10,728 research outputs found

    What Is the Validity Domain of Einstein’s Equations? Distributional Solutions over Singularities and Topological Links in Geometrodynamics

    Get PDF
    The existence of singularities alerts that one of the highest priorities of a centennial perspective on general relativity should be a careful re-thinking of the validity domain of Einstein’s field equations. We address the problem of constructing distinguishable extensions of the smooth spacetime manifold model, which can incorporate singularities, while retaining the form of the field equations. The sheaf-theoretic formulation of this problem is tantamount to extending the algebra sheaf of smooth functions to a distribution-like algebra sheaf in which the former may be embedded, satisfying the pertinent cohomological conditions required for the coordinatization of all of the tensorial physical quantities, such that the form of the field equations is preserved. We present in detail the construction of these distribution-like algebra sheaves in terms of residue classes of sequences of smooth functions modulo the information of singular loci encoded in suitable ideals. Finally, we consider the application of these distribution-like solution sheaves in geometrodynamics by modeling topologically-circular boundaries of singular loci in three-dimensional space in terms of topological links. It turns out that the Borromean link represents higher order wormhole solutions

    Metrics for generalized persistence modules

    Full text link
    We consider the question of defining interleaving metrics on generalized persistence modules over arbitrary preordered sets. Our constructions are functorial, which implies a form of stability for these metrics. We describe a large class of examples, inverse-image persistence modules, which occur whenever a topological space is mapped to a metric space. Several standard theories of persistence and their stability can be described in this framework. This includes the classical case of sublevelset persistent homology. We introduce a distinction between `soft' and `hard' stability theorems. While our treatment is direct and elementary, the approach can be explained abstractly in terms of monoidal functors.Comment: Final version; no changes from previous version. Published online Oct 2014 in Foundations of Computational Mathematics. Print version to appea

    A Homology Theory for Etale Groupoids

    Get PDF
    Etale groupoids arise naturally as models for leaf spaces of foliations, for orbifolds, and for orbit spaces of discrete group actions. In this paper we introduce a sheaf homology theory for etale groupoids. We prove its invariance under Morita equivalence, as well as Verdier duality between Haefliger cohomology and this homology. We also discuss the relation to the cyclic and Hochschild homologies of Connes' convolution algebra of the groupoid, and derive some spectral sequences which serve as a tool for the computation of these homologies.Comment: 34 page

    Neutrosophic Sets and Systems, Vol. 36, 2020

    Get PDF

    Full Issue

    Get PDF

    Resolving Structure in Human Brain Organization: Identifying Mesoscale Organization in Weighted Network Representations

    Full text link
    Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease.Comment: Comments welcom
    • …
    corecore