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Abstract

�Etale groupoids arise naturally as models for leaf spaces of foliations� for orbifolds� and for

orbit spaces of discrete group actions� In this paper we introduce a sheaf homology theory for

�etale groupoids� We prove its invariance under Morita equivalence� as well as Verdier duality

between Hae�iger cohomology and this homology� We also discuss the relation to the cyclic and

Hochschild homologies of Connes� convolution algebra of the groupoid� and derive some spectral

sequences which serve as a tool for the computation of these homologies�

Keywords� �etale groupoids� homology� duality� spectral sequences� cyclic homology�

foliations�

In this paper we introduce a homology theory for �etale groupoids� �Etale groupoids serve as
model for structures like leaf spaces of foliations� orbifolds� and orbit spaces of actions by discrete
groups� In this sense� �etale groupoids should be viewed as generalized spaces�

In the literature one �nds� roughly speaking� two di�erent approaches to the study of �etale
groupoids� One approach is based on the construction of the convolution algebras associated to
an �etale groupoid� in the spirit of Connes� non�commutative geometry �	
�� 
��� and involves the
study of cyclic and Hochschild homology and cohomology of these algebras �	�� 
��� The other
approach uses methods of algebraic topology such as the construction of the classifying space of an
�etale groupoid and its �sheaf� cohomology groups �	�� ��� ����

Our motivation in this paper is twofold� First� we want to give a more complete picture of
the second approach� by constructing a suitable homology theory which complements the existing
cohomology theory� Secondly� we use this homology theory as the main tool to relate the two ap�
proaches�

Let us be more explicit� In the second approach� one de�nes for any �etale groupoid G natural
cohomology groups with coe�cients in an arbitrary G�equivariant sheaf� These were introduced in
a direct way by Hae�iger �	
��� As explained in 	��� they can be viewed as a special instance of
the Grothendieck theory of cohomology of sites �	��� and agree with the cohomology groups of the
classifying space of G �	�
�� Moreover� these cohomology groups are invariant under Morita equiva�
lences of �etale groupoids� �This invariance is of crucial importance� because the construction of the
�etale groupoid modelling the leaf space of a given foliation involves some choices which determine
the groupoid only up to Morita equivalence�� We complete this picture by constructing a homology
theory for �etale groupoids� again invariant under Morita equivalence� which is dual �in the sense of
Verdier duality� to the existing cohomology theory� Thus� one result of our work is the extension of
�the six operations of Grothendieck��	�� from spaces to leaf spaces of foliations�

Our homology theory of the leaf space of a foliation re�ects some geometric properties of the
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foliation� For example� by integration along the �bers �leaves� it is related to the leafwise cohomology
theory studied by Alvarez Lopez� Hector and others �see 	
 and the references cited there�� It also
shows that the Ruelle�Sullivan current of a measured foliation �see 	
�� lives in Ha�iger�s �closed�
cohomology� The results in 	�� 
� �see also Proposition ��
�� imply that our homology is also the
natural target for the �localized� Chern character� �We plan to describe some of these connections
more explicitly in a future paper��

The homology theory also plays a central role in explaining the relation between the sheaf the�
oretic and the convolution algebra approaches to �etale groupoids� already referred to above� Indeed�
the various cyclic homologies of �etale groupoids can be shown to be isomorphic to the homology
of certain associated �etale groupoids� it extends the previous results of Burghelea� Connes� Feigin�
Karoubi� Nistor� Tsygan� This connection explains several basic properties of the cyclic and periodic
homology groups� and leads to explicit calculations �	
��� The previous work on the Baum�Connes
conjecture for discrete groups� or for proper actions of discrete groups on manifolds� suggest that
this homology will play a role in the Baum�Connes conjecture for �etale groupoids�

From an algebraic point of view� our homology theory is an extension of the homology of groups�
while from a topological point of view it extends compactly supported cohomology of spaces� In this
context� we should emphasize that even in the simplest examples� the �etale groupoids which model
leaf spaces of foliations involve manifolds which are neither separated nor paracompact� Thus� an
important technical ingredient of our work is a suitable extension of the notions related to compactly
supported section of sheaves to non�separated �non�paracompact� manifolds� For example� as a spe�
cial case of our results one obtains the Verdier �and Poincar�e� duality for non�separated manifolds�
Our notion of compactly supported sections is also used in the construction of the convolution alge�
bra of a �non�separated� �etale groupoid� We believe that this extension to non�separated spaces has
a much wider use that the one in this paper� and we have tried to give an accessible presentation of
it in the appendix� The results in the appendix also play a central role in the calculation concerning
the cyclic homology of �etale groupoids in 	
�� and make it possible to extend the results of 	� for
separated groupoids to the non�separated case�

We conclude this introduction with a brief outline of the paper�
In the �rst section we review the basic de�nitions and examples related to �etale groupoids� and

in the second section we summarize the sheaf cohomology of �etale groupoids� These two sections
serve as background� and do not contain any new results� Readers familiar with this background
should immediately go to section �� and consult the earlier sections for notational conventions�

In section �� we present the de�nition of our homology theory and mention some of its imme�
diate properties�

In section �� a covariant operation � � for any map � between �etale groupoids is introduced�
which can intuitively be thought of as a kind of �integration along the �ber� at the level of derived
categories� We then prove a Leray spectral sequence for this operation� This spectral sequence is
extremely useful� For example� we will use it to prove the Morita invariance of homology� It also
plays a crucial role in many calculations in 	
��

In section �� we prove that the operation L� � has a right adjoint � � at the level of derived
categories� thus establishing Verdier duality� The Poincar�e duality between �Hae�iger� cohomology
and �our� homology of �etale groupoids is an immediate consequence�

In section �� we summarize the main aspects of the relation to cyclic homology� This section
is based on 	
�� to which we refer the reader for detailed proofs and further calculations�

In an appendix� we show how to adapt the de�nition of the functor �c�X�A� �assigning to a
space X and a sheaf A the group of compactly supported sections� in such a way that all the prop�
erties �as expressed in 	�� say� can be proved without using Hausdor�ness and paracompactness of
the space X� This appendix can be read independently from the rest of the paper�
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� �Etale groupoids

In this section we review the de�nition of topological groupoids� �x the notations� and mention
some of the main examples�

Recall �rst that a groupoid G is a �small� category in which every arrow is invertible� We will
write G �� � and G �� � for the set of objects and the set of arrows in G� respectively� and denote the
structure maps by�

G �� � �G �� � G �� � m �� G �� � i �� G �� �

t
��

s ��
G �� � u �� G �� � � �
�

Here s and t are the source an target� m denotes composition �m�g� h� � g�h�� i is the inverse

�i�g� � g��� and for any x � G �� �� u�x� � 
x is the unit at x� We write g � x �� y or x
g
�� y to

indicate that g � G �� � is an arrow with s�g� � x and t�g� � y�
A topological groupoid G is similarly given by topological spaces G �� � and G �� � and by continuous

structure maps as in �
�� For a smooth groupoid� G �� � and G �� � are smooth manifolds� and these
structure maps are smooth� moreover� one requires s and t to be submersions� so that the �bered
product G �� � �

G �� � G
�� � in �
� is also a manifold�

��� De�nition� A topological �smooth� groupoid G as above is called �etale if the source map
s � G �� � �� G �� � is a local homeomorphism �local di�eomorphism�� This implies that all other
structure maps in �
� are also local homeomorphisms �local di�eomorphisms��

��� Germs� Any arrow g � x �� y in an �etale groupoid induces a germ �g � �U� x� ����V� y� from
a neighborhood U of x in G �� � to a neighborhood V of y� Indeed� we can de�ne �g � t��� where
x � U � G �� � is so small that s � G �� � �� G �� � has a section � � U �� G �� � with ��x� � g�
If U is so small that t j��U� is also a homeomorphism �resp� di�eomorphism�� then �g � U ���V is
also a homeomorphism �resp� di�eomorphism�� We will also write �g for the germ at x of this map

�g � U ���V � Note that �
 x is the identity germ� and that g�hg� � �h�g if g � x �� y and h � y �� z�

��� Examples of �etale groupoids� �Note that in examples � and �� the space G �� � is in general
not Hausdor���


� Any topological space �manifold� X can be viewed as an �etale groupoid X � with identity
arrows only �X

�� �
� X � X

�� �
� etc��� We will often simply denote this groupoid by X again�

�� If a �discrete� group � acts from the right on a space X� one can form a groupoid X ���



�

with �X ���� �� � � X and �X ���� �� � � X � �� by taking as arrows x �� y those � � � with
y � x�� This groupoid is called the translation groupoid of the action�

�� �	��� �� The Hae�iger groupoid �q has Rq for its space of objects� An arrow x �� y in �q

is a germ of a di�eomorphism �Rq� x� �� �Rq� y�� This groupoid and its classifying space B�q �cf�

�� below� play a central role in foliation theory�

�� �see� for example� 	��� 
�� ��� For a foliation �M�F� of codimension q� its holonomy
groupoid Hol�M�F� can be represented by an �etale groupoid HolT �M�F�� depending on the choice
of a �complete transversal� T � i�e� a submanifold T � M of dimension q which is transversal to
the leaves and which meets every leaf at least once� Two di�erent such transversals T and T � give
Morita equivalent �see 
�� below� �etale groupoids HolT �M�F� and HolT ��M�F��

�� Any orbifold gives rise to a smooth �etale groupoid� These groupoids G coming from orbifolds
have the special property that �s� t� � G �� � �� G �� � � G �� � is a proper map �see 	���� Groupoids
with this property are called proper� For a proper groupoid� G �� � is Hausdor� whenever G �� � is�

�� Let G be an �etale groupoid� A right G�space is a space X equipped with a map p � X �� G �� �

and an action X �
G �� � G �� � �� X� �x� g� �� x g satisfying the usual identities � If X is a right G�

space� one can construct a groupoid X ��G� with �X ��G�� � X and �X ��G�� � X �G �� � G
�� � �

an arrow x �� y in X ��G is an arrow p�x�
g
�� p�y� with y � x g� �A similar construction applies

of course to left G�spaces��

��� Homomorphisms� Let G and K be �etale groupoids� A homomorphism � � K �� G is given
by two continuous �or smooth� maps �� � K �� � �� G �� � and �� � K �� � �� G �� � which commute
with all the structure maps in �
� �i� e� � ��s�g� � s���g�� ���g�h� � ���g�����h�� etc��

��� Morita equivalence� A homomorphism� � K �� G is called a Morita �or weak� or essential�
equivalence if�


� The map s�� � K �� � �
G �� � G �� � �� G �� �� de�ned on the space of pairs �y� g� � K �� � � G �� �

with t�g� � ��y�� is an �etale surjection�
�� The square�

K �� �
�� ��

�s�t�

��

G �� �

�s�t�

��
K �� � �K �� �

����� �� G �� � � G �� �

is a �bered product�
We often write � � K ���G to indicate that � is such a Morita equivalence� Two groupoids G and

H are said to be Morita equivalent if there are Morita equivalences H ���K ���G� This is a transitive
relation� One generally considers the category of �etale groupoids obtained by formally inverting the
Morita equivalences� In this category� an arrow H �� G is represented by two homomorphisms� as
in�

H ���K �� G

�see 	�� for more details��

��
 Bundles� �see� for example� 	�� 
�� ��� ��� ��� ��� Let B be a �base� space� and G an �etale
groupoid� A left G�bundle over B consists of a space P � a map � � P �� B� and a left action of G
on P �see 
����� which respects � in the sense that ��ge� � ��e�� The action is called principal if the
canonical map between �bered products�

G
�� �
�G �� � P �� P �B P� �g� e� �� �ge� e�



�

is a homeomorphism�
If B � K �� � is the space of objects of another groupoid K� the bundle P is said to be K�

equivariant if P is also equipped with a right K�action� which commutes with the left action by G�
�ge�h � g�eh�� in this case the maps P �� K �� � and P �� G �� � are denoted by sP ��source�� and
tP ��target��� respectively� For instance� any homomorphism � � K �� G induces a K�equivariant
principal G�bundle�

P ��� � K
�� �

��G �� � G
�� �

�the space considered also in 
���
�� with sP ����y� g� � y� tP ����y� g� � s�g�� The isomorphism classes
of K�equivariant principal G�bundles P can be viewed as �generalized� or �Hilsum�Skandalis� mor�
phisms�

P � K �� G

The category so obtained is equivalent to the category obtained by inverting the Morita equiv�
alences �see 
���� Thus� showing that a certain construction is invariant under Morita equivalence
is the same as showing that it is functorial on generalized morphisms�

��� Nerve and classifying space� For an �etale groupoid G� we write G �n � for the space of
composable strings of arrows in G�

x�
g�
�� x�

g�
�� � � �

gn
�� xn

For n � �� 
� this agrees with the notation for the space of objects and arrows of G� already
introduced� The spaces G �n � �n � �� together form a simplicial space�

� � �
�������� G �� �

������ G �� � ���� G �� � � ���

with the face maps di � G
�n � �� G �n�� � de�ned in the usual way�

di� g�� ���� gn� �

��
�

� g�� ���� gn� if i � �
� g�� ���� gigi��� ���� gn� if 
 	 i 	 n� 

� g�� ���� gn��� if i � n

�

Its �thick 	��� geometric realization is the classifying space of G� denoted BG� This space BG
classi�es homotopy classes of principal G�bundles �	�� ���� A Morita equivalence � � H ���G
induces a weak homotopy equivalence BH ���BG�

��� Overall assumptions� It is important to observe that in many relevant examples� the space
G �� � of arrows of an �etale groupoid G is not Hausdor�� �cf� �� � in 
���� However� for any space X in
this paper we do assume that X has an open cover by subsets U � X which are each paracompact�
Hausdor�� locally compact� and of cohomological dimension bounded by a number d �depending on
X but not on U �� These assumptions hold for any �non�separated� manifold of dimension d� and in
particular for each of the spaces G �n � associated to a smooth �etale groupoid�

� Sheaves and cohomology

In this section we review the de�nition and main properties of the cohomology groupsHn�G�A�
of an �etale groupoid G with coe�cients in a G�sheaf A� These groups have been studied by Hae�iger
�	
��	�
�� They can also be viewed as cohomology groups of the topos of G�sheaves �Grothendieck�
Verdier� and were discussed from this point of view in 	���
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��� Gsheaves� Let G be an �etale groupoid� A G�sheaf is a sheaf S on the space G �� �� on which
G �� � acts continuously from the right� In other words� S is a right G�space �
����� for which the map
S �� G is �etale �a local homeomorphism�� A morphism of G�sheaves S �� S

�

is a morphism of
sheaves which commutes with the action� We will write Sh�G� for the category of all G�sheaves of
sets� and Ab�G� for the category of abelian G�sheaves� These categories have convenient exactness
properties� it is well known that Sh�G� is a topos� and �hence� that Ab�G� is an abelian category
with enough injectives� If R is a ring� we write ModR�G� for the category of G�sheaves of G�modules�
Thus Ab�G� � Mod

Z
�G�� Later� we will mostly work with the category Mod

R
�G� of G�sheaves of

real vector spaces�

��� Examples�


� For any set or abelian group A the corresponding constant sheaf on G �� � can be equipped
with the trivial G�action� We will refer to G�sheaves of this form as constant G�sheaves� they are
simply denoted by A again�

�� The sheaf A � C
G �� � of germs of continuous real�valued functions on G �� � has the natural

structure of a G�sheaf� if g � x �� y in G �� � and � � Ay is a germ at g� then ��g is de�ned as the
composition ���g �cf� 
���� Similarly if G is a smooth �etale groupoid� the sheaf �n

G �� � of di�erential

n�forms on G �� � has a structure of a G�sheaf �n � ���
�� Let E be a sheaf on G �� � �no action�� To E we can associate a G�sheaf E	G � E�G �� � G �� � �

f�e� g� � g � x �� y� e � Eyg� The sheaf projection is the map E	G �� G �� � given by �e� g� �� s�g��
while the G�action is given by composition� �e� g��h � �e� g�h�� Sheaves �isomorphic to ones� of this
form are said to be free G�sheaves� The freeness is expressed by the adjunction property�

HomG�E	G�S� � HomG �� ��E�S�

for any G�sheaf S�
�� Each of the spaces G �n � in the nerve of G �cf� 
��� has the structure of a G�sheaf� with sheaf

projection�

	n � G
�n �

�� G
�� �
� �x�

g�
�� x�

g�
�� � � �

gn
�� xn� �� xn �

and the G�action given by composition� �g�� ���� gn��h � �g�� ���� gnh�� This G�sheaf is denoted Fn���G��
For n � 
 these sheaves are free� in fact Gn�� � G �n �	G� The system of G�sheaves�

� � �
�������� F��G�

������ F��G� ���� F��G� � ���

has the structure of a simplicial G�sheaf� whose stalk at x � G �� � is the nerve of the comma category
x
G� This stalk is a contractible simplicial set�

�� For any G�sheaf of sets S� one can form the free abelian G�sheaf ZS � the stalk of ZS at
x � G �� � is the free abelian group on the stalk Sx� In particular� from ��� we obtain a resolution�

� � �
�
��ZF��G�

�
��ZF��G� ��Z�� � ���

of the constant G�sheaf Z� where � is de�ned by the alternating sums of the face maps in ����
�� If G �� � is a topological manifold of dimension d� recall that its orientation sheaf or is given by

or�U � � Hd
c �U �R��� �see e�g� 	�� ��� and the Appendix for compactly supported cohomology in the

case where G �� � is non�Hausdor��� It has a natural G�action� for any arrow g � x �� y in G� let Ux
and Uy be neighborhoods of x and y� so small that s � G �� � �� G �� � has a section � through g with
t�� � Ux ���Uy� Then t�� induces a map Hd

c �Ux� ���Hd
c �Uy�� so also a map Hd

c �Ux�
� ���Hd

c �Uy�
��

Hence by taking germs� it gives an action ory �� orx�
Note that if G �� � is oriented �i�e� as a sheaf on G �� �� or is isomorphic to the constant sheaf R��

it is not necessarily constant as a G�sheaf� When it is �i�e� when G �� � is orientable and any arrow
g � x �� y gives an orientation�preserving germ �g� cf� 
��� we say that G is orientable�
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��� Morphisms� A morphism of �etale groupoids � � K �� G induces an evident functor�

�� � Sh�G� �� Sh�K�

by pullback �and similarly an exact functor �� � Ab�G� �� Ab�K��� This functor has a right adjoint�

�� � Sh�G� �� Sh�K� �

For an K�sheaf S� the sheaf ���S� on G
�� � is de�ned for any open set U � G �� � by�

���S��U � � HomK��
U�S��

Here �
U � f�y� g� � y � K �� �� g � ��y� �� x� x � Ug� with K�sheaf structure given by �y� g�h �
�y� g���h��� The G�action on this sheaf ���G� is de�ned as follows� for � � ���S�x and g � x � �� x�
let Ux be a neighborhood of x so that � is represented by an element � � ���S��Ux�� and let Ux� be
so small that s � G �� � �� G �� � has a section � � Ux� �� G �� � through g with t���Ux� � � Ux� Then
de�ne �g � ���S�x� to be the element represented by the morphism�

 � �
Ux� �� S � �y� f � ��y� �� z� �� ����z��f��

These adjoint functors �� and �� together constitute a topos morphism�

� � Sh�K� �� Sh�G��

If � � K ���G is a Morita equivalence� then this morphism is an equivalence of categories Sh�K� �
Sh�G�� In fact� topos morphisms Sh�K� �� Sh�G� correspond exactly to generalized morphisms
K �� G� or equivalently� to pairs of homomorphisms K ���H �� G �cf� 
���
����

��� Invariant sections� Let S be a G�sheaf� A section � � G �� � �� S is called invariant if
��y�g � ��x� for any arrow g � x �� y in G� We write�

�inv�G�S�

for the set of invariant sections� it is an abelian group if S is an abelian sheaf� �In fact �inv�G�S� �
���S� where � � G �� 
 is the morphism into the trivial groupoid��

��� Cohomology� For an abelian G�sheaf A� the cohomology groups Hn�G�A� are de�ned as the
cohomology groups of the complex�

�inv�G� T
�� �� �inv�G� T

�� �� � � �

where A �� T � �� T � �� � � � is any resolution of A by injective G�sheaves� In other words�

Hn�G��� � Rn�inv�G��� �

�Thus� Hn�G�A� is simply the cohomology of the topos Sh�G� with coe�cients in A�� It is obvious
that a homomorphism � � K �� G induces homomorphisms in cohomology�

�� � Hn�G�A� �� Hn�K���A� �n � �� �

If � is a Morita equivalence� these are isomorphisms� since Sh�G� � Sh�K��

��
 Leray spectral sequence� For any morphism � � K �� G and any K�sheaf A� there is a
Leray spectral sequence



�

Ep�q
� � Hp�G�Rq��A� �
 Hp�q�K�A� �

�The G�sheaf Rq��A can be explicitly described as the sheaf associated to the presheaf U ��
Hq��
U �A� where �
U is the groupoid associated to the �right� action of K on the space ��
U ��
used in ��� �cf� 
������ See 	��

��� Basic spectral sequence� Let G be an �etale groupoid� and let A be a G�sheaf� By pull�back
along 	n � G �n � �� G �� � �see ������� A induces a sheaf 	�n�A� on G

�n � which we often simply denote
by A again� Consider for each p and q the sheaf cohomology Hq�G �p ��A� of the space G �p �� For a
�xed q� these form a cosimplicial abelian group� and there is a basic spectral sequence�

HpHq�G �� �
�A� �
 Hp�q�G�A� �

�It arises from the double complex ��G �p �� 	�pT
q� where A �� T � is an injective resolution��

It follows that if � �� A �� A� �� A� �� � � � is any resolution by G�sheaves Aq with
the property that 	�p�A

q� is an acyclic sheaf on G �p �� then H��G�A� can be computed by the double
complex

��G
�p �

� 	�p�A
q�� �

���  Cech spectral sequence� An open set U � G �� � is called saturated if for any arrow
g � x �� y in G� one has s�g� � U i� t�g� � U � For such a U there is an evident �full� subgroupoid
GjU � G� with U as space of objects� If U is an open cover of G �� � by saturated opens� there is a
spectral sequence�

 Hp�U �Hq�A�� �
 Hp�q�G�A�

where Hq�A� is the presheaf U �� Hq�GjU �AjU��

��	 Hypercohomology� For a cochain complex A� of abelian G�sheaves the hypercohomology
groups H n�G�A�� are de�ned in the usual way� as the cohomology groups of the double complex
�inv�G� T

�� where A� �� T � is a quasi�isomorphism into a cochain complex of injectives� �If A�

is concentrated in degree � one recovers the ordinary cohomology de�ned in ����� For each q � Z
denote by Hq�A�� the q�th cohomology G�sheaf of A�� If A� is bounded below� there is a spectral
sequence for hypercohomology analogous to the one in ����

Hp
H
q �G �� �

�A�� �
 H
p�q �G�A�� �

���� Ext functor� Recall that for any G�sheaf B� the functor Extp�B��� is de�ned as the p�th
right derived functor of the functor HomG�B���� Thus Hp�G�A� � Extp�Z�A�� For later purposes
we recall Yoneda�s description of Extp�B�A� as the group as equivalence classes of �extensions��

��� B �� E� �� � � � �� En �� A �� �

�see e�g� 	���� By composition of exact sequences� one de�nes a cap product�

Extq�C�B� �Extp�B�A�
�

�� Extp�q�C�A� �

The same applies of course to the category Mod
R�G� of G�sheaves of real vector spaces� We use

the notation Extp
R
�B�A� here� Recall also that� over R� the tensor product de�nes a functor

Extp
R
�B�A� �� Extp

R
�C � B� C � A�� This gives an easy description of the cap product in co�

homology�

Hq�G�A� �Hp�G�B�
�
�� Hp�q�G�A �RB�

as�

Extq�Z�A��Extp�Z�B��� Extq�Z�A��Extp�A�A�RB�
�

�� Extp�q�Z�A�RB� �



�

���� Internal hom� For two G�sheaves A and B the sheaf Hom�A�B� on G �� � carries a natural
G�action� hence gives a G�sheaf HomG�A�B� �or simply Hom�A�B� again�� We recall that�

�inv�G�HomG�A�B�� � Hom�A�B�

is the group of action preserving homomorphisms� i�e� morphisms in the category Ab�G�� The
derived functor of�

Hom�A��� � Ab�G� �� Ab�G�

will be denoted by RpHom�A��� or by Extp�A����

� Homology

In this section we will introduce the homology groups Hn�G�A� for any �etale groupoid G and
any G�sheaf A� Among the main properties to be proved will be the invariance of homology under
Morita equivalence�

For any Hausdor� space X� the standard properties of the functor which assigns to a sheaf S
its group of compactly supported sections �c�X�S� are well known and can be found in any book
on sheaf theory� In the appendix� we show how to extend this functor to the case where X is not
necessarily Hausdor�� while retaining all the standard properties� We emphasize that throughout
this paper� �c will denote this extended functor�

Let us �x an �etale groupoid G� The spaces G �� � and G �� � �and hence the spaces G �n � for n � ��
are assumed to satisfy the general conditions of 
��� but we will not assume that G is Hausdor��
We write d � cdim�G �� �� for the cohomological dimension of G �� �� Thus� for any n � � and any
Hausdor� open set U � G �n �� the �usual� cohomological dimension of U is at most d�

��� Bar complex� Let A be a G�sheaf� and assume that A is c�soft as a sheaf on G �� � �we will
brie�y say that A is a �c�soft G�sheaf��� For each n � �� consider the sheaf An �  �n �A� on G �n �

constructed by pull�back along n � G �n � �� G �� �� n�x� �� ��� �� xn� � x�� It is again a c�soft
sheaf because n is �etale� The groups �c�G

�n ��An� of compactly supported sections� introduced in
the Appendix� together form a simplicial abelian group�

B��G�A� � � � �
�������� �c�G

�� ��A��
������ �c�G

�� ��A�� ���� �c�G
�� ��A�� ���

with face maps�
di � �c�G

�n ��An� �� �c�G
�n�� ��An��� ���

de�ned as follows� First� for the face map di � G
�n � �� G �n�� � �cf� 
��� there is an evident map

�isomorphism in fact� An �� d �i �An���� whose stalk at
�
g� �x�

g�
�� ���

gn
�� xn� is the identity map

for i �� � and the action by g� � �An��g � Ax� �� Ax� � d �� �An����g if i � �� The map di in ��� is

now obtained from this by summation along the �bres �see ��
���

�c�G
�n ��An�

di ��

��

�c�G
�n�� ��An���

�c�G
�n �� d �i �An����

� �� �c�G
�n�� �� �di� �d

�
i An���

�c�G
�n�� �

�
P

di
�

OO

The homology groups Hn�G�A� are de�ned as the homology groups of the simplicial abelian groups
���� or equivalently� as those of the associated chain complex given by the alternating sum � �




�

P
�� 
�idi�

Similarly� any bounded below chain complex S� of c�soft sheaves gives rise to a double complex�

B��G�S�� ���

and we de�ne H n�G�S�� to be the homology of the associated total complex�

��� Lemma� Any quasi�isomorphism S� �� T� between bounded below chain complexes of c�soft
G�sheaves induces an isomorphism

H n �G�S��
�
�� H n �G� T�� �

Proof� The spectral sequence of the double complex ��� takes the form E�
p�q � HpHq�G��S�� �


Hp�q�G�S��� where the E�
p�q�term is the homology H p �G

�p ��S�� of the complex �c�G
�p ��S��� The

lemma thus follows from ���� �

��� csoft resolutions� Let A be an arbitrary G�sheaf� There always exists a resolution�

� �� A �� S� �� � � � �� Sd �� � ���

by c�soft G�sheaves� For example� since the category of G�sheaves has enough injectives� one can
take any injective resolution � �� A �� T � and take S� to be the truncation 	d�T

�� �softness of
Sd then follows as in 	�� p����� Or� one can use for T � the �abby Godement resolution of A on the
space G �� � with its natural G�action� and truncate it� In the case of a smooth �etale groupoid and
working over R� one also has the standard resolution�

� �� A �� A��� �� A� �� �� � � �

obtained from the G�sheaves �� of di�erential forms on G �� �� �Note that the last two resolutions are
functorial in A��

Any resolution ��� maps into the truncated injective one� And� similarly� given two resolutions
� �� A �� S� and � �� A �� T �� there is a resolution R� �e�g� the truncated injective one� and
a diagram�

A

��

�� T �

��
S� �� R�

���

which commutes up to homotopy�

��� De�nition of homology� Let A be an arbitrary G�sheaf� and let � �� A �� S� ��
� � � Sd �� � be a c�soft resolution� Then S�� is a bounded chain complex �non�zero in degrees
between �d and �� and we de�ne Hn�G�A� to be H n�G�S

���� By ��� ����� and lemma ���� this
de�nition is independent of the choice of the resolution� Observe that

Hn�G�A� � � for all n � �d �

These groups can be viewed also as compactly supported cohomology groups �see ����� and ���
below��

��� Extreme cases�


� If G �� � is a point� i�e� if G is a discrete group� then Hn�G�A� is the usual group homology
of G�







�� If G is a discrete groupoid� G �� � is a simplicial set� and Hn�G�A� is the usual simplicial
homology of G �� � with twisted coe�cients�

�� If G is a Hausdor� space X �viewed as a �trivial� groupoid� 
���
� then Hn�G�A� �
H�n
c �X�A� is the usual cohomology with compact supports �although graded di�erently�� So the

spectral sequence occurring in the proof of lemma ��� could be written as HpH
�q
c �G �� ��A�� �


Hp�q�G�A��

��
 Long exact sequence� Any short exact sequence�

� �� A �� B �� C �� �

of G�sheaves induces a long exact sequence in homology�

� � � �� Hn���G� C� �� Hn�G�A� �� Hn�G�B� �� Hn�G� C� �� � � �

The proof is standard� �The truncated Godement resolutions give a short exact sequence of resolu�
tions � �� S��A� �� S��B� �� S��C� �� ���

��� Functoriality� Compactly supported cohomology of spaces ������� is covariant along local
homeomorphisms and contravariant along proper maps� Analogous properties hold for homology of
�etale groupoids� Consider a homomorphism � � K �� G between �etale groupoids�


� Suppose that � is proper� in the sense that each �n � K �n � �� G �n � is a proper map �cf�
��
��� Then for any G�sheaf A one obtains homomorphisms�

�c�G
�n ��An� �� �c�K

�n �����A�n�

by pullback� and hence a homomorphism�

�� � Hn�G�A� �� Hn�K��
�A� �

In other words� homology is contravariant along proper maps�
�� Suppose � is �etale� in the sense that each �n � K �n � �� G �n � is a local homeomorphism �it

is not di�cult to see that the assumption is only about ���� Let S be a c�soft G�sheaf� For the sheaf
Sn �  �n �S� on G

�n � summation along the �bers de�nes a homomorphism�

��n� �
�
n ��

��S�� � ��n� ��
�
n�

�
n S� ��  �n �S� �

and hence a homomorphism �

�c�K
�n �

����S�n� �� �c�G
�n �

�Sn� �

These homomorphisms� for each n � �� commute with the face operators ���� Since the functor
�� is �always� exact and preserves c�softness �because � is �etale�� this gives for each G�sheaf A a
homomorphism�

Hn�K��
�A� �� Hn�G�A� �

�� Suppose that � is �etale� and moreover suppose that for each n the square�

K �n �

�n

��

�n �� K �� �

��

��
G �n �

�n �� G �� �

�
��




�

is a pullback� �Morphisms of this kind are exactly the projections X ��G �� G associated to �etale
G�spaces X �� For such a �� there is an exact functor�

� � � Ab�K� �� Ab�G�

which preserves c�softness� �at the level of underlying sheaves� it is simply the functor ���� � �
Ab�K �� �� �� Ab�G �� �� of ����� For any c�soft K�sheaf B� there is a natural isomorphism�

�c�Kn�Bn� � �c�Kn� 
�
nB� � �c�G

�n �� ��n� �
�
n B� � �c�G

�n ��  �n ���� �B� � �c�G
�n ��� ��Bn���

for any n � �� These yield an isomorphism

Hn�K�B� � Hn�G�� �B��

for any K�sheaf B�
Note that even if � is not �etale� a functor � � can be de�ned in this way �but it is no longer

exact�� See also ������

Proposition ��� Let �� � � K �� G be two �etale homomorphisms� A � Ab�G� and � � � �� � a
continuous transformation of functors� Denote by �� � H��K���A� �� H��K���A� the map induced
by the sheaf map ��A �� ��A� a �� a�� and by ��� �� the maps induced by �� � in homology �cf�
�����	� Then


H��K���A�

��

��

��

��NN
NN

NN
NN

NN
N

H��G�A� � �� � ���
�

H��K���A�

��

��ppppppppppp

Moreover� the construction of �� is functorial with respect to ��

Proof
 We may assume that A is c�soft� Then a homotopy between the maps�

B��K���A� �� B��G�A�

inducing �� and ���
� in homology is given by�

H �
nX
i	�

� � 
�
iHi � Bn�K��

�A� �� Bn���G�A��

where the Hi�s are de�ned as follows� Consider�

hi � K
�n �

�� G
�n�� �

�

hi�k�� � � � � kn� �

�
���t�k���� ��k��� � � � � ��kn�� if i � �
���k��� � � � ��ki�� ��s�ki��� ��ki���� � � � � ��kn�� if 
 	 i 	 n

�

Using the obvious �identity� isomorphisms h�i �An��� � ���A�n� and summation along the �ber of
the ��etale� hi�s �see ��
� in Appendix�� we get the homomorphisms�

Hi � B��K��
�A� �� B����G�A� �

The naturality with respect to � is obvious� �




�

��	 Hyperhomology� Consider any bounded below chain complex A� of G�sheaves� Let A� ��
R� be a q�i� into a bounded below chain complex of c�soft G�sheaves� �Such anR� can be constructed
for example by considering a resolution A� �� S�

�
�� � � � Sd

�
�� � as in ��� and then taking the

total complex of the double complex S�pq �p� q � Z��d 	 p 	 ��� De�ne the hyperhomology
H � �G�A�� to be the homology of the total complex associated to the double complex B��G�R���
This de�nition of H � �G�A�� does not depend on the choice of the resolution R� �cf� lemma �����

Proposition ���� �Hyperhomology spectral sequence	 Let A� be a bounded below chain complex of
G�sheaves as above� and consider for each q �Zthe homology G�sheaf Hq�A��� There is a spectral
sequence


Hp�G�Hq�A��� �
 H p�q �G�A�� �

Proof� Consider the truncated Godement resolution � �� A� �� S�
�
�� � � � �� Sd

�
�� �� It

has the property that for each q� it also yields c�soft resolutions of the cycles Zq � the boundaries Bq
and the homology Hq�A��� Write C for the triple complex�

Cp�q�r � �c�G
�p ��S�rq � �

and let D be the double complex�

Dn�q �
M

p�q	n

Cp�q�r �

The total complex of C� and hence also that of D � compute H�G�A� �� Furthermore� by the property
of the resolution just mentioned �and the fact that �c�G

�p ���� preserves exact sequences of c�soft
sheaves� we have for �xed p and r that�

Hq�Cp���r� � �c�G
�p ��Hq�S

�r
�

�� �

Hence� for a �xed n�

Hq�Dn��� �
M

p�r	n

�c�G
�p �

�Hq�S
�r
�

�� �

But Hq�A�� �� Hq�S�
�
� �� Hq�S�

�
� �� � � � is a resolution of Hq�A��� so for a �xed q the double

complex �c�G
�� ��Hq�S�

��� computes H��G�Hq�A���� Thus�

HnHq�D���� � Hn�G�Hq�A��� �

and the desired spectral sequence is simply the spectral sequence HnHq�D� �
 Hn�q�Tot�D�� for
the double complex D� �

���� Cap product� For an �etale groupoid G� the Ext�groups ���
�� act on the homology by a
cap product�

Hn�G�B� �Extp�B�A�


�� Hn�p�G�A� � �

�

For example� for p � 
 an element of Ext��B�A� can be represented by an exact sequence
� �� B �� E �� A �� �� which yields a boundary map Hn�G�B� �� Hn���G�A� for the
long exact sequence of ���� For p � 
� the cap product can be constructed in the same way �by
decomposing a longer extension � �� B �� E� �� � � � �� En �� A �� � into short exact
sequences��

In particular� when working over R� this yields a simple description of the cap product relating
homology and cohomology of �etale groupoids�

Hn�G�B��Hp�G�A�


�� Hn�p�G�B �RA� �




�

The cap product satis�es the usual �projection formula� for a morphism � � C �� A� Explic�
itly� � induces �� � H��G� C� �� H��G�A� and �� � Extp�B� C� �� Extp�B�A�� and we have for any
u � Hn�G�B� and � � Extp�B� C� that�

���u � �� � u � ����� �

�For p � 
 this is just the naturality of the exact sequence �����

���� Remark� The d� boundary of the hyperhomology spectral sequence ��
��

��
p�q � Hp�G�Hq�A��� �� Hp���G�Hq���A���

is given by the cap product with an element uq�A�� � Ext��Hq�A���Hq���A���� Let �q � Zq�A�� ��
Hq�A�� be the quotient map from the sheaf of cycles Zq�A��� Then the extension

��� Hq�A��
	q
�� Zq�A��

d
�� Aq�� �� Zq���A���� �

de�nes an element v � Ext��Hq�A���Zq���A���� and uq�A�� is ��q�����A��� This is immediate
from the construction of the spectral sequence �proof of ��
��� and the general description of the
boundaries of the spectral sequence induced by a double complex�

���� Remark� Recall that a topological category G is said to be �etale if all its structure maps are
local homeomorphisms� Thus� such a category is given by maps as in �
�� except for the absence of
an inverse i � G �� � �� G �� �� The de�nitions and the results of this section hold equally well for the
more general context of such �etale categories� and for this reason we have tried to write the proofs in
such a way that they apply verbatim to this general context� The same is true for the next section�
provided one takes su�cient care to de�ne Morita equivalence for categories in the appropriate way�
�In this paper we will only use the homology for �etale categories in Proposition �����

� Leray spectral sequence� Morita invariance

In this section we construct for each morphism� � K �� G between �etale groupoids a functor � �

from c�soft K�sheaves to c�soft G�sheaves� We derive a Leray spectral sequence for this functor ������
of which the invariance of homology under Morita equivalences will be an immediate consequence
������

��� Comma groupoids of a homomorphism� Let � � K �� G be a homomorphism of �etale
groupoids� For each point x � G �� � consider the �comma groupoid� x
�� whose objects are the pairs
�y� g � x �� ��y�� where y � K �� � and g � G �� �� An arrow k � �y� g� �� �y �� g �� in x
� is an arrow
k � y �� y � in K such that ��k��g � g �� When equipped with the obvious �bered product topology�
x
� is again an �etale groupoid� It should be viewed as the �ber of � above x� more exactly� there
is a commutative diagram �see also �����

x
�
	x ��

��

K

�

��

 ��x �� G

Note that an arrow g � x �� x � in G induces a homomorphism�

g� � x �
� �� x
� �
��




�

by composition� Thus the groupoids x
� together form a right G�bundle of groupoids� �If �� �
K �� � �� G �� � is a local homeomorphism� then it is a G�sheaf of groupoids��

More generally� for any A � G �� � the comma groupoid A
� is de�ned by�

�A
���i� �
�
x�A

�x
���i� � K �i � �
G �� � G

�� �
� i � f�� 
g

�with the induced topology�� The nerve of A
� consists of the spaces�

�A
��
�n� � f�y�

k��� � � �
kn�� yn� ��yn�

g
�� x� � ki � K

�� �
� g � G

�� �
� x � Ag �

When � � id � G �� G� these are simply denoted by x
G� A
G� Dually one de�nes the comma
groupoids �
x� �
A�G
x�G
A �consisting on arrows �going into x���

��� The functors � �� Ln� �� L� �� Let � � K �� G be as above� and let A be a K�sheaf� We
de�ne a simplicial G�sheaf B����A� in analogy with the de�nition of the bar�complex ��
� On the
spaces K �n � �

G �� � G �� � �which form the nerve of G �� �
�� cf� ��
� of strings of the form�

��y��
��k��
�� � � �

��kn�

�� ��yn�
g
�� x

we de�ne the maps�

�n � K �n �
�
G �� � G

�� �
�� K

�� �
� �k�� � � � kn� g� �� t�k�� �

�n � K �n �
�
G �� � G

�� �
�� G

�� �
� �k�� � � � kn� g� �� s�g� �

Notice that any �n is �etale� For any n � � we set�

Bn���A� � ��n� ��
�
nA �

By ���� the stalk at x � G �� � is described by�

Bn���A�x � �c��
��
n

�x��� �nA� � Bn�x
���
�
xA� � �
��

This gives us the �stalk�wise� de�nition of the simplicial structure on Bn���A�� To check the
continuity� let us just remark that the boundaries can be described globally� Indeed� using the maps�

d i � K
�n �
�
G �� � G

�� � � �G �� �

���n�

�� K
�n�� �

�
G �� � G

�� � � �G �� �

���n���

coming from the nerve of G �� �
� �see 
��� ��
�� we have �n � �n��d i �for all � 	 i 	 n� and there
are evident maps � �nA �� d �i�

�
n��A �compare to the de�nition of ����� the boundaries of B����A�

are in fact�

��n� ��
�
nA � ��n��� ��d i� ��

�
nA �� ��n��� ��d i� �d

�
i�

�
n��A �� ��n��� ��

�
n��A �

To describe the action of G on B����A�� let g � x �� x � be an arrow in G� The homomorphism
�
�� induces an obvious map B��x �
����x�A� �� B��x
����xA� which� via �
��� is the action by
g �� B����A�x� �� B����A�x��

If S is a c�soft K�sheaf� L� �S is de�ned as the chain complex of G�sheaves �associated to
the simplicial complex� B����S�� If S� is a bounded below chain complex of c�soft K�sheaves�
de�ne L� �S� as the total complex of B����S��� For an arbitrary K�sheaf A� L� �A is de�ned to
be B����S��� where S� is a resolution of A as in ���� More generally� we de�ne L� �A� for any
bounded below chain complex of K�sheaves using a resolution A� �� R� as in ���� As in the case
of homology �cf� ���� � we see that L� � is well de�ned up to quasi�isomorphism� in particular� the
�derived functors��

Ln� ���� � Hn�L� ����� � Ab�K� �� Ab�G�

are well de�ned up to isomorphism� For n � � we simply denote L�� � � Ab�K� �� Ab�G� by � ��




�

Proposition ��� For any x � G �� �� there are isomorphisms


�Ln� ��A��x � Hn�x
���
�
xA� for all x � G

�� �
� �
��

Proof
 This is an immediate consequence of relation �
��� and the fact that � �n �s preserve c�
softness since they are induced by �etale maps� �

Theorem ��� ��Leray�Hochschild�Serre spectral sequence�	 For any homomorphism � � K �� G
between �etale groupoids and any K�sheaf A there is a natural spectral sequence


E�
p�q � Hp�G�Lq� �A� �
 Hp�q�K�A� �

Proof
 The spectral sequence follows from an isomorphism�

H � �G�L� �A� � H��K�A� �
��

and ��
� applied to L� ��A��
To prove �
�� we consider the double complex Cp�q�A� � Bp�G�Bq���A�� and we show that

there are maps C��q�A� �� Bq�K�A�� functorial in A� such that the augmented complex

� � � �� C��q�A� �� C��q�A� �� C��q�A� �� Bq�K�A� �� � �
��

is acyclic for any c�soft K�sheaf A�
Using the diagram�

K �q � �
G �� � G

�p�� �

v

��

u �� G �p �

�p

��
K �q � �

G �� � G
�� �

w

��


q ��

�q

��OO
OO

OO
OO

OO
O

G �� �

K �q �
�q �� K �� �

where �q� �q � q� p are those de�ned before� v� w are the projections into the �rst components� u
is the projection into the last components and �q � wv� we have by the general properties of the
Appendix�

Cp�q�A� � �c�G
�p �� �p ��q� ��

�
qA�

� �c�G
�p �

�u �v
���qA�

� �c�K
�q �
�
G �� � G

�p�� �� v���qA�

� �c�K
�q �� ��q � �v

���qA�

� �c�K
�q �

� ��q � ���q�
��qA� �

Bq�K�A� � �c�K
�q �� �qA� �

Via these equalities� the augmented chain complex �
�� commies from an augmented simplicial

sheaf on K �q � whose stalk at x
k��� � � �

kq
�� y has the form�

� � � ��
M

��y�
f
��x�

g�
��x�

g�
��x�

Ax ��
M

��y�
f
��x�

g�
��x�

Ax ��
M

��y�
f
��x�

Ax �� Ax �

This is in fact the augmented bar complex computing the homology of the �contractible�
discrete� category G
��y� with constant coe�cients Ax� In particular it is acyclic �with the usual
contraction �f� g�� ���� gn� a� �� �
� f� g�� ���� gn� a��� �




�

��� Remarks and examples�


�� The isomorphism �
�� is actually a consequence of the quasi�isomorphism L� �pt � � pt �
�where pt is the map into the trivial groupoid�� this is a particular case of the naturality property
L� �L� � � L����� � ��up to quasi�isomorphism��� which can be proved in an analogous way� Com�
pare to 	���

��� If � � K �� G is �etale � S � Ab�K�� then there is no need of c�soft resolutions to de�ne
L� �S� Indeed� the condition on � implies that the maps �n de�ned in ��� are �etale� so there is a
quasi�isomorphism L� �S � B����S��

��� Let � � H �� G be a morphism for which all the squares in �
�� are pullbacks� Recall that
in this case� the functor ���� � � Ab�K

�� �� �� Ab�G �� �� �extends� to a functor � � � Ab�K� �� Ab�G��
making the diagram�

Ab�K�
forget ��

� �

��

Ab�K �� ��

���� �

��
Ab�G�

forget �� Ab�G �� ��

commute� This simple minded functor of ��� agrees �up to quasi�isomorphism� with the functor
L� �� described in ���� Indeed� for such a morphism � and a point x � G �� � the comma groupoid
x
� is a space �or more precisely� equivalent to the groupoid corresponding to a space� cf� 
���
�� In
this case� the spectral sequence ��� degenerates for c�soft sheaves B �but not for arbitrary sheaves��
If � is moreover �etale� it does always degenerate� and yields the isomorphism already proved in ������

Corollary ��
 ��Morita invariance�	 For any Morita equivalence � � K �� G and any G�sheaf A
there is a natural isomorphism

Hp�G�A� � Hp�K��
�A��

Proof � Theorem ��� gives a spectral sequence Hp�G�Lq� ��
�A� �
 Hp�q�K��

�A�� By �
�� the
stalk of Lq� ��

�A at a point x � G �� � computes the homology of the nerve of x
�� If � is a Morita
equivalence� this nerve is a contractible simplicial set� Thus� the spectral sequence degenerates to
give an isomorphism�

Hp�G�L�� ��
�A� � Hp�K��

�A� �

It thus su�ces to observe that the G�sheaf L�� ��
�A is isomorphic to A itself� �

��� Fibered products of groupoids� For homomorphisms � � H �� G and � � K �� G� their
�bered product H�G K�

H�G K
q ��

p

��

K

�

��
H

� �� G

is constructed as follows� The space of objects is the space H �� � �G �� � G �� � �G �� � K �� � of triples
�y� g� z� where y � H �� �� z � K �� � and g � ��y� �� ��z� in G� An arrow �y� g� z� �� �y �� g �� z �� is a
pair of arrows h � y �� y � in H and k � z �� z � in K such that g ����h� � ��k��g� The groupoid
H �G K is again �etale if G�H�K are� This notion of �bered product is the appropriate one for
groupoids and �generalized� morphisms described in 
�� and 
��� In particular� if � � K �� G is a
Morita equivalence� then so is p � H�G K �� H�




�

Proposition ��� �Change�of�base formula	 Consider a bered product of �etale groupoids as in ����
For any �c�soft	 K�sheaf S� there is a canonical quasi�isomorphism


�� L� ��S� � Lp �q
��S� �

Proof
 For y � H �� �� the comma groupoid y�
p is Morita equivalent to the comma groupoid
��y��
�� �by a Morita equivalence y�
p �� ��y��
� which is continuous in y� and which respects
the action by H�� Using this observation� the proposition follows in a straightforward way from ���
and ��

� �

��	 Compactly supported cohomology� It is sometimes more convenient to re�index the
homology groups and to see them as compactly supported cohomology groups� Because of this� we
de�ne�

Hn
c �G��� � H�n�G���

�which give a precise meaning to �H�
c �BG�A����The same applies to the functors Ln� � introduced

in this paragraph� if � � K �� G is a homomorphism� we de�ne Rn� � �� L�n� � � Ab�K� �� Ab�G��
With these notations� Leray spectral sequence becomes a �cohomological� spectral sequence with
E��term Hp

c �G�R
q� �A� �
 Hp�q

c �K�A�� If the �bers x
� are oriented k�dimensional manifolds�
the transgression of this spectral sequence will give �the integration along the �bers� map�Z


ber

� H�
c �G�R��� H��k

c �K�R��

���� Orbifolds� As we have already mentioned in 
����� orbifolds are characterized by �etale
groupoids which are proper� Let G be such a groupoid� The �leaf space� M of G �i�e� the space
obtained from G �� � dividing out by the equivalence relation x  y i� there is an arrow in G from x
into y�� will be a Hausdor� space� it is the underlying space of the orbifold induced by G �see 	����
The obvious projection � � G ��M induces a spectral sequence�

Hp�M �Lq� �A� �
 Hp�q�G�A��

for any A � Ab�G�� The stalk of Lq� � at x �M is�

�Lq� ��x � Hq�G�x�A�x��

where �x � G �� � is any lift of x� and G�x is the ��nite� group f� � G �� � � s��� � t��� � �xg �this follows
from ��� and the Morita equivalence x
�  G�x�

In particular� for A �ModR�G�� the spectral sequence degenerates and gives an isomorphism�

H��G�A� � H��
c �M �� �A�� �
��

This also shows that the �co�invariants functor��

�G��� �� H��G��� �ModR�G� ��ModR

is left exact and that H�
c �G��� �see ���� are the right derived functors of �G �

���� Basic cohomology� Let G be a smooth �etale groupoid� The space ��c�basic�G� of compactly
supported basic forms is de�ned as the Cokernel of�

��c�G
�� ��

d��d��� ��c�G
�� ���

where d�� d� are the maps coming from the nerve of G� In other words� ��c�basic�G� � �G����� The
basic compactly supported cohomology of G� denoted H�

c�basic�G�� is de�ned as the cohomology of the




�

complex ��c�basic�G� �with the di�erential induced by DeRham di�erential on ��c�G�� There is an
obvious projection from the reindexed homology �see �����

H�
c �G�R��� H�

c�basic�G��

which is an isomorphism if G is proper �cf� ��
��� In this case we also have�

��c�basic�G�
� f� � ���G �� �� � � is G � invariant� and ��supp�� is compact in M 

�where � � G �� M is the projection considered in ��
��� This map associates to � � ��c�basic�G�

the G�invariant form �� on G �� �� given by�

���x� �
X
x

g
��y

��y�g �

� Verdier duality

In this section all sheaves are sheaves of R� modules� i�e� real vector spaces �we can actually
use any �eld of characteristic ��� and Hom and � are all over R� We will establish a Verdier type
duality for the functor L� � �i�e� � � viewed at the level of the derived categories� and an associated
functor �� to be described� by extending one of the standard treatments 	�� to �etale groupoids� �But
our presentation is self�contained�� As a special case� we will obtain a Poincar�e duality between the
�Hae�iger� cohomology of �etale groupoids described in Section � and the homology theory �Section
���

��� Tensor products� As a preliminary remark� we observe the following properties of tensor
products over R� First� if A is a c�soft sheaf on a space Y and B is any other sheaf� the tensor
product A � B is again c�soft� Moreover� for the constant sheaf associated to a vector space V we
have �c�Y �A � V � � �c�Y �A� � V �cf� ����� It follows by comparing the stalks that for a map
f � Y �� X� also�

f ��A� ��B� � f ��A� � B

for any sheaf B on X �see 	�� ���� These properties extend to a morphism � � K �� G of �etale
groupoids� for a c�soft K�sheaf A and any G�sheaf B� there is an isomorphism�

� ��A� ��B� � � ��A� � B �

��� The sheaves R	V � Let us �x an �etale groupoid K� Any open set V � K �� � gives a free
K�sheaf �see ������ of sets �V � given by the �etale map s � t���V � �� K �� � and the K�action de�ned
by composition� Let R	V  be the free R�module on this K�sheaf �V � So R	V  is a K�sheaf of vector
spaces� and for any other such K�sheaf B we have�

HomK�R�R	V �B� � HomK� �V �B� � Hom
K �� ��V�B� � ��V �B� �
��

�These four occurrences of B denote B as a K�sheaf of vector spaces� as a K�sheaf of sets� and �twice�
as a sheaf on K �� �� respectively��

There is a natural morphism�

e � eV � K
V �� K �
��

of �etale groupoids �of the kind described in ������� and R	V  can also be obtained from the constant
sheaf R on K
V as�

R	V  � e ��R� � ����



��

From this point of view� the mapping properties �
�� follow by the adjunction between e � and e��
together with the Morita equivalence K
V � V �where V is viewed as a trivial groupoid� 
������

If V�W � K �� � are open sets and � � V �� K �� � is a section of s � K �� � �� K �� � such
that t���V � � W � then composition with � gives a morphism R	V  �� R	W � In this sense� the
construction is functorial in V �

Lemma ��� For any K�sheaf of vector spaces A there is an exact sequence of the form
M
j

R 	Vj ��
M
i

R 	Vi �� A �� � �

Proof
 It su�ces to prove that any K�sheaf can be covered by K�sheaves of the form R 	V � and
this is clear from �
��� �

��� The sheaves SV � Let S be any c�soft K�sheaf� We write SV for the sheaf S �R 	V � Note
that�

SV � S � e ��R� � e ��e
��S��R� � e �e

��S�

�see ��
�� In particular� SV is again c�soft� and has the following mapping properties�

HomK�SV �A� � HomK�R 	V � Hom�S�A�� � ��V� Hom�S�A�� � HomV �SjV �AjV �� ��
�

Now suppose V �
S
Vi is an open cover� We claim that the associated sequence

� � � ��
M

SVi�i� ��
M

SVi� �� SV �� � ����

is exact� To see this� it su�ces to prove that the sequence obtained by homming into any injective
K�sheaf T �

� �� HomK�SV � T � �� HomK�
M

SVi� � T � �� � � �

is exact� This is clear from the mapping properties ��
��

��� The sheaves � ��SV �� From now on let � � K �� G be a homomorphism between �etale
groupoids� For an open set V � K �� �� � induces a map �V � V �� G� which �ts into a commutative
diagram�

V

�V

��

�

i
�� K
V

e

��
G K�

�oo

�where i is the canonical Morita equivalence�� Thus� for any c�soft K�sheaf S� we have�

� ��SV � � � �e �e
��S� � ��V � ��SjV � � ����

Notice that the groupoid x
�V is a space �
����� for any object x � G �� �� this and the general
description of � � �see �
��� give a simple description of the stalks of � ��SV �� It follows from this
description and the corresponding fact for spaces that � � maps the exact sequence ���� into an exact
sequence�

� � � ��
M

� ��SVi�i� � ��
M

� ��SVi� � �� � ��SV � �� � � ����



�


��
 The Ksheaves � ��S� T �� Again� let � � K �� G be any homomorphism between �etale
groupoids� let S be a c�soft K�sheaf� and let T be an injective G�sheaf� De�ne for each open set
V � K �� ��

� ��S� T ��V � � HomG�� ��SV �� T � �

We claim that this de�nes a sheaf � ��S� T � on K �� �� Indeed� for an inclusion V � W there is
an evident map � ��S� T ��W � �� � ��S� T ��V � induced by the map SV �� SW � And for a covering
V �

S
Vi� the sheaf property follows from the injectivity of T together with the exact sequence

����� Furthermore� this sheaf � ��S� T � carries a natural K�action� for any arrow k � y �� z in K�
let Wy and Wz be neighborhoods of y and z so small that s � K �� � �� K �� � has a section � through
k with t�� � Wy �� Wz � Then � gives a map R 	Wy �� R 	Wz and hence SWy

�� SWz
� By

composition� one obtains a map � ��S� T ��Wz� �� � ��S� T ��Wy�� and hence by taking germs an
action ����k � � ��S� T �z �� � ��S� T �y �

Proposition ��� �Duality formula	 Let � � K �� G be a morphism of �etale groupoids� For any
injective G�sheaf T � any c�soft K�sheaf S and any other K�sheaf A� there is a natural isomorphism
of abelian groups


HomK�A� �
��S� T �� � HomG�� ��A� S�� T � �

In particular� � ��S� T � is again injective�

Proof
 By ��� and the fact that � � is right exact on sequences of c�soft sheaves� it su�ces to de�ne
a natural isomorphism�

HomK�R 	V � � ��S� T �� � HomG�� ��R 	V � S�� T � �

But� using �
�� and the de�nitions�

HomK�R 	V � � ��S� T �� � ��V� � ��S� T �� � HomG�� ��SV �� T � � HomG�� ��R 	V � S�� T �� �

As for spaces 	��� one can state and prove a somewhat stronger version of ���� using the
�internal hom� �see ��

��

Proposition ��� �Duality formula� strong form	 For any ��A�S and T as in ��� there is a natural
isomorphism of G�sheaves

��HomK�A� �
��S� T �� � HomG�� ��A � S�� T � �

Proof
 It su�ces to prove that for any G�sheaf B there is an isomorphism�

HomG�B�HomK�A� �
��S� T ��� � HomG�B�HomG�� ��A � S�� T �� �

natural in B� This is immediate from ��� and ��
�

HomG�B� ��HomK�A� �
��S� T ��� � HomK��

�B�HomK�A� �
��S� T ���

� HomK��
��B� � A� � ��S� T ��

� HomG�� ���
��B� �A � S�� T �

� HomG�B � � ��A� S�� T �� �

��	 Remark� Let � � K �� G be an �etale morphism such that each of the squares in �
�� is
a pull�back� Thus K � E ��G for some �etale G�space E� Then � � has a simple description as in
�������� and is left adjoint to ��� Thus�

HomG�� ��A � S�� T � � HomK�A� S� �
�T � � HomK�A�HomK�S� �

�T ���



��

Since this holds for any A� proposition ��� implies that for such a ��

� ��S� T � � HomK�S� �
�T �� � � HomG�� �S� T �� �

���� Duality for complexes� We now extend these isomorphisms to �co�� chain complexes� It
will be convenient to work with chain complexes for A and S and cochain complexes for T in ����
���� Thus� we will use the following convention� if A is a chain complex and B is a cochain complex�
Hom�A�B� is the cochain complex de�ned by�

Hom�A�B�n �
Y

p�q	n

Hom�Ap�B
q� �

Recall for later use that if B� is injective and bounded below� then for any quasi�isomorphism
of chain complexes A� �� C� the map Hom�A��B

�� �� Hom�C��B�� is again a quasi�isomorphism
�by a standard �mapping cone� argument it is enough to prove the assertion for C� � �� in this case
remark that Hom�A��B

�� is the total complex of a double cochain complex whose rows Hom�A��Bp�
are acyclic by the injectivity of Bp� �

Similarly� for a bounded below chain complex S� of sheaves as in ��� we de�ne the cochain
complex � ��S�� T �� by�

� ��S�� T
�� �

Y
p�q	n

� ��Sp� T
q� �

With these conventions� ��� gives an isomorphism of cochain complexes

HomK�A�� �
��S�� T

��� � HomG�� ��A� � S��� T
�� � ����

for any cochain complex T � of injective G�sheaves� and any bounded below chain complexes A� and
S� of K�sheaves with S� c�soft� There is also an obvious �strong� version of �����

��HomK�A�� �
��S�� T

�� � Hom G�� ��A� � S��� T
�� �

���� The functor � ��T ��� Now let d � cohdim�K �� ��� and �x a resolution�

� �� R�� S� �� � � � �� Sd �� �

of the constant sheaf Rby c�soft K�sheaves �cf� ����� For a cochain complex T � of injective G�sheaves
de�ne�

� ��T �� � � ��S��� T �� �

Then � � is adjoint to � � in the derived category�

Theorem ���� �Adjointness	 Let � � K �� G be a morphism between �etale groupoids� For any
bounded below chain complex A� of c�soft K�sheaves and any bounded below cochain complex T � of
injective G�sheaves there is a natural quasi�isomorphism


HomK�A�� �
��T ��� � HomG�L� ��A��� T

�� �

�there is also a � strong� version derived from �����

Proof
 Denote by F� the free resolution of the constant sheaf obtained by tensoring ��� �for K
instead of G� by R� Since A� �F� �� A� is a quasi�isomorphism� using ���� with A� �F� instead
of A� and S� � S�� � the fact that � ��T �� are injective �cf� ���� and the general remark in ��
� we
get a quasi�isomorphism�

HomK�A�� �
��S�� T

�� � HomG�� ��A� � F� � S��� T
�� � ����



��

Remark that for any bounded below chain complex B� of c�soft K�sheaves we have a quasi�
isomorphism followed by an isomorphism� L� �B� � L� ��B� � F�� � � ��B� � F��� This for
B� � A� � S� and the quasi�isomorphism A� � A� � S� give L� �A� � � ��A� � F� � S��� Us�
ing this� the fact that T � �s are injective and ����� the statement of the theorem follows easily� �

Poincar�e duality follows in the usual way�

Corollary ���� �Poincar�e duality	 Let K be an �etale groupoid� and suppose that K �� � is a topological
manifold of dimension d� Let or be the orientation K�sheaf ������	� There is a natural isomorphism


Hp�d�K� or� � Hp�K�R�
� �p �Z��

Proof
 Let G � 
 be the trivial groupoid� In ��
�� let T � be the complex R concentrated in
degree �p� and let A� be the complex Ai � S�i �as in ��

�� As A� is quasi�isomorphic to R� the
complex on the right of the quasi�isomorphism in ��
� has�

H��Hom�� ��A��� T
�� � Hp�K�R�

� �

Now consider the left hand side of the quasi�isomorphism of ��
�� Hom�A�� � ��T ��� in this
special case� Note �rst that � ��R� is quasi�isomorphic to the orientation sheaf concentrated in degree
�d�

� ��R�� or 	d � ����

Indeed� for any open set V � K �� �� � ��R��V � � Hom��c�V �S����R� �see ����� is the complex
which computes H��

c �V �R�� � and the argument for ���� is just like the one for spaces� Thus� for
T � � R 	p and A� � S�� � R 	��

H��HomK�A�� �
��T ��� � H��inv�K� �

��T ��� � Hp�d�K� or� � �

� Relation to cyclic homology

In 	
� the homology of �etale groupoids and the Leray spectral sequence �paragraph �� are the main
tools in dealing with cyclic homology of �etale groupoids� We shall give here an overview of the
main results in 	
� expressing the cyclic homology of �the convolution algebra of� an �etale groupoid
in terms of the homology of �etale categories� For instance ��
� generalizes the previous results of
Connes �for G a space� 	
��� Burghelea and Karoubi �for G a group�� Brylinski and Nistor �for G
a separated �etale groupoid� 	��� Feigin and Tsygan �	
��� Nistor �	���� In this section� all sheaves
are sheaves of vector spaces�


�� Mixed complexes of sheaves� Let G be an �etale groupoid� By a mixed complex of G�sheaves
we mean a mixed complex �A�� b� B� in the category Ab�G�� This means a family fAn � n � �g of
G�sheaves equipped with maps of degree �
� b � An �� An�� and maps of degree !
� B � An ��
An��� such that b� � B� � �b ! B�� � �� For the general notions and constructions concerning
mixed complexes in any abelian category see 	��� Recall that any such mixed complex �A�� b� B�
gives rise to a double complex B�A� in Ab�G�� hence the Hochschild and cyclic homology sheaves
are de�ned �see also ��� in 	
���

gHH��A���gHC��A�� � Ab�G� �

The Hochschild and cyclic �hyper�� homology of the mixed complex �A�� b� B�� denoted HH��G�A��
HC��G�A� are de�ned as the hyperhomology of the complexes of G�sheaves �A�� b� and Tot�B�A���
respectively �compare to 	��� ���� From ��
� we get two spectral sequences with E� terms�

Hp�G�gHHq�A��� �
 HHp�q�G�A�� and Hp�G�gHCq�A��� �
 HCp�q�G�A���



��

The spectral sequences of the double complex B��G�T�� where T� � �A�� b� or Tot�B�A�� give two
spectral sequences with E��terms�

HHp�Hq�G�A��� �
 HHp�q�G�A�� and HCp�Hq�G�A��� �
 HCp�q�G�A���

Also from ��� we get the SBI sequence relating HH��G�A�� and HC��G�A��� The periodic cyclic
homology is de�ned �as �usual�� as limSHC��G�A���


�� Cyclic Gsheaves� It is well known �and it is a motivating example� that any cyclic object
in an abelian category gives rise to a mixed complex �	���� In particular� any cyclic G�sheaf A�

�i�e� a contravariant functor " �� Ab�G� from Connes� category " �	

�� induces a mixed complex

of G�sheaves� The corresponding homologies are still denoted gHH��A���gHC��A��� HH��G�A���
HC��G�A���

A basic example of a cyclic G�sheaf for a smooth �etale groupoid is C de�ned by C�n� �the
pullback of the sheaf of smooth functions on �G �� ��n�� along the diagonal embedding �n � G �� � ��
�G �� ��n��� with the cyclic structure described as follow� At c � G �� �� the stalk of C�n� is the vector
space of germs f �x�� � � � � xn� of smooth functions de�ned for x�� � � � � xn � G

�� � around c� and�

�di f��x�� � � � � xn��� �

�
f �x�� � � � � xi� xi� � � � � xn��� if � 	 i 	 n� 

f �xn��� x�� � � � � xn��� if i � n

�

�tn f��x�� � � � � xn� � f �xn� x�� � � � � xn����

Using the quasi�isomorphism �C� b� � ���� �� which appears in the work of Connes �see also lemma
��� in 	
��� we get�

HHn�G� C
� �

M
p�q	n

Hp�G� �
q��

HPi�G� C
� �

Y
k

Hi��k�G�� � i � f�� 
g�


�� Cyclic homology of the convolution algebra� The convolution algebra of a smooth �etale
groupoid G was used by Connes as a non�commutative model for the �leaf space� of G� When G
is Hausdor�� Cc �G� is the �locally convex� algebra of compactly supported smooth functions on
G �� �� with the convolution product �u v��g� �

P
g�g�	g

u�g��v�g��� Its �continuous� Hochschild and

cyclic homology are computed by the cyclic vector space C�G�� with C�G�� � Cc �G����n��� �
Cc �G�n���� �here #� denotes the projective tensor product and the last isomorphism is an algebraic
one� see 	
���

Using the functor �c described in the Appendix� the de�nition of the convolution algebra
Cc �G� extends to the non�Hausdor� case �see ���
 and ������ in 	
��� It also becomes clear that the
�continuous version of the� Hochschild� cyclic and periodic cyclic homology of this algebra should
be de�ned using the cyclic vector space C�G�� with C�G�� � Cc �G�n���� �and the usual cyclic
structure�� In this way� the Chern�Connes�Karoubi character Ch � Ki�Cc �G�� �� HPi�Cc �G��� i �
f�� 
g� extends to the non�Hausdor� case�


�� The Hochschild homology of Cc �G�� For G as before �not necessarily Hausdor��� we
introduce the groupoid of loops ��G� � B��� ��G �� � G� �see 
������ where B��� � f� � G �� � � s��� �

t���g is the space of loops with the G�action given by conjugation ��� g� �� g���g�
There is a �simplicial� complex Ctw of c�soft ��G��sheaves� which is obtained by twisting C

�see ���� by loops� More precisely� Ctw�n� � s�C�n� �where s � B��� �� G �� � denotes the restriction
to B��� of the source map�� with the twisted boundaries dtwi de�ned as follows� At � � B���� the



��

stalk of Ctw�n� is the vector space of germs f �x�� � � � � xn� de�ned for x�� � � � � xn � G
�� � around s����

and�

�dtwi f��x�� � � � � xn��� �

�
f �x�� � � � � xi� xi� � � � � xn��� if � 	 i 	 n� 

f ���xn���� x�� � � � � xn��� if i � n

�

The following is a reformulation of ��
� ���� in 	
��

Proposition 
�� For any smooth �etale groupoid G� there is a natural isomorphism


HH��C

c �G�� � H� ���G�� C


tw��

Recall that " is the category de�ned in the same way as "� except that the cyclic relation
�tn�n�� � 
 is omitted �	
��� Remark that Ctw actually has a " structure given by the boundaries
dtwi just described and the cyclic action�

�tn f��x�� � � � � xn� � f ���xn�� x�� � � � � xn����

In other words� Ctw can be viewed as a contravariant functor " �� Sh���G��� or� equivalently� as
a " ���G�� sheaf� The previous proposition becomes�

HH��C
�G�� � H��" � ��G�� Ctw� � ����


�
 The cyclic homology of Cc �G�� We relate now HC��C

c �G�� to the homology of an �etale

category� Remark that�

��tn�
n�� f��x�� � � � � xn� � f ���xn�� ��x��� � � � � ��xn���� ����

which shows that Ctw is in fact a " ���G�� sheaf� where " ���G� is the �etale category obtained
from " � ��G� by imposing the relations �tn��

n � id� � �idn�� ��� for all � � B���� n � �� A
reformulation of ��
� ���� and ���� in 	
� is�

Proposition 
�� For any smooth �etale groupoid G� there is a natural isomorphism


HC��C

c �G�� � H��" ���G�� Ctw��

We remark that the SBI sequence can be described �via the isomorphisms ����� and the one of
���� as the Gysin�type long exact sequence arising from the Leray spectral sequence applied to the
obvious projection map " � ��G� �� " � ��G�� Note that we have tacitly made use of the
extension of homology for �etale groupoids to �etale categories �cf� ��
���


�� Remark� A Morita equivalence G ���K induces Morita a equivalence ��G� �����K�� hence
the Morita invariance for homology ���� implies the Morita invariance of the Hochschild and cyclic
homology of the smooth convolution algebras�


�	 Localization� Remark that G � ��G� as units� so we recover HH��G� C
� as �localization

at units��
HH��G� C

� � HH��C
�G�����

The isomorphisms described in ��� will give�

HHn�C

c �G���� �

M
p�q	n

Hp�G� �
q�

�where � q is the G�sheaf of q�forms� and also �Theorem ��� in 	
���



��

Proposition 
��� For any smooth �etale groupoid G� there is a natural isomorphism


HPi�C

c �G���� �

Y
k

Hi��k�G� � i � f�� 
g�

More generally� any G�invariant subspace O � B��� de�nes a groupoid �O�G� � O ��G �� � � ��G�
and the localized Hochschild and cyclic homology �indicated by the subscript O�� When O is elliptic
�i�e� ord��� ��� for all � � O�� it is shown in 	
� �Theorem ���� that�

HPi�C

c �G��O �

Y
k

Hi��k��O�G�� � i � f�� 
g� ����


��� The case of orbifolds� Let M � �M�U� be an orbifold �M is the underlying topological
space� U an orbifold atlas�� Due to remark ���� the Hochschild� cyclic and periodic cyclic homologies
do not depend on the representation of the orbifold M by a smooth proper �etale groupoid� We
simply denote these homologies by HH��M��HC��M��HP��M��

Note that for any representation of M by a proper �etale groupoid G� the loop groupoid ��G�
is again a proper �etale groupoid� Denote by ��M� the underlying space of the orbifold induced by
��G� �i�e� ��M� is the leaf space of ��G��� This space can be constructed directly by using an
orbifold atlas for M� it was introduced in this way in 	��� it serves there for the de�nition of a
geometric Chern character� needed in the formulation of the index theorem for orbifold �from this
point of view� the next proposition explains this choice�� Alternatively� representingM as a quotient
N
L� where L is a compact Lie group acting on M � with �nite stabilizers �see 	���� then�

��M� � bN
L�

where bN � f�x� �� � M � L � x� � xg is Brylinski�s space� with the L�action �x� ��g � �xg� g���g��
Then �
�� applied to ��G�� and ����� give the following result which also makes the connection with
Kawasaki�s de�nition of the Chern character for orbifolds �	����

Proposition 
��� For any orbifold M


HPi�M� �
Y
k

Hi��k
c ���M�� � i � f�� 
g �

	 Appendix
 Compact supports in non�Hausdor� spaces

In this appendix we explain how the usual notions concerning compactness and sheaves on
Hausdor� spaces extend to our more general context �see 
���� For basic de�nitions and facts for
sheaves on Hausdor� spaces� we refer the reader to any of the standard sources 	
�� ��� ��

��� csoft sheaves� Let X be a space satisfying the general assumptions in 
��� An abelian sheaf
A on X is said to be c�soft if for any Hausdor� open U � X its restriction AjU is a c�soft sheaf on
U in the usual sense� By the same property for Hausdor� spaces� it follows that c�softness is a local
property� i�e�� a sheaf A is c�soft i� there is an open cover X �

S
Ui such that each AjU is a c�soft

sheaf on A�

��� The functor �c� Let A be a c�soft sheaf on X and let A � be its Godement resolution �i�e�
A ��U � � ��Udiscr�A� is the set of all �not necessarily continuous� sections� for any open U � X��
For any Hausdor� open set W � X� let �c�W�A� be the usual set of compactly supported sections�



��

If W � U � there is an evident homomorphism� �extension by �� �c�W�A� �� �c�U�A� � ��U�A ���
For any �not necessarily Hausdor�� open set U � X� we de�ne �c�U�A� to be the image of the map�M

W

�c�W�A� �� ��U�A �� �

where W ranges over all Hausdor� open subsets W � U �
Observe that �c�U�A� so de�ned is evidently functorial in A� and that for any inclusion U � U �

we have an �extension by zero� monomorphism�

�c�U�A� �� �c�U
��A� �

The following lemma shows that in the de�nition of �c�U�A� it is enough to let W range over
a Hausdor� open cover of U � in particular� it shows that the de�nition agrees with the usual one if
U itself is Hausdor��

Lemma ��� Let A be a c�soft sheaf on X� For any open cover U �
S
Wi where each Wi is

Hausdor�� the sequence
 M
i

�c�Wi�A� �� �c�U�A� �� �

is exact�

Proof
 It su�ces to show that for any Hausdor� open W � U � the map
L

i �c�W
T
Wi�A� ��

�c�W�A� is surjective� This is well known �see e�g� 	
��� �

This lemma is in fact a special case of the following Proposition ��Mayer�Vietoris���

Proposition ��� Let X �
S
i Ui be an open cover indexed by an ordered set I� and let A be a c�soft

sheaf on X� Then there is a long exact sequence


� � � ��
M
i��i�

�c�Ui�i� �A� ��
M
i�

�c�Ui� �A� �� �c�X�A� �� � ��
�

Here Ui����in � Ui� � � � � � Uin � as usual� �There is of course a similar exact sequence if I is not
ordered�	

Proof
 The proposition is of course well known in the case where X is a paracompact Hausdor�
space� We �rst reduce the proof to the case where each of the Ui is Hausdor�� as follows� Let
X �

S
j�J Wj be a cover by Hausdor� open sets� and consider the double complex�

Cp�q �
M

�c�Wj����jp � Ui���iq �A� �

where the sum is over all j� � � � � � jp� i� � � � � � iq � For a �xed p � �� the column
Cp�� is a sum of exact Mayer�Vietoris sequences for the Hausdor� open sets Wj����jp � augmented by
Cp��� �

L
j������jp

�c�Wj����jp �A�� Keeping the notation Ui���iq � X � Wj����jp if q � �
 � p� we
observe that for a �xed q � �
� the row C��q is a sum of Mayer�Vietoris sequences for the spaces
Ui���iq with respect to the open covers fWj � Ui���iqg� So� if the proposition would hold for covers
by Hausdor� sets� each row C��q �q � �
� is also exact� By a standard double complex argument it
follows that the augumentation column C���� is also exact� and this column is precisely the sequence
in the statement of the proposition� This shows that it su�ces to show the proposition in the special
case where each Ui is Hausdor��

So assume each Ui � X is Hausdor�� Observe �rst that exactness of the sequence ��
� at



��

�c�X�A� now follows by Lemma ���� To show exactness elsewhere� consider for each �nite subset
I� � I the space U I� �

S
i�I�

Ui and the subsequence�

� � � ��
M

i��i� in I�

�c�Ui�i� �A� ��
M

i� in I�

�c�Ui� �A� �� �c�U
I� �A� �� � ����

of ��
�� Clearly ��
� is the directed union of the sequences of the form ����� where I� � I ranges
over all �nite subsets of I� So exactness of ��
� follows from exactness of each such sequence of the
form ����� Thus� it remains to prove the proposition in the special case of a nite cover fUig of X
by Haudor� open sets�

So assume X � U� � ����Un where each Ui is Hausdor�� For n � 
� there is nothing to prove�
For n � �� the sequence has the form

� �� �c�U� � U��A� �� �c�U��A�
M

�c�U��A� �� �c�U� � U��A� �� � �

This sequence is exact at �c�X�A� by ���� and evidently exact at other places� Exactness for n � �
can be proved using exactness for n � �� Indeed� consider the following diagram� whose upper two
rows are the sequences for n � �� � and whose third row is constructed by taking vertical cokernels�
so that all columns are exact �we delete the sheaf A from the notation��compare to pp� 
�� in 	���

�

��

�

��

�

��

�

��
�

��

�� �c�U���

��

�� �c�U�� � �c�U��

��

�� �c�U� � U�� ��

��

�

�c�U����

��

�� ��	i�j	��c�Uij�

��

�� �c�U��� �c�U��� �c�U��

��

�� �c�U� � U� � U��

��

�� �

�c�U���� ��

��

�c�U���� �c�U���

��

�� �c�U��

��

	 �� C

��

�� �

� � � �

To show that the middle row is exact� it thus su�ces to prove that the lower row is exact� This row
can be decomposed into a Mayer�Vietoris sequence for the case n � �� already shown to be exact�

� �� �c�U���� �� �c�U���� �c�U��� �� �c�U� � �U� � U��� �� �

and the sequence�
� �� �c�U� � �U� � U��� �� �c�U�� �� C �� � �

The exactness of the latter sequence is easily proved by a diagram chase� using exactness of
the right�hand column�

An identical argument will show that the exactness for a cover by n ! 
 opens follows from
exactness for one by n opens� so the proof is completed by induction� �

Proposition ��� is our main tool for transfering standard facts from sheaf theory on Haus�
dor� spaces to the non�Hausdor� case� as illustrated by the following corollaries�



��

Corollary ��� Let Y � X be a closed subspace� and let A be a c�soft sheaf on X� There is an exact
sequence

� �� �c�X � Y�A�
i
�� �c�X�A�

r
�� �c�Y�A� �� �

�i is extension by zero� r is the restriction	�

Proof
 This �including the fact that the map r is well de�ned� follows by elementary homological
algebra from the fact that the Corollary holds for Hausdor� spaces� by using ��� for a cover of X by
Hausdor� open sets Ui and for the induced covers of Y by fUi � Y g and X � Y by fUi � Y g� �

Corollary ��
 For a family Ai of c�soft sheaves on X the direct sum �Ai is again c�soft� and


�c�X��Ai� � ��c�X�Ai� �

In particular� when working over R� we have for any c�soft sheaf S of R�vector spaces and any
vector space V that the tensor product S �RV �here V is the constant sheaf	 is again c�soft� and
the familiar formula


�c�X�S �RV � � �c�X�S� �RV � ����

Corollary ��� Let A� �� B� be a quasi�isomorphism between chain complexes of c�soft sheaves on
X� Then


�c�X�A�� �� �c�X�B��

is again a quasi�isomorphism�

Proof
 By a �mapping cone argument� we may assume that B� � �� In other words� we have to
show that �c�X�A�� is acyclic whenever A� is� This follows from the Mayer�Vietoris sequence ���
together with the Hausdor� case�

�We remark that it is necessary to assume that the chain complexes are bounded below if X
does not have locally �nite cohomological dimension� as in 
���� �

The following Corollary is included for application in 	
��

Corollary ��� Let Y � X be a closed subspace� and let � � X �� R be a continuous map such that
������ � Y � Let A be a c�soft sheaf on X� Then for any � � �c�X�A��

�j Y � � i� � 	 � � � �j��������� � �

�here �jY is the restriction r��� as in ���	�

Proof
 For 	 � �� write Y� � fx � X � j��x�j 	 	g� and for each open U � X write

��c�U�A� � f� � �c�U�A� � �jU
Y� � �g �

It su�ces to show that� M
���

��c�X�A� �� ��
c�X�A�

is epi� Let fUig be a cover of X by Hausdor� open sets� and consider the diagram�

L
i���� �

�
c�Ui�A�

��

u �� L
i �

�
c�Ui�A�

	

��

� �� L
i �c�Ui � Y�A�

	�

��L
��� �

�
c�X�A�

v �� ��
c�X�A�

� �� �c�X � Y�A�



��

where the isomorphisms on the right come from ���� We wish to show that v is epi� Since u is epi
by the Hausdor� case� it su�ces to show that � is epi� or� equivalently� that �� is epi� This is indeed
the case by ���� �

It is quite clear that using c�soft resolutions one can de�ne compactly supported cohomol�
ogy H�

c �X�A� for any A � Ab�X�� In particular� we get an extension H�
c �X��� of �c�X��� to all

sheaves� this extension is still denoted by �c�X����

Proposition ��	 Let f � Y �� X be a continuous map� There is a functor f � � Ab�Y � �� Ab�X�
with the following properties


�i� For any open U � X and any B � Ab�Y �� �c�U� f �B� � �c�f
���U ��B��

�ii� For any point x � X and any B � Ab�Y �� f ��B�x � �c�f���x��B��
�iii� f � is left exact and maps c�soft sheaves into c�soft sheaves�
�iv� For any bered product

Z �X Y

q

��

p �� Y

f

��
Z

e �� X

along an �etale map e and for any c�soft B � Ab�Y �� there is a canonical isomorphism

q �p
�B � e�f �B �

�see ���� below for the case where e is not �etale	�

Proof
 Of course the proposition is well known in the Hausdor� case� For the more general case�
recall �rst from 	� the correspondence for any Hausdor� space Z between c�soft sheaves S on Z and
�abby cosheaves C on Z� given by�

�c�W�S� � C�W � ����

�natural with respect to the opens W � Z�� Given the cosheaf C� the stalk of the corresponding
sheaf S at a point z � Z is given by the exact sequence�

� �� C�Z � z� �� C�Z� �� Sz �� � � ����

We use this correspondence in the construction of f �� �However� see remark ��
� below for a
description of f � which doesn�t use this correspondence��

We discuss �rst the construction of f � on c�soft sheaves� Let B � Ab�Y � be c�soft� First� assume
X is Hausdor�� Let B be a c�soft sheaf on Y � and de�ne a cosheaf C � c�B� by C�U � � �c�f

���U ��B��
Note that C is indeed a �abby cosheaf� by ���� By the correspondence ����� there is a c�soft sheaf S
on X� uniquely determined up to isomorphism by the identity �c�U�S� � C�U � for any open U � X�
Thus� if X is Hausdor�� we can de�ne f �B to be this sheaf S�

In the general case� cover X by Hausdor� opens Ui� and de�ne in this way for each i a c�soft
sheaf Si on Ui by�

�c�V�Si� � �c�f
���V ��B� � ����

Then �again by the equivalence between sheaves and cosheaves� there is a canonical isomorphism
�i j � Sj jUi j

�� SijUi j
satisfying the cocycle condition� Therefore the sheaves Si patch together to

a sheaf S on X� uniquely determined up to isomorphism by the condition that SjUi
� Si �by an

isomorphism compatible with �i j�� Thus we can de�ne f �B to be S�
We prove the properties �i� � �iv� in the statement of the proposition for B � Ab�Y � c�soft�

Property �i� clearly holds for an open set U contained in some Ui� by ����� For general U � property



�


�i� then follows by the Mayer�Vietoris sequence� Next� identity ���� yields for any point x � X an
exact sequence�

� �� �c�Y � f��
�x�� B� �� �c�Y�B� �� f ��B�x �� � �

and hence� by ��� the isomorphism �ii�� of the Proposition� Finally� �iv� is clear from the local nature
of the construction of f ��

For general A � Ab�Y � we de�ne f ��A� � Ab�X� as the kernel of the map f ��S
�� �� f ��S

��
where � �� A �� S� �� S� �� ��� is a c�soft resolution of A �from the �rst part it follows that it
is well de�ned up to isomorphisms�� The properties �i� and �ii� are now immediate consequences of
the de�nition and of the previous case� Using ��� and �ii� it easily follows that f � transforms acyclic
complexes of c�soft sheaves on Ab�Y � into acyclic complexes on Ab�X�� This immediately implies
that � � is left exact� �

���� Remark� We outline an alternative construction and proof of Proposition ���� which does
not use the correspondence between sheaves and cosheaves� This construction will be used in the
proof of ��

 below� We will assume that B is c�soft and X is Hausdor�� �As in the proof of ����
the construction of f � for general X is then obtained by glueing the constructions over a cover by
Hausdor� opens Ui � X��

So� let B be a c�soft sheaf on Y � For any open set V � Y � denote by BV the sheaf on Y obtained
by extending BjV by zero� Thus BV is evidently c�soft� and �c�Y�BV � � �c�V�B�� Moreover� an
inclusion V � W induces an evident map BV �� BW �

Now let Y �
S
Wi be a cover by Hausdor� open sets� This cover induces a long exact sequence�

� � � ��
M
i��i�

BWi�i�
��
M
i�

BWi�
�� B �� �

of c�soft sheaves on Y � By Corollary ���� the functor �c�Y��� applied to this long exact sequence
again yields an exact sequence� and this is precisely the Mayer�Vietoris sequence of ���� For each
i�� ���� in let fi������in �Wi������in �� X be the restriction of f � this is a map between Hausdor� spaces�
so we have �fi������in� ��BWi������in

� de�ned as usual� De�ne f ��B� as the cokernel �tting into a long
exact sequence�

� � � ��
M
i��i�

�fi�i�� ��BWi�i�
� ��

M
i�

�fi�� ��BWi�
� �� f ��B� �� � � ����

For x � X� we have �fi�� ��
$
Wi��x � �c�f���x��Wi� �B� by the Hausdor� case� So taking stalks

of the long exact sequence in ���� at x and using the Mayer�Vietoris sequence ��� for the space
f���x� we �nd f ��B�x � �c�f���x��B� as in ��� �ii�� Property ��� �i� is proved in a similar way �using
�����

The functor f � can be extended to the derived category D�Y � by taking a c�soft resolu�
tion � �� A �� S� �� S� �� ��� and de�ning Rf ��A� as the complex f ��S

��� Up to quasi�
isomorphisms� this complex is well de�ned and does not depend on the resolution S�� by ���� �In
this way� we obtaine in fact a well de�ned functor Rf � � D�Y � �� D�X� at the level of derived
categories� which is sometimes simply denoted by f � again�� In particular� H��R� ��A�� gives in fact
the right derived functors R�f � of f ��

Lemma ���� For any pullback diagram


Z �X Y

q

��

p �� Y

f

��
Z

e �� X



��

and any sheaf B on Y � there is a canonical quasi�isomorphism


�Rq ��p
�B � e��Rf ��B �

Proof
 Using Mayer�Vietoris for covers of X and Z by Hausdor� open sets� it su�ces to consider
the case where X and Z are both Hausdor�� Clearly it also su�ces to prove the lemma in the special
case where B is c�soft�

Let Y �
S
Wi as in ��
�� so that f ��B� �ts into a long exact sequence ���� of c�soft sheaves

on X� Applying the exact functor e� to this sequence and using the lemma in the Hausdor� case�
one obtains a long exact sequence of the form�

� � � ��
M
i��i�

q �p
��BjWi�i�

� ��
M
i�

q �p
��BjWi�

� �� e�f ��B� �� � � ����

Now let p��B� �� S� be a c�soft resolution over the pullback Z �X Y � Then for any open U � Y �
S�
p���W � is a c�soft resolution of p��BW �� so q ��S

�

p���W �� is a c�soft resolution of q �p��B�� The lemma

now follows by comparing the sequence ���� to the de�ning sequence

� � � ��
M
i��i�

q ��Sp��Wi�i�
� ��

M
i�

q ��Sp��Wi�
� �� q ��S� �� �

for q ��p��B��
def
� q ��S�� �

���� f � on �etale maps� Let f � Y �� X be an �etale map� i�e� a local homeomorphism� It is well
known that the pullback functor f� � Ab�X� �� Ab�Y � has an exact left�adjoint f � � Ab�Y � ��
Ab�X�� described on the stalks by f ��B�x � �y�f�� �x�By� This construction agrees with the one in
���� In particular� for �etale f � the counit of the adjunction de�nes a map�

%f � f �f
��A� �� A �

�summation along the �ber�� for any sheaf A on X�

���� f � on proper maps� De�ne a map f � Y �� X between �non�necessarily Hausdor�� spaces
to be proper if�

�i� the diagonal Y �� Y �X Y is closed�
�ii� for any Hausdor� open U � X and any compact K � U � the set f���K� is compact�

It is easy to see that if f is proper then f � � f�� as in the Hausdor� case� Furthermore� for any
c�soft sheaf A on X� there is a natural map �c�X�A� �� �c�Y� f

�A� de�ned by pullback� as in the
Hausdor� case�

���� Remark� Although this does not simplify matters� one could theoretically interpret some
of the constructions and results of this Appendix as follows� First� observe that for Hausdor�
groupoids� the results in Sections 
�� of the paper can be based on the usual de�nition of �c and
are independent of the Appendix� Now� any non�separated manifold �or su�ciently nice space� cf�

��� X can be viewed as a trivial groupoid �
���
�� which is Morita equivalent to the Hausdor� �etale
groupoid G de�ned from an open cover fUig of X by Hausdor� open sets� by taking G �� � to be the
disjoint sum of the Ui� and G

�� � � G �� � �X G
�� ��
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