l(n, t) on the size resp. lightness of any n-vertex graph then this bound also holds for the
greedy t-spanner. In particular, the bounds in Theorem 1 also hold for the greedy spanner.

Efficient spanners. A major drawback of the greedy spanner is its O(m · (n1+1/k +n logn))
construction time [2]. Similarly, Chechik and Wulff-Nilsen [11] only state their construction
time to be polynomial, but since they use the greedy spanner as a subroutine, it has the same
drawback. Adressing this problem, Elkin and Solomon [15] considered efficient construction
of light spanners. They showed how to construct a spanner with stretch (1 + ε)(2k − 1), size
Oε(kn1+1/k) and lightness Oε(kn1/k) in time O(km+ min(n logn,mα(n))). Improving on
this, a recent paper of Elkin and Neiman [13] uses similar ideas to obtain stretch (1+ε)(2k−1),
size O(log k · n1+1/k) and lightness O(kn1/k) in expected time O(m+ min(n logn,mα(n))).

Several papers also consider efficient constructions of sparse spanners, which are not
necessarily light. Baswana and Sen [5] gave a (2k − 1)-spanner with O(kn1+1/k) edges in
O(km) expected time. This was later derandomized by Roditty et al. [27] (while keeping
the same sparsity and running time). Recently, Miller et al. [23] presented a randomized
algorithm with O(m+n log k) running time and O(log k ·n1+1/k) size at the cost of a constant
factor in the stretch O(k).

It is worth noting that for super-constant k, none of the above spanner constructions
obtain the optimal O(n1+1/k) size or O(n1/k) lightness even if we allow O(k) stretch. If we
are satisfied with nearly-quadratic running time, Elkin and Solomon [15] gave a spanner
with (1 + ε)(2k − 1) stretch, Oε(n1+1/k) size and Oε(kn1/k) lightness in O(kn2+1/k) time by
extending a result of Roditty and Zwick [28] who got a similar result but with unbounded
lightness. However, this construction still has a factor of k too much in the lightness. Thus,
the fastest known spanner construction obtaining optimal size and lightness is the classic
greedy spanner – even if we allow O(k) stretch or o(kn1/k) lightness.

We would like to emphasize that the case k = logn is of special interest. This is the point
on the tradeoff curve allowing spanners of linear size and constant lightness. Prior to this
paper, the state of the art for efficient spanner constructions with constant lightness suffered
from distortion at least O(log2 n). See the discussion after Corollary 5 for further details.

A summary of spanner algorithms can be seen in Table 1.

1 Oε notation hides polynomial factors in 1/ε.
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4:4 Constructing Light Spanners Deterministically in Near-Linear Time

Table 1 Table of related spanner constructions. In the top of the table we list non-efficient
spanner constructions. In the middle we list known efficient spanner construction. In the bottom
we list our contributions. Results marked ∗ are different analyses of the greedy spanner. Results
marked # are randomized. Lightness complexities marked ∗∗ appear in the full version [1] and W
denotes the maximum edge weight of the input graph. The bounds hold for any constant ε, ε′ > 0.

Stretch Size Lightness Construction Ref

(2k − 1) O
(
n1+1/k

)
O (n/k) O

(
mn1+1/k

)
[ADD+93][2]∗

(2k − 1)(1 + ε) O
(
n1+1/k

)
O
(
kn1/k

)
O
(
mn1+1/k

)
[CDNS92][7]∗

(2k − 1) O(n1+1/k) Ω(W ) ∗∗ O
(
kn2+1/k

)
[RZ11][28]

(2k − 1) O
(
kn1+1/k

)
Ω
(
n1+1/k

) ∗∗ O
(
kmn1/k

)
[TZ05][31]#

(2k − 1)(1 + ε) O
(
n1+1/k

)
O
(
kn1/k

)
O
(
kn2+1/k

)
[ES16][15]

(2k − 1)(1 + ε) O
(
n1+1/k

)
O
(
n1/k · k/ log k

)
O
(
mn1+1/k

)
[ENS15][14]∗

(2k − 1)(1 + ε) O
(
n1+1/k

)
O
(
n1/k

)
nΘ(1) [CW18][11]

(2k − 1)(1 + ε) O
(
n1+1/k

)
O
(
n1/k

)
O
(
mn1+1/k

)
[FS16][19]∗

(2k − 1) O
(
kn1+1/k

)
Ω(W ) ∗∗ O (km) [BS07,RTZ05][5, 27]

(2k − 1)(1 + ε) O
(
kn1+1/k

)
O
(
kn1/k

)
O (km+ n logn) [ES16][15]

O(k) O(log k · n1+1/k) Ω(W ) O(m+ n · log k) [MPVX15][23]#
(2k − 1)(1 + ε) O(log k · n1+1/k) O

(
k · n1/k

)
O(m+ n · logn) [EN17][13]#

(2k − 1)(1 + ε) O
(
log k · n1+1/k

)
Ω(W ) O(m) Theorem 7

(2k − 1)(1 + ε) O
(
log k · n1+1/k

)
O
(
log k · n1/k

)
O(m+ n · logn) Theorem 3

(2k − 1)(1 + ε) O
(
n1+1/k

)
O
(
n1/k

)
O(n2+1/k+ε′

) Theorem 2
O(k) O

(
n1+1/k

)
O
(
n1/k

)
O
(
m+ n1+ε′+1/k

)
Theorem 4

O(logn)/δ O (n) 1 + δ O
(
m+ n1+ε′

)
Corollary 5

1.1 Our results
We present the first spanner obtaining the same near-optimal guarantees as the greedy
spanner in significantly faster time by obtaining a (1 + ε)(2k − 1) spanner with optimal size
and lightness in Oε(n2+1/k+ε′) time. We also present a variant of this spanner, improving the
running time to O(m+ n logn) by paying a log k factor in the size and lightness. Finally, we
present an optimal Oε(logn)-spanner which can be constructed in O(m+ n1+ε) time. This
special case is of particular interest in the literature (see e.g. [4, 22]). Furthermore, all of
our constructions are deterministic, giving the first subquadratic deterministic construction
without the additional dependence on k in the size of the spanner. As an important tool,
we introduce a new deterministic approximate incremental distance oracle which works in
near-linear time for maintaining small distances approximately. We believe this result is of
independent interest.

More precisely, we show the following theorems.

I Theorem 2. Given a weighted undirected graph G = (V,E,w) with m edges and n vertices,
any positive integer k, and ε, ε′ > 0 where ε arbitrarily close to 0 and ε′ is a constant, one
can deterministically construct an (1 + ε)(2k − 1)-spanner of G with Oε(n1+1/k) edges and
lightness Oε(n1/k) in O(n2+1/k+ε′) time.

I Theorem 3. Given a weighted undirected graph G = (V,E,w) with m edges and n

vertices, a positive integer k ≥ 640, and ε > 0, one can deterministically construct a
(2k − 1)(1 + ε)-spanner of G with Oε(log k · n1+1/k) edges and lightness Oε

(
log k · n1/k) in

time O (m+ n logn).
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Note that in Theorem 3 we require k to be larger than 640. This is not a significant limitation,
as for k = O(1) [15] is already optimal.

Our O(logn)-spanner is obtained as a corollary of the following more general result.

I Theorem 4. Given a weighted undirected graph G = (V,E,w) with m edges and n

vertices, any positive integer k and constant ε′ > 0, one can deterministically construct an
O(k)-spanner of G with O(n1+1/k) edges and lightness O(n1/k) in O(m+ n1+ε′+1/k) time.

We note that the stretch O(k) of Theorem 4 (and Corollary 5 below) hides an exponential
factor in 1/ε′, thus we only note the result for constant ε′. Bartal et. al. [4] showed that given
a spanner construction that for every n-vertex weighted graph produces a t(n)-stretch spanner
with m(n, t) edge and l(n, t) lightness in T (n,m) time, then for every parameter 0 < δ < 1
and every graph G, one can construct a t/δ-spanner with m(n, t) edges and 1 + δ · l(n, t)
lightness in T (n,m) + (m) time. Plugging k = logn and using this reduction we get

I Corollary 5. Let G = (V,E,w) be a weighted undirected n-vertex graph, let ε′ > 0 be
a constant and δ > 0 be a parameter arbitrarily close to 0. Then one can construct a
spanner of G with:
1. O(logn)/δ stretch, O(n) edges and 1 + δ lightness in time O(m+ n1+ε′).
2. O(logn log logn)/δ stretch, O(n log logn) edges and 1+δ lightness in time O(m+n logn).

Corollary 5 above should be compared to previous attempts to efficiently construct a spanner
with constant lightness. Although not stated explicitly, the state of the art algorithms of
[15, 13], combined with the lemma from [4], provide an efficient spanner construction with
1 + δ lightness, O(n log logn) edges and only O(log2 n/δ) stretch.

We emphasize, that Corollary 5 is the first sub-quadratic construction of spanner with
optimal size and lightness for any non-constant k.

In order to obtain Theorem 4 we construct the following deterministic incremental
approximate distance oracle with near-linear total update time for maintaining small distances.
We believe this result is of independent interest, and discuss it in more detail in the related
work section below and in Section 3.

I Theorem 6. Let G be a graph that undergoes a sequence of m edge insertions. For any
constant ε′ > 0 and parameter d ≥ 1 there exists a data structure which processes the m
insertions in total time O(m1+ε′ · d) and can answer queries at any point in the sequence of
the following form. Given a pair of nodes u, v, the oracle gives, in O(1) time, an estimate
d̂(u, v) such that d̂(u, v) ≥ d(u, v) and if d(u, v) ≤ d then d̂(u, v) = O(1) · d(u, v).

Theorem 6 assumes that ε′ is constant; the O-notation hides a factor exponential in 1/ε′ for
both total update time and stretch whereas the query time bound only hides a factor of 1/ε′.

We also obtain the following sparse, but not necessarily light, spanner in linear time as a
subroutine in proving Theorem 3.

I Theorem 7. Given a weighted undirected graph G = (V,E,w) with m edges and n vertices,
a positive integer k, and ε > 0, one can deterministically construct a (2k − 1)(1 + ε)-spanner
of G with Oε(n1+1/k · log k) edges in time O(m).

1.2 Related work
Closely related to graph spanners are approximate distance oracles (ADOs). An ADO is
a data structure which, after preprocessing a graph G, is able to answer distance queries
approximately. Distance oracles are studied extensively in the literature (see e.g. [31, 33, 9,
10]) and often use spanners as a building block. The state of the art static distance oracle
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4:6 Constructing Light Spanners Deterministically in Near-Linear Time

is due to Chechik [10], where a construction of space O(n1+1/k), stretch 2k − 1, and query
time O(1) is given. Our distance oracle of Theorem 6 should be compared to the result of
Henzinger, et al. [21], who gave a deterministic construction for incremental (or decremental)
graphs with a total update time of Oε(mn logn), a query time of O(log logn) and stretch
1 + ε. For our particular application, we require near-linear total update time and only good
stretch for short distances, which are commonly the most troublesome when constructing
spanners. It should be added that Henzinger et al. give a general deterministic data structure
for choosing centers, i.e., vertices which are roots of shortest path trees maintained by the
data structure. While this data structure may be fast when the total number of centers is
small, we need roughly n centers and it is not clear how this number can be reduced. Having
this many centers requires at least order mn time with their data structure.

To achieve our fast update time bound, we are interested in trading worse stretch for
distances above parameter d for construction time. Roditty and Zwick [29] gave a randomized
distance oracle for this case, however their construction does not work against an adaptive
adversary as is required for our application, where the edges to be inserted are determined by
the output to the queries of the oracle (see Section 3 for more discussion on this). Removing
the assumption of a non-adaptive adversary in dynamic graph algorithms has seen recent
attention at prestigious venues, e.g. [34, 6]. Our new incremental approximate distance
oracle for short distances given in Theorem 6 is deterministic and thus is robust against
such an adversary, and we believe it may be of independent interest as a building block in
deterministic dynamic graph algorithms.

For unweighted graphs, there is a folklore spanner construction by Halperin and Zwick [20]
which is optimal on all parameters. The construction time is O(m), it has O(n1+1/k) edges and
2k−1 stretch. In Section 6 we will use this spanner as a building block in proving Theorem 3.

2 Preliminaries

Consider a weighted graph G = (V,E,w), we will abuse notation and refer to as E both a set
of edges and the graph itself. dG will denote the shortest path metric (that is dG(v, u) is the
weight of the lightest path between v, u in G. Given a subset V ′ of V , G[V ′] is the induced
graph by V ′. That is it has V ′ as it vertices, E ∩

(
V ′

2
)
as its edges and w as weight function.

The diameter of a vertex set V ′ in a graph G′ diamG′(V ′) = maxu,v∈V ′ dG′(u, v) is the
maximal distance between two vertices in V ′ under the shortest path metric induced by G′.
For a set of edges A with weight function w, the aspect ratio of A is maxe∈A w(e)/mine∈A w(e).
The sparsity of A is simply |A| its size.

We will assume that k = O(logn) as the guarantee for lightness and sparsity will not be
improved by picking larger k. Instead of proving (1 + ε)(2k − 1) bound on stretch, we will
prove only (1 +O(ε))(2k − 1) bound. This is good enough, as Post factum we can scale ε
accordingly. By Oε we denote asymptotic notation which hides polynomial factors of 1/ε,
that is Oε(f) = O(f) · poly( 1

ε ).

3 Paper overview

General framework. Theorems 2 to 4 are generated via a general framework. The framework
is fed two algorithms for spanner constructions: A1, an algorithm suitable for graphs with
small aspect ratio, and A2, an algorithm that returns a sparse spanner, but with potentially
unbounded lightness. We consider a partition of the edges into groups according to their
weights. For treating most of the groups we use exponentially growing clusters, partitioning
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the edges according to weight. Each such group has bounded aspect ratio, and thus we
can use A1. Due to the exponential growth rate, we show that the contribution of all the
different groups is converging. Thus only the first group is significant. However, with this
approach we need a special treatment for edges of small weight. This is, as using the previous
approach, the number of clusters needed to treat light edges is unbounded. Nevertheless,
these edges have small impact on the lightness and we may thus use algorithm A2, which
ignores this property.

The main work in proving Theorems 2 to 4 is in designing the algorithms A1 and A2
described briefly below.

Approximate greedy spanner. The major time consuming ingredient of the greedy spanner
algorithm is its shortest path computations. By instead considering approximate shortest
path computations we significantly speed this process up. We are the first to apply this
idea on general graphs, while it has previously been applied by [12, 19] on particular graph
families. Specifically, we consider the following algorithm: given some parameters t < t′,
initialize H ← ∅ and consider the edges (u, v) ∈ E according to increasing order of weight. If
dH(u, v) > t′ · w(u, v) the algorithm is obliged to add (u, v) to H. If dH(u, v) < t · w(u, v),
the algorithm is forbidden to add (u, v) to H. Otherwise, the algorithm is free to include the
edge or not. As a result, we will get spanner with stretch t′, which has the same lightness
and sparsity guarantees of the greedy t-spanner. Note however, that the resulting spanner is
not necessarily a subgraph of any greedy spanner.

We obtain both Theorem 2 and Theorem 4 using this approach via an incremental
approximate distance oracle. It is important to note that the edges inserted into H using
this approach depend on the answers to the distance queries. It is therefore not possible to
use approaches that do not work against an adaptive adversary such as the result of Roditty
and Zwick [29], which is based on random sampling. Furthermore, this is the case even if we
allow the spanner construction itself to be randomized. In order to obtain Theorem 2, we use
our previously described framework coupled with the “approximately greedy spanner” using
an incremental (1 + ε)-approximate distance oracle of Henzinger et al. [21]. For Theorem 4,
we present a novel incremental approximate distance oracle, which is described below. This
is the main technical part of the paper and we believe that it may be of independent interest.

Deterministic distance oracle. The main technical contribution of the paper and key
ingredient in proving Theorem 4 is our new deterministic incremental approximate distance
oracle of Theorem 6. The oracle supports approximate distance queries of pairs within some
distance threshold, d. In particular, we may set d to be some function of the stretch of the
spanner in Theorem 4. Similar to previous work on distance oracles, we have some parameter,
k, and maintain k sets of nodes ∅ = Ak−1 ⊆ . . . ⊆ A0 = V , and for each u ∈ Ai we maintain
a ball of radius r ≤ di. Here, di is a distance threshold depending on the parameter d and
which set Ai we are considering, and r is chosen such that the total degree of nodes in the
ball of radius r from u is relatively small. The implementation of each ball can be thought of
as an incremental Even-Shiloach tree. The set Ai+1 is then chosen as a maximal set of nodes
with disjoint balls. Here we use the fact that the vertices in Ai+1 are centers of disjoint balls
in Ai to argue that Ai+1 is much smaller than Ai. The decrease in size of Ai+1 pays for an
increase in the maximum ball radius di at each level. The ball of a node u may grow in size
during edge insertions. In this case, we freeze the ball associated with u, shrink the radius r
associated with u, and create a new ball with the new radius. Thus, for each Ai we end up
with O(log d) different radii for which we pick a maximal set of nodes with disjoint balls. For
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4:8 Constructing Light Spanners Deterministically in Near-Linear Time

each node ui ∈ Ai we may then associate a node ui+1 ∈ Ai+1 whose ball intersects with ui’s.
We use these associated nodes in the query to ensure that the path distance we find is not
“too far away” from the actual shortest path distance. Consider a query pair (u, v). Then
the query algorithm iteratively finds a sequence of vertices u = u0 ∈ A0, u1 ∈ A1, ..., ui ∈ Ai;
di is picked such that if v is not in the ball centered at ui with radius di then the shortest
path distance between u and v is at least d and the algorithm outputs ∞. Otherwise, the
algorithm uses the shortest path distances stored in the balls that it encounters to output
the weight of a uv-path (u = u0) u1  . . . ui  v as an approximation of the shortest
path distance between u and v.

Almost linear spanner. Chechik and Wulff-Nilsen [11] implicitly used our general framework,
but used the (time consuming) greedy spanner both as their A2 component and as a sub-
routine in A1. We show an efficient alternative to the algorithm of [11]. For the A2 component
we provide a novel sparse spanner construction (Theorem 7, see paragraph below). For A1,
we perform a hierarchical clustering, while avoiding the costly exact diameter computations
used in [11]. Finally, we replace the greedy spanner used as a sub-routine of [11] by an
efficient spanner that exploits bounded aspect ratio (see Lemma 13). This spanner can be
seen as a careful adaptation of Elkin and Solomon [15] analyzed in the case of bounded
aspect ratio. The idea here is (again) a hierarchical partitioning of the vertices into clusters
of exponentially increasing size. However, here the growth rate is only (1 + ε). Upon each
clustering we construct a super graph with clusters as vertices and graph edges from the
corresponding weight scale as inter-cluster edges. To decide which edges in each scale add
to our spanner, we execute the extremely efficient spanner of Halperin and Zwick [20] for
unweighted graphs.

Linear time sparse spanner. As mentioned above we provide a novel sparse spanner
construction as a building block in proving Theorem 3. Our construction is based on
partitioning edges into Oε(log k) “well separated” sets E1, E2, . . ., such that the ratio between
w(e) and w(e′) for edges e, e′ ∈ Ei is either a constant or at least k. This idea was previously
employed by Elkin and Neiman [13] based on [23]. For these well-separated graphs, Elkin
and Neiman used an involved clustering scheme based on growing clusters according to
exponential distribution, and showed that the expected number of inter-cluster edges, in all
levels combined, is small enough. We provide a linear time deterministic algorithm with
an arguably simpler clustering scheme. Our clustering is based upon the clusters defined
implicitly by the spanner for unweighted graphs of Halperin and Zwick [20]. In particular,
we introduce a charging scheme, such that each edge added to our spanner is either paid
for by a large cluster with many coins, or significantly contributing to reduce the number of
clusters in the following level.

4 A framework for creating light spanners efficiently

In this section we describe a general framework for creating spanners, which we will use
to prove our main results. The framework is inspired by a standard clustering approach
(see e.g. [15] and [11]). The spanner framework takes as input two spanner algorithms for
restricted graph classes, A1 and A2, and produces a spanner algorithm for general graphs.
The algorithm A1 works for graphs with unit weight MST edges and small aspect ratio, and
A2 creates a small spanner with no guarantee for the lightness. The main work in showing
Theorems 2, 3, and 4 is to construct the algorithms, A1 and A2, that go into Lemma 8 below.
The framework is described in the following lemma. The proof appears in the full version [1].
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I Lemma 8. Let G = (V,E) be a weighted graph with n nodes and m edges and let k > 0
be an integer, g > 1 a fixed parameters and ε > 0. Assume that we are given two spanner
construction algorithms A1 and A2 with the following properties:

A1 computes a spanner of stretch f1(k), size Oε(s1(k)·n1+1/k) and lightness Oε(l1(k)·n1/k)
in time T1(n,m, k) when given a graph with maximum weight gk, where all MST edges
have weight 1. Moreover, T1 has the property that

∑∞
i=0 T1

(
n
gik ,mi, k

)
= O (T1(n,m, k)),

where
∑
imi = m+O(n).

A2 computes a spanner of stretch f2(k) and size Oε(s2(k) · n1+1/k) in time T2(n,m, k).
Then one can compute a spanner of stretch max((1 + ε)f1(k), f2(k)), size Oε((s1(k) +
s2(k))n1+1/k), and lightness Oε((l1(k) + s2(k)) · n1/k) in time O(T1(n,m, k) + T2(n,m, k) +
m+ n logn).

5 Efficient approximate greedy spanner

In this section we will show how to efficiently implement algorithms A1 and A2 of Lemma 8
in order to obtain Theorems 2 and 4. We do this by implementing an “approximate-greedy”
spanner, which uses an incremental approximate distance oracle to determine whether an
edge should be added to the spanner or not.

We first prove Theorem 4 and then show in Section 5.2 how to modify the algorithm to
give Theorem 2. We will use Theorem 6 as a main building block, but defer the proof of this
theorem to Section 8. Our A1 is obtained by the following lemma giving stretch O(k) and
optimal size O(n1+1/k) and lightness O(n1/k) for small weights.

I Lemma 9. Let G = (V,E,w) be an undirected graph with m = |E| and n = |V | and
integer edge weights bounded from above by W . Let k be a positive integer and let ε′ > 0
be a constant. Then one can deterministically construct an O(k)-spanner of G with size
O(n1+1/k) and lightness O(n1/k) in time O

(
m+ kWn1+1/k+ε′

)
.

We note that Lemma 9 above requires integer edge weights, but we may obtain this by simply
rounding up the weight of each edge losing at most a factor of 2 in the stretch. Alternatively
we can use the approach of Lemma 12 in Section 5.2 to reduce this factor of 2 to (1 + ε).

Our A2 will be obtained by the following lemma, which is essentially a modified imple-
mentation of Lemma 9.

I Lemma 10. Let G = (V,E,w) be an edge-weighted graph with m = |E| and n = |V |. Let
k be a positive integer and let ε′ > 0 be a constant. Then one can deterministically construct
an O(k)-spanner of G with size O(n1+1/k) in time O

(
m+ kn1+1/k+ε′

)
.

Combining Lemma 8 of Section 4 with Lemmas 9 and 10 above immediately gives us a
spanner with stretch O(k), size O(n1+1/k) and lightness O(n1/k) in time O(m+ n1+1/k+ε′′)
for any constant ε′′ > 0. This is true because we may assume that k ≤ γ logn for any
constant γ > 0, and thus by picking γ and ε′ accordingly we have that the running time
given by Lemma 8 can be bounded by

O
(
m+ kWn1+1/k+ε′

+ kn1+1/k+ε′
)

= O
(
m+ kgkn1+1/k+ε′

)
= O

(
m+ n1+1/k+ε′′

)
.

ESA 2019



4:10 Constructing Light Spanners Deterministically in Near-Linear Time

5.1 Details of the almost-greedy spanner
Set ε = 1 2. Our algorithm for Lemma 9 is described below in Algorithm 1. It computes
a spanner of stretch c1(1 + ε)(2k − 1), where c1 = O(1) is the stretch of our incremental
approximate distance oracle in Theorem 6. Let t = c1(1 + ε)(2k − 1) throughout the section.
The proof of Lemma 9 is postponed to the full version [1].

Algorithm 1 Approximate-Greedy.

input :Graph G = (V,E,w), Parameters ε, k
output : Spanner H

1 Create H = (V, ∅)
2 Initialize incremental distance oracle (Theorem 6) on H with d = t ·W
3 for (u, v) ∈ E in non-decreasing order do
4 if d̂H(u, v) > t · w(u, v) then
5 Add (u, v) to H

6 return H

Next, we sketch the proof Lemma 10, by explaining how to modify the proof of Lemma 9.

Proof of Lemma 10. Recall that c1 is defined as the constant stretch provided by Theorem 6.
We use Algorithm 1 with the following modifications: (1) we pick d = c1(2k − 1), (2) when
adding an edge to the distance oracle we add it as an unweighted edge, (3) we add an edge
if its endpoints are not already connected by a path of at most d edges according to the
approximate distance oracle.

The stretch of the spanner follows by the same stretch argument as in Lemma 9 and the
fact that we consider the edges in non-decreasing order. To see that the size of the spanner
is O(n1+1/k) consider an edge (u, v) added to H by the modified algorithm. Since (u, v) was
added to H we know that the distance estimate was at least c1(2k − 1). It thus follows from
Theorem 6 that u and v have distance at least 2k in H and therefore H has girth at least
2k + 1. It now follows that H has O(n1+1/k) edges by a standard argument. The running
time of this modified algorithm follows directly from Theorem 6. J

5.2 Near-quadratic time implementation
The construction of the previous section used our result from Theorem 6 to efficiently
construct a spanner losing a constant factor exponential in 1/ε in the stretch. We may
instead use the seminal result of Even and Shiloach [17] to obtain the same result with
stretch (1 + ε)(2k − 1) at the cost of a slower running time as detailed in Theorem 2. Below
is described a version of the result of [17] which we will use.

I Theorem 11 ([17]). There exists a deterministic incremental APSP data structure for
graphs with integer edge weights, which answers distance queries within a given threshold d
in O(1) time and has total update time O(mnd).

Here, the threshold means that if the distance between two nodes is at most d, the data
structure outputs the exact distance and otherwise it outputs∞ (or some other upper bound).

2 In Section 5.2 we let 0 < ε < 1 here to be arbitrary small parameter.
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To obtain Theorem 2 we use the framework of Section 4. For the algorithm A2 we may
simply use the deterministic spanner construction of Roditty and Zwick [28] giving stretch
2k − 1 and size O(n1+1/k) in time O(kn2+1/k). For A1 we will show the following lemma.

I Lemma 12. Let G = (V,E,w) be an undirected graph with m = |E| and n = |V |, edge
weights bounded from above by W and where all MST edges have weight 1. Let k be a positive
integer. Then one can deterministically construct a (1 + ε)(2k − 1)-spanner of G with size
Oε(n1+1/k) and lightness Oε(n1/k) in time Oε(m logn+ kWn2+1/k).

Proof sketch. The final spanner will be a union of two spanners. Since Theorem 11 requires
integer weights. We therefore need to treat edges with weight less than 1/ε separately. For
these edges we use the algorithm of Roditty and Zwick [28] to produce a spanner with stretch
2k − 1, size O(n1+1/k) and thus total weight O(n1+1/k/ε).

For the remaining edges with weight at least 1/ε we now round up the weight to the
nearest integer incurring a stretch of at most a factor of 1 + ε. We now follow the approach
of Algorithm 1 using the incremental APSP data structure of Theorem 11 and a threshold in
line 4 of (1+ε)(2k−1) ·w(u, v) instead. We use the distance threshold d = (1+ε)(2k−1) ·W .

The final spanner, H, is the union of the two spanners above. The stretch, size and
lightness of the spanner follows immediately from the proof of Lemma 9. For the running
time, we add in the additional time to sort the edges and query the distances to obtain a
total running time of

Oε(m logn+ d · |E(H)| · |V (H)|) = Oε

(
m logn+ kWn2+1/k

)
. J

Now, recall that W = gk, where k ≤ logn and g > 1 is a fixed parameter of our choice. By
picking g such that g2k ≤ nε′ we get a running time of O(n2+1/k+ε′) for A1. Theorem 2 now
follows from Lemma 8.

6 Almost Linear Spanner

Our algorithm builds on the spanner of Chechik and Wulff-Nilsen [11]. Here we first describe
their algorithm and then present the modifications. Chechik and Wulff-Nilsen implicitly used
our general framework, and thus provide two different algorithms ACW

1 and ACW
2 . ACW

2 is
simply the greedy spanner algorithm.

ACW
1 starts by partitioning the non-MST edges into k buckets, such that the ith bucket

contains all edges with weight in [gi−1, gi). The algorithm is then split into k levels with the
ith bucket being treated in the ith level. In the ith level, the vertices are partitioned into
i-clusters, where the i-clusters refine the (i− 1)-clusters. Each i-cluster has diameter O(kgi)
and contains at least Ω(kgi) vertices. This is similar to the (i, ε)-clusters in Section 4 with
the modification of having two types of clusters, heavy and light. A cluster is heavy if it has
many incident i-level edges and light otherwise. For a light cluster, we add all the incident
i-level edges to the spanner directly. For the heavy clusters, Chechik and Wulff-Nilsen [11]
create a special auxiliary cluster graph and run the greedy spanner on this to decide which
edges should be added.

To bound the lightness of the constructed spanner, they show that each time a heavy
cluster is constructed the number of clusters in the next level is reduced significantly. Then,
using a clever potential function, they show that the contribution of all the greedy spanners
is bounded. It is interesting to note, that in order to bound the weight of a single greedy
spanner, they use the analysis of [14]. Implicitly, [14] showed that on graphs with O(poly(k))
aspect ratio, the greedy (1 + ε)(2k − 1)-spanner has Oε(n1/k) lightness and O(n1+1/k) edges.
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There are three time-consuming parts in [11]: 1) The clustering procedure iteratively
grows the i-clusters as the union of several (i− 1)-clusters, but uses expensive exact diameter
calculations in the original graph. 2) They employ the greedy spanner several times as a
subroutine during ACW

1 for graphs with O(poly(k)) aspect ratio. 3) They use the greedy
spanner as ACW

2 .
In order to handle 1) above we will grow clusters purely based on the number of nodes in

the (i− 1)-clusters (in similar manner to (i, ε)-clusters), thus making the clustering much
more efficient without losing anything significant in the analysis. To handle 2) We will use
the following lemma in place of the greedy spanner.

I Lemma 13. Given a weighted undirected graph G = (V,E,w) with m edges and n vertices,
a positive integer k, ε > 0, such that all the weights are within [a, a · ∆), and the MST
have weight O(na). One can deterministically construct a (2k − 1)(1 + ε)-spanner of G with
Oε(n1+ 1

k ) edges and lightness Oε
(
n

1
k · log (∆)

)
in time O (m+ n logn)).

The core of Lemma 13 already appears in [15], while here we analyze it for the special
case where the aspect ratio is bounded by ∆. The main ingredient is an efficient spanner
construction by Halperin and Zwick [20] for unweighted graphs. The proof of Lemma 13 is
deferred to the full version [1]. Replacing the greedy spanner by Lemma 13 above is the sole
reason for the additional log k factor in the lightness of Theorem 3.

Imitating the analysis of [11] with the modified ingredients, we are able to prove the
following lemma, which we will use as A1 in our framework.

I Lemma 14. Given a weighted undirected graph G = (V,E,w) with m edges and n vertices,
a positive integer k ≥ 640, and ε > 0, such that all MST edges have unit weight, and all
weights bounded by gk, one can deterministically construct a (2k − 1)(1 + ε)-spanner of G
with Oε(n1+1/k) edges and lightness Oε

(
log k · n 1

k

)
in time O (m+ nk)).

To address the third time-consuming part we instead use the algorithm of Theorem 7 as
A2. Replacing the greedy algorithm by Theorem 7 is the sole reason for the additional log k
factor in the sparsity of Theorem 3.

Combining Lemma 14, Theorem 7 and Lemma 8 we get Theorem 3. The proof of
Lemma 14 deferred to the full version [1].

7 Proof of Theorem 7

The basic idea in the algorithm of Theorem 7, is to partition the edges E of G into Oε(log k)
sets E1, E2, . . . , such that the edges in Ei are “well separated”. That is, for every e, e′ ∈ Ei,
the ratio between w(e) and w(e′) is either a constant or at least k. By hierarchical execution
of a modified version of [20], with appropriate clustering, we show how to efficiently construct
a spanner of size O(n1+1/k) for each such “well separated” graph. Thus, taking the union of
these spanners, Theorem 7 follows. The details appear in the full version [1].

8 Deterministic Incremental Distance Oracles for Small Distances

In this section, we present a deterministic incremental approximate distance oracle which
can answer approximate distance queries between vertex pairs whose actual distance is below
some threshold parameter d. This oracle will give us Theorem 6 and finish the proof of
Theorem 4. In fact, we will show the following more general result. Theorem 6 follows
directly by setting k = 1/ε in the theorem below.
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I Theorem 15. Let G = (V,E) be an n-vertex undirected graph that undergoes a series of
edge insertions. Let G have positive integer edge weights and set E = ∅ initially. Let ε > 0
and positive integers k and d be given. Then a deterministic approximate distance oracle
for G can be maintained under any sequence of operations consisting of edge insertions and
approximate distance queries. Its total update time is Oε(m1+1/k(3 + ε)k−1d(k + log d) logn)
where m is the total number of edge insertions; the value of m does not need to be specified
to the oracle in advance. Given a query vertex pair (u, v), the oracle outputs in O(k logn)
time an approximate distance d̃(u, v) such that d̃(u, v) ≥ d(u, v) and such that if d(u, v) ≤ d
then d̃(u, v) ≤ (2(3 + ε)k−1 − 1)d(u, v).

As discussed in Section 3, a main advantage of our oracle is that, unlike, e.g., the incremental
oracle of Roditty and Zwick [29], it works against an adaptive adversary. Hence, the sequence
of edge insertions does not need to be fixed in advance and we allow the answer to a distance
query to affect the future sequence of insertions. This is crucial for our application since the
sequence of edges inserted into our approximate greedy spanner depends on the answers to
the distance queries.

We assume in the following that m ≥ n; if this is not the case, we simply extend the
sequence of updates with n − m dummy updates. We will present an oracle satisfying
Theorem 15 except that we require it to be given m in advance. An oracle without this
requirement can be obtained from this as follows. Initially, an oracle is set up with m = n.
Whenever the number of edge insertions exceeds m, m is doubled and a new oracle with this
new value of m replaces the old oracle and the sequence of edge insertions for the old oracle
are applied to the new oracle. By a geometric sums argument, the total update time for the
final oracle dominates the time for all the previous oracles. Hence, presenting an oracle that
knows m in advance suffices to show the theorem.

Before describing our oracle, we need some definitions and notation. For an edge-weighted
tree T rooted at a vertex u, let dT (v) denote the distance from u to v in T , where dT (v) =∞
if v /∈ V (T ). Let r(T ) = maxv∈V (T ) dT (v). Given a graph H and W ⊆ V (H), we let
degH(W ) =

∑
v∈W degH(v) and given a subgraph S of H, we let degH(S) = degH(V (S)).

For a vertex u in an edge-weighted graph H and a value r ≥ 0, we let BH(u, r) denote the
ball with center u and radius r in H, i.e., BH(u, r) = {v ∈ V (H)|dH(u, v) ≤ r}. When H is
clear from context, we simply write B(u, r).

We use a superscript (t) to denote a dynamic object (such as a graph or edge set) or
variable just after the t’th edge insertion where t = 0 refers to the object prior to the first
insertion and t = m refers to the object after the final insertion. For instance, we refer to G
just after the t’th update as G(t).

In the following, let ε, k, and d be the values and let G = (V,E) be the dynamic graph
of Theorem 15. For each i ∈ {0, . . . , k − 1}, define mi = 2m(i+1)/k and let di be the smallest
power of (1+ε) of value at least (3+2ε)id. For each u ∈ V and each t ∈ {0, . . . ,m}, let d(t)

i (u)
be the largest power of (1 + ε) of value at most di such that degG(t)(B(t)(u, d(t)

i (u))) ≤ mi.
We let B(t)

i (u) = B(t)(u, d(t)
i (u)) and let T (t)

i (u) be a shortest path tree from u in B(t)
i (u).

Note that T (t)
i (u) need not be uniquely defined; in the following, when we say that a tree is

equal to T (t)
i , it means that the tree is equal to some shortest path tree from u in B(t)

i (u).
The data structure in the following lemma will be used as black box in our distance

oracle. One of its tasks is to efficiently maintain trees T (t)
i (u). The proof of Lemma 16 is

deferred to the full version [1].

I Lemma 16. Let U ⊆ V be a dynamic set with U (0) = ∅ and let i ∈ {0, . . . , k − 1} be
given. There is a deterministic dynamic data structure which supports any sequence of update
operations, each of which is one of the following types:
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Insert-Edge(u, v): this operation is applied whenever an edge (u, v) is inserted into E,
Insert-Vertex(u): inserts vertex u into U .
Let tmax denote the total number of operations and for each vertex u inserted into U , let
tu denote the update in which this happens. The data structure outputs in each update
t ∈ {1, . . . , tmax} a (possibly empty) set of trees T (t)

i (u) rooted at u for each u ∈ U (t)

satisfying either t > tu and d(t)
i (u) < d

(t−1)
i (u) or t = tu and d(t)

i (u) < di. For each such
tree T (t)

i (u), r(T (t)
i (u)) ≤ (1 + ε)d(t)

i (u) ≤ di and degG(t)(T (t)
i (u)) > mi. Total update time

is O(m) +Oε(|U (tmax)|midi logn).
At any point, the data structure supports in O(1) time a query for the value d(t)

i (u) and
in O(logn) time a query for the value dTi(u)(v) and for whether v ∈ V (Ti(u)), for any query
vertices u ∈ U and v ∈ V .

The construction and analysis of the distance oracle appear in the full version [1].
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