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Abstract
Resolving an open question from 2006 [14], we prove the existence of light-weight bounded-degree
spanners for unit ball graphs in the metrics of bounded doubling dimension, and we design a simple
O(log∗ n)-round distributed algorithm in the LOCAL model of computation, that given a unit ball
graph G with n vertices and a positive constant ϵ < 1 finds a (1+ϵ)-spanner with constant bounds on
its maximum degree and its lightness using only 2-hop neighborhood information. This immediately
improves the best prior lightness bound, the algorithm of Damian, Pandit, and Pemmaraju [13],
which runs in O(log∗ n) rounds in the LOCAL model, but has a O(log ∆) bound on its lightness,
where ∆ is the ratio of the length of the longest edge to the length of the shortest edge in the unit
ball graph. Next, we adjust our algorithm to work in the CONGEST model, without changing
its round complexity, hence proposing the first spanner construction for unit ball graphs in the
CONGEST model of computation. We further study the problem in the two dimensional Euclidean
plane and we provide a construction with similar properties that has a constant average number of
edge intersections per node. Lastly, we provide experimental results that confirm our theoretical
bounds, and show an efficient performance from our distributed algorithm compared to the best
known centralized construction.
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1 Introduction

Given a collection of points V in a metric space with doubling dimension d, the weighted unit
ball graph (UBG) on V is defined as a weighted graph G(V, E) where two points u, v ∈ V

are connected if and only if their metric distance ∥uv∥ ≤ 1. The weight of the edge uv of the
UBG is ∥uv∥ if the edge exists. Unit ball graphs in the Euclidean plane are called unit disk
graphs (UDGs) and are frequently used to model ad-hoc wireless communication networks,
where every node in the network has an effective communication range R, and two nodes are
able to communicate if they are within a distance R of each other.

Spanners are sub-graphs of the input graph whose pair-wise distances approximate
distances in the input graphs, while having fewer edges than complete graphs. Given a
weighted graph G, a t-spanner on G can be defined as a graph S that has V (G) as its set of
vertices, while E(S) ⊆ E(G) and the following inequality is satisfied for every pair of vertices
u, v ∈ V (G):

distS(u, v) ≤ t · distG(u, v)

where distS(u, v) (or distG(u, v)) is the length of the shortest path between u and v using
the edges in S (or G, respectively). We call this inequality the bounded stretch property.
Because of this inequality, t-spanners provide a t-approximation for the pairwise distances
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21:2 Distributed Construction of Lightweight Spanners for Unit Ball Graphs

between the vertices in G. The parameter t > 1 is called the stretch factor or spanning ratio
of the spanner and determines how accurate the approximate distances are; spanners having
smaller stretch factors are more accurate.

Spanners can be specifically defined on any graph coming from a metric space, where
a heavy or undesirable network is given and finding a sparse and light-weight spanner and
working with it instead of the actual network makes the computation easier and faster
(Figure 1). In particular, lightweight spanners have been gained extreme attention in the
geometric setting and in the metrics with bounded doubling dimension [29, 7, 6], which is a
generalization of the former. The problem of finding sparse light-weight spanners in these
spaces has appeared in many areas of computer science, including communication network
design and distributed computing. These subgraphs have few edges and are easy to construct,
leading them to appear in a wide range of applications since they were introduced [11, 34, 43].
In wireless ad hoc networks t-spanners are used to design sparse networks with guaranteed
connectivity and guaranteed bounds on routing length [3]. In distributed computing spanners
provide communication-efficiency and time-efficiency through the sparsity and the bounded
stretch property [5, 19, 4, 20]. There has also been extensive use of geometric spanners in
the analysis of road networks [21, 1, 10]. In robotics, geometric spanners helped motion
planners to design near-optimal plans on a sparse and light subgraph of the actual network
[16, 40, 15]. Spanners have many other applications including computing almost shortest
paths [17, 12, 44, 26], and overlay networks [8, 47, 32].

(a) Complete graph. (b) 2-spanner. (c) 1.2-spanner. (d) 1.05-spanner.

Figure 1 A comparison of the complete graph on 30 random points on the plane with spanners
of stretch 2, 1.2, and 1.05 on the same point set.

The special case where the underlying graph is a unit ball graph is motivated by the
application of unit ball graphs in modeling wireless and ad-hoc networks, where the com-
munication of the nodes are limited by their physical distances. The problem of finding
sparse lightweight spanners for unit ball graphs in this settings translates into efficient
topology control algorithms. Thus the necessity of a connected and energy-efficient topology
for high-level routing protocols led researchers to develop many spanning algorithms for
ad-hoc networks and in particular, UDGs. But the decentralized nature of ad-hoc networks
demands that these algorithms be local instead of centralized. In these applications, it is
important that the resulting topology is connected, has a low weight, and has a bounded
degree, implying also that the number of edges is linear in the number of vertices.

Several known proximity graphs have been studied for this purpose, including the relative
neighborhood graph (RNG), Gabriel graph (GG), Delaunay graph (DG), and Yao graph
(YG). It is well-known that these proximity graphs are sparse and they can be calculated
locally, using only the information from a node’s neighborhood. But further analysis shows
that they have poor bounds on at least one of the important criteria: maximum vertex
degree, total weight, and stretch-factor [39].
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Researchers have modified these constructions to fulfill the requirements. Li, Wan, and
Wang [39] introduced a modified version of the Yao graph to resolve the issue of unbounded
in-degree while preserving a small stretch-factor, but they left as an open question whether
there exists a construction whose total weight is also bounded by a constant factor of the
weight of the minimum spanning tree. The localized Delaunay triangulation (LDT) [38] and
local minimum spanning tree (LMST) [37] were two other efforts in this way which failed
to bound the total weight of the spanner. Hence bounding the weight became the main
challenge in designing efficient spanners. The commonly used measure for the weight of the
spanners is lightness, which is defined as the weight of the spanner divided by the weight of
the minimum spanning tree.

In the distributed setting in particular, Gao, Guibas, Hershberger, Zhang, and Zhu [28]
introduced restricted Delaunay graph (RDG), a planar distributed spanner construction
for unit disk graphs in the two dimensional Euclidean plane that possessed a constant
stretch-factor, leaving the weight of the spanner unstudied. Later Kanj, Perković, and
Xia [33] presented the first local spanner construction for unit disk graphs in the two
dimensional Euclidean plane, which also was planar and had constant bounds on its stretch-
factor, maximum degree, and lightness. Their construction was also based on the Delaunay
triangulation of the point set and required information from k-th hop neighbors of every
node, for some constant k that depended on the input parameters.

In 2006, Damian, Pandit, and Pemmaraju [14] designed a distributed construction for
(1 + ϵ)-spanners of the UBGs lying in d-dimensional Euclidean space. Their algorithm ran in
O(log∗ n) rounds of communication and produced a (1 + ϵ)-spanner with constant bounds
on its maximum degree and lightness. They used the so-called leapfrog property to prove
the constant bound on the lightness of the spanner, which does not hold for the spaces of
bounded doubling dimension in general. Instead, they showed in another work [13] that the
weight of their spanner in the spaces of bounded doubling dimension is bounded by a factor
O(log ∆) of the weight of the minimum spanning tree, where ∆ is the ratio of the length of
the longest edge in the unit ball graph divided by the length of its shortest edge. Besides
these, their algorithm requires the knowledge of O( 1

α−1 )-hop neighborhood of the nodes,
which is costly in the CONGEST model of distributed computing, the more accepted and
practical model than the LOCAL model of computation.

In the 3D Euclidean space, Jenkins, Kanj, Xia, and Zhang [31] designed the first localized
bounded-degree (1 + ϵ)-spanner for unit ball graphs. They also presented a lightweight
construction which possessed constant bounds on its stretch-factor and maximum degree.
These algorithms again required k-th hop neighborhood information for every node, for
a constant k that depended on the input parameters. Although these constructions were
local, i.e. they ran in constant rounds of communication, they relied heavily on Euclidean
transformations which made them inapplicable for other metric spaces.

Finally, Elkin, Filtser, and Neiman [18] studied the topic of lightweight spanners for general
graphs and doubling graphs in the CONGEST model of distribution. For general graphs, they
presented (2k−1) · (1 + ϵ)-spanners with lightness O(k ·n1/k) in Õ(n0.5+1/(4k+2) +D) rounds,
where n is the number of vertices and D is the hop-diameter of the graph. For doubling
graphs, they presented a (1 + ϵ)-spanner with lightness ϵ−O(1) log n in (

√
n + D) ·no(1) rounds

of communication. Although these constructions are more general than the constructions of
[13] and they perform in a more restricted model (CONGEST), they do not imply a superior
result in the specific case of unit ball graphs in doubling metrics.

Apart from being a generalization of the Euclidean space, the importance of the spaces of
bounded doubling dimension comes from the fact that a small perturbation in the pairwise
distances does not affect the doubling dimension of the point set by much, while it can
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21:4 Distributed Construction of Lightweight Spanners for Unit Ball Graphs

change their Euclidean dimension significantly, or the resulting distances might not even be
embeddable in Euclidean metrics at all [9]. This makes these metrics of bounded doubling
dimension to be more applicable in real-world scenarios. On the other hand, geometric
arguments are considered as a strong tool for proofs of sparsity and lightness bounds in
Euclidean spaces, but in doubling spaces the only available tool besides metric properties, is
the packing argument which is directly followed from the definition of the doubling dimension.
Therefore, the sparsity and lightness results are more difficult to achieve in the spaces of
bounded doubling dimension.

Since the work of Damian, Pandit, and Pemmaraju [13] in 2006, it has remained open
whether UBGs in the spaces of bounded doubling dimension possess lightweight bounded-
degree (1 + ϵ)-spanners and whether they can be found efficiently in a distributed model
of computation. On the other hand, the construction of [13] requires complete information
about the nodes in O( 1

α−1 ) hops away, for some constant α. Acquiring this information is
costly in the CONGEST model of computation, which is a more accepted model in distributed
computing. Therefore, another open question arising from this line of work is to study the
round complexity of the aforementioned problem in the CONGEST model. In this paper, we
resolve both of these long-standing open questions by presenting centralized and distributed
algorithms, both in the LOCAL, and the CONGEST model, for the purpose of finding such
spanners.

1.1 Contributions

We have two main contributions in this paper. First, we resolve the proposed open question
that has remained open for more than a decade, and we prove the existence of light-weight
bounded-degree (1 + ϵ)-spanners of unit ball graphs in the spaces of bounded doubling
dimension. Our construction has constant bounds on its maximum degree and its lightness,
and it can be built inO(log∗ n) rounds of communication in the LOCAL model of computation,
where n is the number of vertices.

Second, we propose the first lightweight spanner construction for unit ball graphs in the
CONGEST model of computation. Even if we restrict our scope to the two dimensional
Euclidean plane, where we see most of the applications of unit disk graphs, prior to this work
there was no known CONGEST algorithm for finding light spanners of unit disk graphs. We
achieve this construction by making adjustments on our construction for the LOCAL model
to make it work in the CONGEST model in the same asymptotic number of rounds. The
bounds on the lightness and maximum degree of our spanner remain the same in this model.

Besides these main results, we modify these constructions for the two dimensional
Euclidean plane in order to have a linear number of edge intersections in total, implying a
constant average number of edge intersections per node. This is motivated by the observation
that a higher intersection per edge causes a higher chance of interference between the
corresponding endpoints. To the best of our knowledge, this is the first distributed low-
stretch low-intersection spanner construction for unit disk graphs.

A more detailed version of our results can be found in the following theorems. First, we
introduce a centralized algorithm Centralized-Spanner that,

▶ Theorem 8. Given a weighted unit ball graph G in a metric of bounded doubling dimension
and a constant ϵ > 0, the spanner returned by Centralized-Spanner(G,ϵ) is a (1 + ϵ)-
spanner of G and has constant bounds on its lightness and maximum degree. These constant
bounds only depend on ϵ and the doubling dimension.
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We use this centralized construction to propose the distributed construction Distributed-
Spanner in the LOCAL model of computation,

▶ Theorem 16. Given a weighted unit ball graph G with n vertices in a metric of bounded
doubling dimension and a constant ϵ > 0, the algorithm Distributed-Spanner(G,ϵ) runs
in O(log∗ n) rounds of communication in the LOCAL model of computation, and returns a
(1 + ϵ)-spanner of G that has constant bounds on its lightness and maximum degree. These
constant bounds only depend on ϵ and the doubling dimension.

Next, we study the problem in the CONGEST model of computation. Our distributed
construction Distributed-Spanner requires complete information about 2-hop neighbor-
hood of a selected set of vertices, which is not easy to acquire in the CONGEST model. The
same issues exists in the distributed algorithm of [13], where they aggregate information
about the nodes that are O( 1

α−1 ) hops away, for some constant α. A simple approach
for aggregating 2-hop neighborhoods would require O(d) rounds of communication in the
CONGEST model, which can be as large as Ω(n) if the input graph is dense. In our next
theorem, we break this barrier by making some adjustments for our algorithm to work in the
CONGEST model of computation. Despite adding to the complexity of the algorithm itself,
we prove that the round complexity of our new algorithm, CONGEST-Spanner, would
still be bounded by O(log∗ n).

▶ Theorem 21. Given a weighted unit ball graph G with n vertices in a metric of bounded
doubling dimension and a constant ϵ > 0, the algorithm CONGEST-Spanner(G,ϵ) runs in
O(log∗ n) rounds of communication in the CONGEST model of computation, and returns a
(1 + ϵ)-spanner of G that has constant bounds on its lightness and maximum degree. These
constant bounds only depend on ϵ and the doubling dimension.

The rest of the contributions are included in the full version of this paper due to page
limits. In the full version, We study the problem in the case of the two dimensional Euclidean
plane, where the greedy spanner on a complete weighted graph is known to have constant
upper bounds on its lightness [27], maximum degree, and average number of edge intersections
per node [23]. We observe that a simple change on the this algorithm can extend these results
for unit disk graphs as well. We call this modified algorithm Centralized-Euclidean-
Spanner and we show that

▶ Theorem 22. Given a weighted unit disk graph G in the two dimensional Euclidean plane
and a constant ϵ > 0, the spanner returned by Centralized-Euclidean-Spanner(G,ϵ) is
a (1 + ϵ)-spanner of G and has constant bounds on its lightness, maximum degree, and the
average number of edge intersections per node. These constant bounds only depend on ϵ and
the doubling dimension.

We use the aforementioned construction to propose Distributed-Euclidean-Spanner,
a specific distributed low-intersection construction for the case of the two dimensional
Euclidean plane that preserves the previously mentioned properties and adds the low-
intersection property.

▶ Theorem 26. Given a weighted unit disk graph G with n vertices in the two dimensional
Euclidean plane and a constant ϵ > 0, the algorithm Distributed-Euclidean(G,ϵ) runs
in O(log∗ n) rounds of communication and returns a bounded-degree (1 + ϵ)-spanner of G

that has constant bounds on its lightness, maximum degree, and the average number of edge
intersections per node. These constant bounds only depend on ϵ and the doubling dimension.
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21:6 Distributed Construction of Lightweight Spanners for Unit Ball Graphs

We also prove that the last construction possesses sublinear separators and a separator
hierarchy in the two dimensional Euclidean plane. We generalize this result to work for higher
dimensions of Euclidean spaces. Finally, we provide experimental results on random point
sets in the two dimensional Euclidean plane that confirm the efficiency of our distributed
construction.

2 Preliminaries

2.1 Doubling metrics
We start by recalling the definition of the doubling dimension of a metric space,

▶ Definition 1 (doubling dimension). The doubling dimension of a metric space is the smallest
d such that for any R > 0, any ball of radius R can be covered by at most 2d balls of radius
R/2.

We say a metric space has bounded doubling dimension if its doubling dimension is upper
bounded by a constant. Besides the triangle inequality, which is intrinsic to metric spaces,
the packing lemma is an essential tool for the metrics of bounded doubling dimension. This
lemma states that it is impossible to pack more than a certain number of points in a ball of
radius R > 0 without making a pair of points’ distance less than some r > 0.

▶ Lemma 2 (Packing Property). In a metric space of bounded doubling dimension d, let X be
a set of points with minimum distance r, contained in a ball of radius R. Then |X| ≤

( 4R
r

)d.

Proof. This is a well-known fact, see e.g. [46]. ◀

2.2 Spanners for complete graphs
For a weighted graph G in a metric space, where every edge weight is equal to the metric
distance of its endpoints, a t-spanner is defined in the following way,

▶ Definition 3 (t-spanner). A t-spanner of a weighted graph G is a subgraph S of G that for
every pair of vertices x, y in G,

distS(x, y) ≤ t · distG(x, y)

where distA(x, y) is the length of a shortest path between x and y in A. The lightness of
S is defined as w(S)/w(MST ) where w is the weight function and MST is the minimum
spanning tree in G.

In other words, a t-spanner approximates the pairwise distances within a factor of t. Spanners
were studied for complete weighted graphs first, and several constructions were proposed
to optimize them with respect to the number of edges and total weight. Among these
constructions, greedy spanners [2] are known to out-perform the others.

A greedy spanner (Figure 1) can be constructed by running the greedy spanner algorithm
(Algorithm 1) on a set of points V in a metric space. This short procedure adds edges one at
a time to the spanner it constructs, in ascending order by length. For each pair of vertices, in
this order, it checks whether the pair already satisfies the distance inequality using the edges
already added. If not, it adds a new edge connecting the pair. Therefore, by construction,
each pair of vertices satisfies the inequality, either through previous edges or (if not) through
the newly added edge. The resulting graph is therefore a t-spanner.



D. Eppstein and H. Khodabandeh 21:7

Algorithm 1 The naive greedy spanner algorithm.

1: procedure Naive-Greedy(V )
2: Let S be a graph with vertices V and edges E = {}
3: for each pair (P, Q) ∈ V 2 in increasing order of ∥PQ∥ do
4: if distS(P, Q) > t · dist(P, Q) then
5: Add edge PQ to E

return S

Despite the simplicity of Algorithm 1, Farshi and Gudmundsson [25] observed that in
practice, greedy spanners are surprisingly good in terms of the number of edges, weight,
maximum vertex degree, and also the number of edge crossings in the two dimensional
Euclidean plane. All of these properties have been proven rigorously so far. Filster and
Solomon [27] proved that greedy spanners have size and lightness that is optimal to within a
constant factor for worst-case instances. They also achieved a near-optimality result for greedy
spanners in spaces of bounded doubling dimension. Borradaile, Le, and Wulff-Nilsen [7]
recently proved optimality for doubling metrics, generalizing a result of Narasimhan and
Smid [41], and resolving an open question posed by Gottlieb [29], and Le and Solomon
showed that no geometric t-spanner can do asymptotically better than the greedy spanner in
terms of number of edges and lightness [36].

In a recent work, Eppstein and Khodabandeh [23] showed that the number of edge
crossings of the greedy spanner in the two dimensional Euclidean plane is linear in the
number of vertices. Moreover, they proved that the crossing graph of the greedy spanner has
bounded degeneracy, implying the existence of sub-linear separators for these graphs [22].
This, together with the well-known fact that greedy spanners have bounded-degree in the
two dimensional Euclidean plane, makes greedy spanners more practical in this particular
metric space.

Although the degree of the greedy spanner is bounded in the two dimensional Euclidean
plane, it is known that there exist n-point metric spaces with doubling dimension 1 where
the greedy spanner has maximum degree n − 1 [27]. Gudmundsson, Levcopoulos, and
Narasimhan [30] devised a faster algorithm that was later proven to have bounded degree
as well as constant lightness and linear number of edges [27]. We call this algorithm
Approximate-Greedy in this paper, and we make use of it in our algorithms for the
metrics of bounded doubling dimension, while we take advantage of the extra low-intersection
property of Naive-Greedy in the two dimensional Euclidean plane.

2.3 Unit ball graphs
We formally define a unit ball graph on a set of points V in the following way,

▶ Definition 4 (unit ball graph). Given a set of points V in a metric space, the unit ball
graph G on V contains V as its vertex set and every two vertices x, y ∈ V are connected if
and only if ∥xy∥ ≤ 1. The weight of an edge (x, y) is equal to ∥xy∥ if the edge exists.

Unit ball graphs are an important subclass of the graphs called growth-bounded graphs,
which only limit the number of independent nodes in every neighborhood, a property that
holds for UBGs due to the packing property.

Kuhn, Moscibroda, and Wattenhofer [35] presented a O(log∗ n)-round distributed algo-
rithm for finding a maximal independent set (MIS) of a unit ball graph graph in a space with
bounded doubling dimension. This result was later generalized by Schneider and Watten-
hofer [45] for growth-bounded graphs. Throughout the paper we refer to their algorithm by
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21:8 Distributed Construction of Lightweight Spanners for Unit Ball Graphs

Figure 2 The unit disk graph on the same point set introduced earlier. The red disks intersect,
therefore there is an edge between their centers.

Maximal-Independent. It turns out that Maximal-Independent will be a key ingredient
of our distributed algorithms, as well as their bottleneck in terms of the number of rounds.
This means that if a maximal independent set is known beforehand, our algorithms can be
executed fully locally, in constant number of rounds.

In section 3 we prove the existence of (1 + ϵ)-spanners with constant bounds on the
maximum degree and the lightness by introducing an algorithm that finds such spanners
in a centralized manner. In section 4 we propose a distributed construction that delivers
the same features through a O(log∗ n)-round algorithm. In the full version, we consider the
special case of two dimensional Euclidean plane and we design centralized and distributed
algorithms to construct a spanner that has the extra low-intersection property, making it
more suitable for practical purposes.

3 Centralized Construction

In this section we propose a centralized construction for a light-weight bounded-degree
(1 + ϵ)-spanner for unit ball graphs in a metric of bounded doubling dimension. Later in
section 4 we use this centralized construction to design a distributed algorithm that delivers
the same features.

It is worth mentioning that the greedy spanner would be a (1 + ϵ)-spanner of the UBG
if the algorithm stops after visiting the pairs of distance at most 1, and it even has a
lightness bounded by a constant, but as we mentioned earlier, there are metrics with doubling
dimension 1 in which its degree may be unbounded.

To construct a lightweight bounded-degree (1 + ϵ)-spanner of the unit ball graph, we
start with the spanner of [30], called Approximate-Greedy, which is returns a spanner
of the complete graph. It is proven in [41] that Approximate-Greedy has the desired
properties, i.e. bounded-degree and lightness, for complete weighted graphs in Euclidean
metrics, but as stated in [27], the proof only relies on the triangle inequality and packing
argument which both work for doubling metrics as well. Therefore, we may safely assume
that Approximate-Greedy finds a light-weight bounded-degree (1 + ϵ)-spanner of the
complete weighted graph defined on the point set. The main issue is that the edges of length
more than 1 are not allowed in a spanner of the unit ball graph on the same point set.
Therefore, a replacement procedure is needed to substitute these edge with edges of length
at most 1. Peleg and Roditty [42] introduced a refinement process which removes the edges
of length larger than 1 from the spanner and replaces them with three smaller edges to make
the output a subgraph of the UBG. The main issue with their approach is that it can lead to
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vertices having unbounded degrees in the spanner, therefore missing an important feature.
Here, we introduce our own refinement process that not only replaces edges of larger than
1 with smaller edges and makes the spanner a subgraph of the unit ball graph, but also
guarantees a constant bounded on the degrees of the resulting spanner.

3.1 The algorithm

In the first step of the algorithm (Algorithm 2) we choose ϵ′ = ϵ/36, a smaller stretch
parameter than ϵ, to cover the errors that future steps might inflict to the spanner. Then we
call the procedure Approximate-Greedy on the set of vertices V to calculate a light-weight
bounded-degree (1 + ϵ′)-spanner S of the complete weighted graph on V . This spanner might
contain edges of length larger than 1, which we will replace by some edges of length at most
1 in the future steps.

Since an edge of length larger than 1 + ϵ′ in S cannot participate in the shortest path
between any two adjacent vertices in G, we simply remove and discard them from the spanner.
Then for every remaining edge e = (u, v) of length in the range (1, 1 + ϵ′] we find an edge
(x, y) of the original graph G so that ∥ux∥ ≤ ϵ′ and ∥vy∥ ≤ ϵ′. We then replace such an edge
e by the edge (x, y). We call the pair (x, y) the replacement edge or the replacement pair
for the edge e. Since this procedure can end up assigning too many replacement edges to a
single vertex (x or y in this case) and hence increasing its degree significantly, we perform
a simple check before adding a replacement edge; we store the set R of previously added
replacement pairs in the memory and if a weak replacement pair (x′, y′) ∈ R exists, then we
prefer it over a newly found replacement pair (x, y) /∈ R. By weak replacement pair we mean
a pair (x′, y′) ∈ R that ∥ux′∥ ≤ 2ϵ′ and ∥vy′∥ ≤ 2ϵ′, which is weaker than the definition of
the replacement pair. As we later see this weaker notion of replacement pair will help us to
bound the degree of the vertices.

After removing the edges of length larger than 1 and replacing the ones in the range
(1, 1 + ϵ′], we return the spanner to the output.

Algorithm 2 A centralized spanner construction.
Input. A unit ball graph G(V, E) in a metric with doubling dimension d.
Output. A light-weight bounded-degree (1 + ϵ)-spanner of G.

1: procedure Centralized-Spanner(G, ϵ)
2: ϵ′ ← ϵ/36
3: S ← Approximate-Greedy(V , ϵ′)
4: R ← ∅
5: for e = (u, v) in S do
6: if |e| > 1 then
7: Remove e from S

8: if |e| ∈ (1, 1 + ϵ′] then
9: if ∃(x, y) ∈ E that ∥ux∥ ≤ ϵ′ and ∥vy∥ ≤ ϵ′ then

10: if ∄(x′, y′) ∈ R that ∥ux′∥ ≤ 2ϵ′ and ∥vy′∥ ≤ 2ϵ′ then
11: S ← S ∪ {(x, y)}
12: R← R ∪ {(x, y)}
13: return S
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21:10 Distributed Construction of Lightweight Spanners for Unit Ball Graphs

3.2 The analysis
Now we prove that the output S of the algorithm is a light-weight bounded-degree (1 + ϵ)-
spanner of the unit ball graph G. Clearly, after the refinement is done the spanner S is a
subgraph of G, so we need to analyze the lightness, the stretch factor, and the maximum
degree of the spanner.

First we prove that the stretch-factor of the spanner is indeed bounded by 1 + ϵ.

▶ Lemma 5. The spanner returned by Centralized-Spanner has a stretch factor of 1 + ϵ.

The proof of this lemma is moved to Appendix A. Now we analyze the weight of the
spanner, proving its constant lightness.

▶ Lemma 6. The spanner returned by Centralized-Spanner has a weight of O(1)w(MST ).

The proof of this lemma is also in Appendix A. In the final step, we bound the maximum
degree of the spanner.

▶ Lemma 7. The spanner returned by Centralized-Spanner has bounded degree.

The proof of this lemma is moved to Appendix A. Putting these together, we can prove
Theorem 8.

▶ Theorem 8 (Centralized Spanner). Given a weighted unit ball graph G in a metric of
bounded doubling dimension and a constant ϵ > 0, the spanner returned by Centralized-
Spanner(G,ϵ) is a (1 + ϵ)-spanner of G and has constant bounds on its lightness and
maximum degree. These constant bounds only depend on ϵ and the doubling dimension.

Proof. Follows directly from Lemma 5, Lemma 6, and Lemma 7. ◀

4 Distributed Construction

In this section we propose our distributed construction for finding a (1 + ϵ)-spanner of a
unit ball graph using only 2-hop neighborhood information. The spanner returned by our
algorithm has constant bounds on its maximum degree and its lightness. This is the first
light-weight distributed construction for unit ball graphs in doubling metrics, to the best of
our knowledge.

In our distributed construction, we run our centralized algorithm on the 2-hop neighbor-
hoods of a an independent set of the unit ball graph, and we prove that putting these local
spanners together will achieve a spanner that possesses the desired properties.

4.1 The algorithm
For the distributed construction we propose Algorithm 3. There is a preprocessing step of
finding a maximal independent set I of G, which can be done using the distributed algorithm
of [35] in O(log∗ n) rounds. We refer to this algorithm by Maximal-Independent. Then
the Local-Greedy subroutine is run on every vertex w ∈ I to find a (1 + ϵ)-spanner Sw

of the 2-hop neighborhood of w, denoted by N 2(w). At the final step, every w ∈ I sends
its local spanner edges to the corresponding endpoints of every edge. Symmetrically, every
vertex listens for the edges sent by the vertices in I and once a message is received, it stores
the edges in its local storage. In other words, the final spanner is the union of all these local
spanners. We use the centralized algorithm of section 3 for every local neighborhood N 2(w)
to guarantee the bounds that we need.
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Algorithm 3 The localized greedy algorithm.
Input. A unit ball graph G(V, E) in a metric with doubling dimension d and an ϵ > 0.
Output. A light-weight bounded-degree (1 + ϵ)-spanner of G.

1: procedure Distributed-Spanner(G, ϵ)
2: Find a maximal independent set I of G using [35]
3: Run Local-Greedy on the vertices of G

4: function Local-Greedy(vertex w)
5: Retrieve N 2(w), the 2-hop neighborhood information of w

6: if w ∈ I then
7: Sw ← Centralized-Spanner(N 2(w), ϵ)
8: for e = (u, v) in Sw do
9: Send e to u and v

10: Listen to incoming edges and store them

Similar to the aforementioned greedy algorithm (Algorithm 1), our algorithm seems very
simple in the first sight. But as we see later in this section, proving its properties, particularly
its lightness, is a non-trivial task.

4.2 The analysis
Now we show that the spanner introduced in Algorithm 3 possesses the desired properties.
First, we show the round complexity of O(log∗ n).

▶ Lemma 9. Distributed-Spanner can be done in O(log∗ n) rounds of communication.

The proof of this lemma is in Appendix B. Next we bound the stretch-factor of the
spanner.

▶ Lemma 10. The spanner returned by Distributed-Spanner has a stretch factor of 1 + ϵ.

The proof of this lemma is also included in Appendix B. Now we bound the maximum
degree of the spanner.

▶ Lemma 11. The spanner returned by Distributed-Spanner has a bounded degree.

The proof of this lemma is also in Appendix B. In order to bound the lightness of the
output, we assume that ϵ ≤ 1 and we make a few comparisons. First, for any w ∈ I we
compare the weight of Sw to the weight of the minimum spanning tree on N 2(w). Then we
compare the weight of the minimum spanning tree on N 2(w) to the weight of the minimum
Steiner tree on N 3(w), where the required vertices are N 2(w) and 3-hop vertices are optional.
Finally, we compare the weight of this minimum Steiner tree to the weight of the induced
subgraph of Centralized-Spanner(G, ϵ) on the subset of vertices N 3(w), which later
implies that the overall weight of Sws is bounded by a constant factor of the weight of the
minimum spanning tree on G.

Our first claim is that the weight of Sw is bounded by a constant factor of the weight of
the MST on N 2(w).

▶ Corollary 12. w(Sw) = O(1)w(MST (N 2(w)))

Proof. Follows from the properties of the centralized algorithm in section 3. ◀
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Next we compare w(MST (N 2(w))) to the weight of the minimum Steiner tree of N 3(w)
on the required vertices N 2(w).

▶ Lemma 13. Define T to be the optimal Steiner tree on the set of vertices N 3(w), where
only vertices in N 2(w) are required and the rest of them are optional. Then

w(MST (N 2(w))) ≤ 2w(T )

The proof of this lemma is included in Appendix B. We then compare the weight of
T to the weight of induced subgraph of Centralized-Spanner(G, ϵ) on the subset of
vertices N 3(w). The main observation here is that when ϵ ≤ 1 the induced subgraph of
the centralized spanner on N 3(w) would be a feasible solution to the minimum Steiner tree
problem on N 3(w), with the required vertices being the vertices in N 2(w). This will imply
that the weight of the induced subgraph is at least equal to the weight of the minimum
Steiner tree.

▶ Lemma 14. Let S∗ be the output of Centralized-Spanner(G, ϵ) and let S∗
w be the

induced subgraph of S∗ on N 3(w). Then

w(T ) ≤ w(S∗
w)

The proof of this lemma is also in Appendix B. This lemma concludes our sequence of
comparisons. By putting together what we proved so far, we have

▶ Proposition 15. The spanner returned by Distributed-Spanner has a weight of
O(1)w(MST ).

Proof. By Corollary 12, Lemma 13, and Lemma 14,

w(Sw) = O(1)w(S∗
w)

Summing up together these inequalities for w ∈ I,

w(output) = O(1)
∑
w∈I

w(S∗
w)

But we recall that every vertex, and hence every edge of S∗, is repeated O(1) times in the
summation above, so

w(output) = O(1)w(S∗) = O(1)w(MST (G)) ◀

Therefore we have all the ingredients to prove Theorem 16.

▶ Theorem 16 (Distributed Spanner). Given a weighted unit ball graph G with n vertices in
a metric of bounded doubling dimension and a constant ϵ > 0, the algorithm Distributed-
Spanner(G,ϵ) runs in O(log∗ n) rounds of communication in the LOCAL model of com-
putation, and returns a (1 + ϵ)-spanner of G that has constant bounds on its lightness and
maximum degree. These constant bounds only depend on ϵ and the doubling dimension.

Proof. It directly follows from Lemma 9, Lemma 10, Lemma 11, and Proposition 15. ◀
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5 Adjustments for the CONGEST Model

In this section we study the problem of finding a bounded-degree (1 + ϵ)-spanner in the
CONGEST model of computation, for a point set that is located in a doubling metric space.
In the CONGEST model, every node can send a message of bounded size to every other node
in a single round of communication. This makes it hard to gather any global information
about the graph.

The maximal independent set algorithm of [35] still works in O(log∗ n) rounds of commu-
nication in the CONGEST model. But our proposed distributed algorithm (Algorithm 3)
needs to gather 2-hop neighborhood information of every center in the MIS, which requires
O(D) rounds in the CONGEST model, where D is the maximum degree of a vertex in the
unit ball graph. The rest of the algorithm is performed locally and the number edges sent to
every neighbor in the end is bounded by a constant, so the remaining of the algorithm only
requires a constant number of rounds.

It is natural to ask whether our algorithm can be adapted to the CONGEST model, and
if it requires more communication rounds compared to the LOCAL model. In this section
we show how to modify our algorithm to work in the CONGEST model, and surprisingly,
have no asymptotic change on its number of communication rounds.

As we mentioned earlier, the only step of our algorithm that requires more than constant
rounds of communication is the aggregation of the 2-hop neighborhood information for every
center in the MIS. We passed the 2-hop neighborhoods to our centralized algorithm to find
an asymptotically optimal spanner on them, which was later distributed among the vertices
in the neighborhood to form the final spanner. Here, for our construction in the CONGEST
model, we directly address the problem of finding an asymptotically optimal spanner for the
2-hop neighborhoods, without the need to access all of the points in those neighborhoods.

Let w ∈ I be a center in the maximal independent set. We partition the edges of the
UBG on N 2(w) into two sets, depending on whether their length is larger than 1/2 or not.
We aim to find asymptotically optimal spanners for each partition separately. We use the
notation G≤α to refer to the subgraph of the unit ball graph that consists of edges of length
at most α. We similarly define G>α. Therefore, we can refer to the subgraphs induced by
the two partitions by G≤1/2 and G>1/2.

First, we show that in constant rounds of communication, we can find a covering of the
points in N 2(w) with at most a constant number of balls of radius 1/2. The existence of
such covering trivially follows from the definition of a doubling metric space, but finding
such covering in the distributed setting is not trivial. Therefore, we introduce the following
procedure: Every center v ∈ N 1(w) (including w itself) finds a maximal independent set
I1/4(v) of the vertices N 1(v) in G≤1/4, and sends it to w, all centers at the same time. Recall
that N 1(v) is the set of neighbors of v in the UBG, and a maximal independent set in G≤1/4
is simply a maximal set of vertices where the pair-wise distance of each two vertex is at least
1/4. Finding this maximal independent set for each v can be easily done using a (centralized)
greedy algorithm, and the size of such maximal independent set would be bounded by a
constant according to the packing lemma. Therefore, this step can be done in constant
number of rounds. Afterwards, w calculates a maximal independent set I(w) of the vertices
∪v∈N 1(w)I1/4(v) in G≤1/4. We show that the centers in I satisfy our desired properties.

▶ Lemma 17. The union of the balls of radius 1/2 around the centers in I(w) cover N 2(w).
Furthermore, the size of I(w) is bounded by a constant.
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The proof of this lemma is moved to Appendix C. Next, every center v ∈ I(w) calculates
a (1+ ϵ)-spanner S≤1/2(v) of the point set N 1(v) using the centralized algorithm, and notifies
its neighbors about their connections. We prove that the union of these spanners, would
be a spanner for one of the partitions, i.e. the edges of length at most 1/2 in N 2(w). The
pseudo-code of this procedure is available in Algorithm 5

▶ Lemma 18. The union of the spanners S≤1/2(v) for v ∈ I(w) is a (1 + ϵ)-spanner of
N 2(w) in G≤1/2. The maximum degree and the lightness of this spanner are both bounded by
constants.

The proof of this lemma can be found in Appendix C.

Algorithm 4 The CONGEST spanner algorithm.
Input. A unit ball graph G(V, E) in a metric with doubling dimension d and an ϵ > 0.
Output. A light-weight bounded-degree (1 + ϵ)-spanner of G.

1: procedure CONGEST-Spanner(G, ϵ)
2: Find a maximal independent set I of G using [35]
3: Run Span-Short-Edges on the vertices of G

4: Run Span-Long-Edges on the vertices of G

Algorithm 5 Finding a spanner of the edges of length smaller than 1/2 in N 2(w).

1: function Span-Short-Edges(vertex u)
2: if u ∈ I then
3: Send a signal of type 1 to every v ∈ N 1(u).
4: Wait for their maximal independent sets, I1/4(v)s.
5: Calculate a maximal independent set of ∪v∈N 1(u)I1/4(v) in G<1/4 greedily.
6: Store this maximal independent set in I(u).
7: Send a signal of type 2 to every v ∈ I(u).
8: if received type 1 signal from some w then
9: Calculate a maximal independent set of N 1(w) in G1/4 greedily.

10: Send this maximal independent set to w.
11: if received type 2 signal from some w then
12: Calculate S≤1/2(u)← Centralized-Spanner(N 1(u), ϵ)
13: for e = (a, b) in S≤1/2(u) do
14: Send e to a and b

15: Receive and store the edges sent by other centers

Now we find a spanner for the other partition, the edges of length larger than 1/2 in
N 2(w). The procedure is as follows: First, every center v ∈ N 1(w) calculates a maximal
independent set Iϵ/40(v) of N 1(v) in G≤ϵ/40 and sends it to w. Again, the size of each
maximal independent set is O(ϵ−d) by the packing lemma, which is constant. Therefore,
this step takes only constant number of rounds. Afterwards, w finds a maximal independent
set I ′(w) of ∪v∈N 1(w)Iϵ/40(v) in G≤ϵ/40. Then w constructs a (1 + ϵ/5)-spanner S ′(w) of
I ′(w) in G using the centralized algorithm, and announces the edges of the spanner to their
corresponding endpoints. Finally, every center v ∈ I ′(w) calculates a (1 + ϵ)-spanner S ′′(v)
of its ϵ/20 neighborhood and announces its edges to their endpoints. We show that the union
of S′(w) and S′′(v)s for v ∈ I ′(w) would form a (1 + ϵ)-spanner of the second partition, i.e.
the edges of larger than 1/2. The pseudo-code of this procedure is available in Algorithm 6



D. Eppstein and H. Khodabandeh 21:15

▶ Lemma 19. The union of the balls of radius ϵ/20 around the centers in I ′(w) cover N 2(w).
Furthermore, the size of I ′(w) is bounded by a constant.

Proof. Similar to the proof of Lemma 17. ◀

▶ Lemma 20. The union of the spanners S ′(w) and S ′′(v) for v ∈ I ′(w) forms a (1 + ϵ)-
spanner of N 2(w) in G>1/2. The maximum degree and the lightness of this spanner are btoh
bounded by constants.

The proof of this lemma is also in Appendix C.

Algorithm 6 Finding a spanner of the edges of length larger than 1/2 in N 2(w).

1: function Span-Long-Edges(vertex u)
2: if u ∈ I then
3: Send a signal of type 3 to every v ∈ N 1(u).
4: Wait for their maximal independent sets, Iϵ/40(v)s.
5: Calculate a maximal independent set of ∪v∈N 1(u)Iϵ/40(v) in G<ϵ/40 greedily.
6: Store this maximal independent set in I ′(u).
7: Send a signal of type 4 to every v ∈ I ′(u).
8: Calculate S ′(u)← Centralized-Spanner(I ′(u), ϵ/5)
9: for e = (a, b) in S ′(u) do

10: Send e to a and b

11: if received type 3 signal from some w then
12: Calculate a maximal independent set of N 1(w) in Gϵ/40 greedily.
13: Send this maximal independent set to w.
14: if received type 4 signal from some w then
15: Let N ϵ/20(u) be the ϵ/20 neighborhood of u, i.e. the set of vertices that are at

distance ϵ/20 or less from u.
16: Calculate S ′′(u)← Centralized-Spanner(N ϵ/20(u), ϵ)
17: for e = (a, b) in S ′′(u) do
18: Send e to a and b

19: Receive and store the edges sent by other centers

The union of the two spanners for the two partitions form a spanner for the 2-hop
neighborhood of w, the goal we wanted to achieve in the CONGEST model. This completes
our adjustments in this model.

▶ Theorem 21 (CONGEST Spanner). Given a weighted unit ball graph G with n vertices in
a metric of bounded doubling dimension and a constant ϵ > 0, the algorithm CONGEST-
Spanner(G,ϵ) runs in O(log∗ n) rounds of communication in the CONGEST model of
computation, and returns a (1 + ϵ)-spanner of G that has constant bounds on its lightness
and maximum degree. These constant bounds only depend on ϵ and the doubling dimension.

Proof. The proof follows from Lemma 18 and Lemma 20. ◀

We defer our low-intersection construction as well as our experimental results to the full
version of the paper due to space limitation.
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6 Conclusions

In this paper we resolved an open question from 2006 and we proved the existence of light-
weight bounded-degree (1+ϵ)-spanners for unit ball graphs in the spaces of bounded doubling
dimension. Moreover, we provided a centralized construction and a distributed construction
in the LOCAL model that finds a spanner with these properties. Our distributed construction
runs in O(log∗ n) rounds, where n is the number of vertices in the graph. If a maximal
independent set of the unit ball graph is known beforehand, our algorithm runs in constant
number of rounds. Next, we showed how to adjust our distributed construction to work in
the CONGEST model, without touching its asymptotic round complexity. In this way, we
provided the first CONGEST algorithm for finding a light spanner of unit ball graphs.

In the full version, we further adjusted these algorithms for the case of unit disk graphs in
the two dimensional Euclidean plane, and we presented the first centralized and distributed
constructions for a light-weight bounded-degree (1 + ϵ)-spanner that also has a linear number
of edge intersections in total. This can be useful for practical purposes if minimizing the
number of edge intersections is a priority. We proved, based on this low-intersection property,
that our spanner has sub-linear separators, and a separator hierarchy, and we were able to
generalize this result to higher dimensions of Euclidean spaces.

Finally, we performed experiments (in the full version) on random point sets in the two
dimensional Euclidean plane, to ensure that our theoretical bounds are also supported by
enough empirical evidence. Our results show that our construction performs efficiently with
respect to the maximum degree, size, and total weight.
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A Omitted Proofs from Section 3

▶ Lemma 5. The spanner returned by Centralized-Spanner has a stretch factor of 1 + ϵ.

Proof. We recall that the output of Approximate-Greedy is a light-weight bounded-degree
(1 + ϵ′)-spanner of the complete weighted graph on the point set. So an edge e of length
|e| > 1 + ϵ′ cannot be used to approximate any edges in the UBG, i.e. if (x, y) ∈ E then e

cannot belong to the shortest path between x and y in S; otherwise the length of the path
would exceed 1 + ϵ′ which cannot happen. So we may safely remove these edges in the first
step of the refinement procedure without replacing them.

x
y

u v

x0

y0

 1

 1

 ✏0  ✏0

 2✏0  2✏0

2

Figure 3 An edge (x, y) of the UBG that uses a longer than unit length edge (u, v) of the spanner
on its shortest path, which is then replaced by (x′, y′) during the replacement procedure.

Also, any edge of length in the range (1, 1 + ϵ′] that is not used in a shortest path between
any two endpoints of an edge of UBG can be removed as well, because removing them does
not change the stretch-factor of the spanner. Now consider an edge (x, y) ∈ E of the UBG
that uses a spanner edge e = (u, v) ∈ S that |e| ∈ (1, 1 + ϵ′] on its shortest path. We want
to prove that after the replacement of e, the shortest path between x and y remains within
1 + ϵ factor of their distance. Clearly, we have ∥ux∥ ≤ ϵ′ and ∥vy∥ ≤ ϵ′; otherwise the length
of the path xuvy would be more than 1 + ϵ′, contradicting the fact that it is approximating
an edge of length at most 1. This shows that (x, y) would be a valid replacement edge for
e. So we can safely assume that the algorithm finds a (possible weak) replacement edge
(x′, y′) ∈ E for e (Figure 3). This replacement edge might be a normal replacement edge or
a weak replacement edge. Either way, we have ∥ux′∥ ≤ 2ϵ′ and ∥vy′∥ ≤ 2ϵ′. By the triangle
inequality

∥x′x∥ ≤ ∥x′u∥+ ∥ux∥ ≤ 2ϵ′ + ϵ′ = 3ϵ′

Similarly, ∥yy′∥ ≤ 3ϵ′. Therefore

∥x′y′∥ ≤ ∥x′x∥+ ∥xy∥+ ∥yy′∥ ≤ ∥xy∥+ 6ϵ′ (1)

Denote the shortest spanner path between x and x′ by Pxx′ and similarly define Pyy′ . Consider
the spanner path P = Pxx′x′y′Py′y that connects x and y. Using Equation 1 the length of
the path P is

|P | = |Pxx′ |+ ∥x′y′∥+ |Py′y| ≤ ∥xy∥+ 6ϵ′ + |Pxx′ |+ |Py′y| (2)

The changes that we make in the refinement process do not affect the length of short paths
like Pxx′ and Py′y. So we have

|Pxx′ | ≤ (1 + ϵ′)∥xx′∥ ≤ 3ϵ′(1 + ϵ′)

Similarly, |Pyy′ | ≤ 3ϵ′(1 + ϵ′). Putting these into Equation 2 and using ϵ = 36ϵ′,

|P | ≤ ∥xy∥+ 6ϵ′ + 6(1 + ϵ′)ϵ′ ≤ ∥xy∥+ ϵ

1 + ϵ′ (3)
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But since e was previously approximating the edge (x, y), we know that (1+ ϵ′)∥xy∥ ≥ |e| > 1
or equivalently ∥xy∥ > 1/(1 + ϵ′). Substituting this into Equation 3,

|P | ≤ ∥xy∥+ ϵ∥xy∥ = (1 + ϵ)∥xy∥

So S is a (1 + ϵ)-spanner of G. ◀

▶ Lemma 6. The spanner returned by Centralized-Spanner has a weight of O(1)w(MST ).

Proof. Again, we use the fact that the output of Approximate-Greedy has weight
O(1)w(MST (G)). During the refinement process, every edge is replaced by an edge of
smaller length, so the whole weight of the graph does not increase during the refinement
process. Therefore in the end w(S) = O(1)w(MST (G)). ◀

▶ Lemma 7. The spanner returned by Centralized-Spanner has bounded degree.

Proof. It is clear from the algorithm that immediately after processing an edge e = (u, v),
the degree of u and v does not increase; it may decrease due to the removal of the edge which
is fine. But if a replacement edge (x, y) is added after the removal of e then the degree of x

and y is increased by at most 1. We need to make sure this increment is bounded for every
vertex.

Let x be an arbitrary vertex of G and let (x, y) and (x, z) be two replacement edges that
have been added to x in this order as a result of the refinement process. We claim that
∥yz∥ > ϵ′ holds. Assume, on the contrary, that ∥yz∥ ≤ ϵ′, and also assume that (x, z) has
been added in order to replace an edge (u, v) of the spanner. Then by the triangle inequality

∥vy∥ ≤ ∥vz∥+ ∥zy∥ ≤ 2ϵ′

Also ∥ux∥ ≤ ϵ′ < 2ϵ′ because (x, z) is added to replace (u, v). But the last two inequalities
contradict the fact that (x, y) cannot be a weak replacement for (u, v).

Now that we have proved ∥yz∥ > ϵ′ we can use the packing property of the bounded
doubling dimension to bound the number of such replacement edges around x. All the other
endpoints of such replacement edges are included in ball of radius 1 around x, and the
distance between every two such points is at least ϵ′. Thus by the packing property there
can be at most ( 4

ϵ′ )d = ϵ−O(d) many replacement edges incident to x. ◀

B Omitted Proofs from Section 4

▶ Lemma 9. Distributed-Spanner can be done in O(log∗ n) rounds of communication.

Proof. The pre-processing step of finding the maximal independent set takes O(log∗ n)
rounds of communication [35]. Retrieving the 2-hop neighborhood information can be done
in O(1) rounds of communication. Computing the greedy spanner is done locally, and the
edges are sent to their endpoints, which again can be done in O(1) rounds of communication.
Overall, the algorithm requires O(log∗ n) rounds of communication. ◀

▶ Lemma 10. The spanner returned by Distributed-Spanner has a stretch factor of 1 + ϵ.

Proof. From section 3 we know that Sw is a light-weight bounded-degree (1 + ϵ)-spanner of
N 2(w). Let u, v ∈ V be chosen arbitrarily. We need to make sure there is a path of length
at most (1 + ϵ)dG(u, v) between u and v in the output.

First we prove this for the case that (u, v) ∈ E. So let e = (u, v) ∈ E. Then u is either
in I or has a neighbor in I, according to choice of I. In any case, the edge e belongs to
N 2(w) for some w ∈ I, which means that there is a path P ⊂ Sw of length at most (1 + ϵ)|e|
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that connects u and v. The edges of P are all included in the final spanner according to the
algorithm, so the output includes this path between u and v, which has a length at most
(1 + ϵ)|e| and so the distance inequality is satisfied.

If (u, v) /∈ E, we can take the shortest path u = p0, p1, · · · , pk = v between them in
G and append the corresponding (1 + ϵ)-approximate paths P0, P1, · · · , Pk−1 of the edges
p0p1, p1p2, · · · , pk−1pk, respectively, to get a (1 + ϵ)-approximate path for p0p1 · · · pk. This
implies that the stretch factor of the output is indeed 1 + ϵ. ◀

▶ Lemma 11. The spanner returned by Distributed-Spanner has a bounded degree.

Proof. First we use the packing lemma to prove that any vertex v ∈ V appears at most a
constant number of times in different neighborhoods, N 2(w) for w ∈ I. Because v ∈ N 2(w)
implies that ∥vw∥ ≤ 2, any vertex w ∈ I such that v ∈ N 2(w) should be contained in the
ball of radius 2 around v. But all such ws are chosen from I, which is an independent set of
G, so the distance between every two such vertex is at least 1. By the packing property, the
maximum number of such vertices would be 8d = O(1).

Now that every vertex appears in at most in 8d different sets N 2(w), for w ∈ I, and
from section 3 we already knew that every vertex has bounded degree in any of Sws, it
immediately follows that every vertex has bounded degree in the final spanner. ◀

▶ Lemma 13. Define T to be the optimal Steiner tree on the set of vertices N 3(w), where
only vertices in N 2(w) are required and the rest of them are optional. Then

w(MST (N 2(w))) ≤ 2w(T )

Proof. This is a well-known fact that implies a 2-approximation for minimum Steiner tree
problem. The idea is if we run a full DFS on the vertices of T and we write every vertex
once we open and once we close it, then we get a cycle whose shortcut on optional edges will
form a path on the required vertices. The weight of the cycle is at least w(MST (N 2(w)))
and at most 2w(T ), which proves the result. ◀

▶ Lemma 14. Let S∗ be the output of Centralized-Spanner(G, ϵ) and let S∗
w be the

induced subgraph of S∗ on N 3(w). Then

w(T ) ≤ w(S∗
w)

Proof. We prove that for ϵ ≤ 1, S∗
w forms a forest that connects all the vertices in N 2(w) in

a single component. So S∗
w is a feasible solution to the minimum Steiner tree problem on the

set of vertices N 3(w) with required vertices being N 2(w). Thus w(T ) ≤ w(S∗
w).

Now we just need to prove that the vertices in N 2(w) are connected in S∗
w. Let u be

an i-hop neighbor of w and v be an i + 1-hop neighbor of w for some w ∈ I and i = 0, 1.
Assume that (u, v) ∈ E. It is enough to prove that u and v are connected in S∗

w. In order
to do so, we observe that there is a path of length at most (1 + ϵ)∥uv∥ between u and v in
S∗. We show that this path is contained in N 3(w) and we complete the proof in this way,
because w(S∗

w) is nothing but the induced subgraph of S∗ on N 3(w).
Assume, on the contrary, that there is a vertex x /∈ N 3(w) on the (1 + ϵ)-path between u

and v. This means that x is not a 1-hop neighbor of any of u and v, because otherwise x

would have been in N 3(w). So ∥ux∥ > 1 and ∥vx∥ > 1. Thus the length of the path would
be at least ∥ux∥+ ∥xv∥ > 2 ≥ (1 + ϵ) ≥ (1 + ϵ)∥uv∥ which is a contradiction. ◀
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C Omitted Proofs from Section 5

▶ Lemma 17. The union of the balls of radius 1/2 around the centers in I(w) cover N 2(w).
Furthermore, the size of I(w) is bounded by a constant.

Proof. Let v ∈ N 2(w) be an arbitrary point. Thus there exists u ∈ N 1(w) that v ∈ N 1(u).
Let I1/4(u) be the maximal independent set of the vertices N 1(u) in G≤1/4, that u calculates
and sends to w in the first step. There exists v′ ∈ I1/4(u) that ∥vv′∥ ≤ 1/4. Similarly, there
exists v′′ ∈ I(w) that ∥v′v′′∥ ≤ 1/4. By the triangle inequality, ∥vv′′∥ ≤ 1/2, i.e. v is covered
by a ball of radius 1/2 around v′′.

On the other hand, I(w) is contained in a ball of radius 2 and every pair of points in I(w)
have a distance of at least 1/4. Thus, by the packing lemma, he size of I(w) is bounded by
a constant. ◀

▶ Lemma 18. The union of the spanners S≤1/2(v) for v ∈ I(w) is a (1 + ϵ)-spanner of
N 2(w) in G≤1/2. The maximum degree and the lightness of this spanner are both bounded by
constants.

Proof. First, we prove the 1 + ϵ stretch-factor. Let (u, v) be a pair in N 2(w) such that
∥uv∥ ≤ 1/2. By Lemma 17 we know there exists u′ ∈ I(w) that ∥uu′∥ ≤ 1/2. Thus ∥vu′∥ ≤ 1
which means that u, v ∈ N 1(u′) and there would be a (1 + ϵ)-path for this pair in S≤1/2(u′),
which would be present in the union of the spanners.

The degree bound follows from the fact that, by the packing lemma, every point in N 2(w)
is appeared in at most a constant number of one-hop neighborhoods and therefore in at most
a constant number of spanners constructed the elements in I(w). Since in every spanner it
has a bounded degree, in the union it will have a bounded degree as well.

To prove the lightness bound we follow a similar approach to the proof of Proposition
15. The weight of each spanner S≤1/2(v) is O(1)w(MST (N 1(v))). The weight of the MST
is at most twice the weight of the optimal Steiner tree on N 2(v) with the required vertices
being N 1(v). And the weight of this optimal Steiner tree is at most equal to the weight of
the induced sub-graph of an (asymptotically) optimal (1 + ϵ)-spanner of G on the subset of
vertices N 2(v). Summing up these subgraphs for different vs and different ws would end up
with adding at most a constant factor to the weight of the optimal spanner, which proves
that the lightness would be bounded by a constant. ◀

▶ Lemma 20. The union of the spanners S ′(w) and S ′′(v) for v ∈ I ′(w) forms a (1 + ϵ)-
spanner of N 2(w) in G>1/2. The maximum degree and the lightness of this spanner are btoh
bounded by constants.

Proof. Again, we first prove the 1 + ϵ stretch-factor of the spanner. Let (u, v) be a pair in
N 2(w) that ∥uv∥ > 1/2. Let u′ and v′ be centers in I ′(w) that are at distance of at most
ϵ/20 from u and v, respectively. Such centers exist according to Lemma 19. Consider the
(1 + ϵ)-path connecting u to u′ in S ′′(u′) and the (1 + ϵ)-path connecting v to v′ in S ′′(v′).
We can attach these paths together with the (1 + ϵ/5)-path between u′ and v′ in S ′(w) to
get a path between u and v. The stretch of this path would be at most

(1 + ϵ)(∥uu′∥+ ∥vv′∥) + (1 + ϵ/5)∥u′v′∥
∥uv∥

= (1 + ϵ)(∥uu′∥+ ∥vv′∥)
∥uv∥

+ (1 + ϵ/5)∥u′v′∥
∥uv∥

But,

(1 + ϵ)(∥uu′∥+ ∥vv′∥)
∥uv∥

≤ (1 + ϵ)ϵ/10
1/2 ≤ 2ϵ

5
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Also,

(1 + ϵ/5)∥u′v′∥
∥uv∥

≤ (1 + ϵ/5)(∥uv∥+ ∥uu′∥+ ∥vv′∥)
∥uv∥

≤ 1 + ϵ/5 + (1 + ϵ/5)ϵ/10
∥uv∥

Bounding the last term,

(1 + ϵ/5)ϵ/10
∥uv∥

≤ (6/5)ϵ/10
1/2 = 6ϵ

25

Therefore, the stretch of the uv-path would be upper bounded by,

2ϵ

5 + 1 + ϵ/5 + 6ϵ

25 < 1 + ϵ

An approach similar to the proof of Lemma 18 shows that the degree of every vertex in
the union of S ′′(v)s would be bounded by a constant. We do not repeat the details of the
proof here. From the properties of our centralized construction, the degree of every vertex
would be bounded in S ′(w) as well. Thus, the degree of every vertex in the union of these
spanners would be bounded by a constant.

To prove the lightness bound, we bound the weight of each spanner separately. First,
we bound the total weight of S ′(w). We know from the properties of our centralized con-
struction, that w(S ′(w)) = O(1)w(MST (I ′(w))). But w(MST (I ′(w))) ≤ 2MST (N 2(w)),
so w(S ′(w)) = O(1)w(MST (N 2(w))). Therefore, by Lemma 13 and Lemma 14 the total
weight of S ′(w) spanners for different centers w would sum up to at most a constant factor
of the weight of the optimal spanner.

Next, we bound the total weight of S ′′(v) spanners. Again, we know from the properties
of our centralized construction that w(S ′′(v)) = O(1)w(MST (N ϵ/20(v))). Assuming that S∗

is an optimal spanner on the point set, we can observe that any (1 + ϵ)-path (in S∗) between
any pair of vertices in N ϵ/20(v) must be completely contained in a ball of radius 3ϵ/20,
otherwise the length of the path would be more than (1 + ϵ)ϵ/10, the maximum allowed
length for any (1 + ϵ)-path of any pair in the N ϵ/20(v) neighborhood. Therefore, the induced
sub-graph of S∗ on N 3ϵ/20(v) has a connected component connecting the vertices of N ϵ/20(v).
Thus, its weight is at least equal to the weight of a minimum Steiner tree on N 3ϵ/20(v),
with the required vertices being N ϵ/20(v). This is at least equal to w(MST (N ϵ/20(v)))/2.
Therefore, the weight of S ′′(v) is bounded above by a constant factor of the weight of the
induced sub-graph of S∗ on N 3ϵ/20(v). Summing up these bounds for every v in every w

would lead to at most a constant repetitions of every vertex and every edge (similar to
Proposition 15) in S∗, which shows that the total weight of S ′′(v) for different vertices of v

would be bounded by a constant factor of the weight of the optimal spanner. ◀
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