2,423 research outputs found

    Plug & Test at System Level via Testable TLM Primitives

    Get PDF
    With the evolution of Electronic System Level (ESL) design methodologies, we are experiencing an extensive use of Transaction-Level Modeling (TLM). TLM is a high-level approach to modeling digital systems where details of the communication among modules are separated from the those of the implementation of functional units. This paper represents a first step toward the automatic insertion of testing capabilities at the transaction level by definition of testable TLM primitives. The use of testable TLM primitives should help designers to easily get testable transaction level descriptions implementing what we call a "Plug & Test" design methodology. The proposed approach is intended to work both with hardware and software implementations. In particular, in this paper we will focus on the design of a testable FIFO communication channel to show how designers are given the freedom of trading-off complexity, testability levels, and cos

    Gate Delay Fault Test Generation for Non-Scan Circuits

    Get PDF
    This article presents a technique for the extension of delay fault test pattern generation to synchronous sequential circuits without making use of scan techniques. The technique relies on the coupling of TDgen, a robust combinational test pattern generator for delay faults, and SEMILET, a sequential test pattern generator for several static fault models. The approach uses a forward propagation-backward justification technique: The test pattern generation is started at the fault location, and after successful ¿local¿ test generation fault effect propagation is performed and finally a synchronising sequence to the required state is computed. The algorithm is complete for a robust gate delay fault model, which means that for every testable fault a test will be generated, assuming sufficient time. Experimental results for the ISCAS'89 benchmarks are presented in this pape

    ACT: A DFT tool for self-timed circuits

    Get PDF
    Journal ArticleThis paper presents a Design for Testability (DFT) tool called ACT (Asynchronous Circuit Testing) which uses a partial scan technique to make macro-module based selftimed circuits testable. The ACT tool is the first oFits kind for testing macro-module based self-timed circuits. ACT modifies designs automatically to incorporate partial scan and provides a complete path from schematic capturie to physical layout. It also has a test generation system to generate vectors for the testable design and to compute fault coverage of the generated tests. The test generatioin system includes a module for doing critical hazard free (.est generation using a new 6-valued algebra. ACT has been hilt around commercial tools from Viewlogic and Cascade. A Viewlogic schematic is used as the design entry point and Cascade tools are used for technology mapping

    Why is low waist-to-chest ratio attractive in males? The mediating roles of perceived dominance, fitness, and protection ability

    Get PDF
    Past research suggests that a lower waist-to-chest ratio (WCR) in men (i.e., narrower waist and broader chest) is viewed as attractive by women. However, little work has directly examined why low WCRs are preferred. The current work merged insights from theory and past research to develop a model examining perceived dominance, fitness, and protection ability as mediators of to WCR-attractiveness relationship. These mediators and their link to both short-term (sexual) and long-term (relational) attractiveness were simultaneously tested by having 151 women rate one of 15 avatars, created from 3D body scans. Men with lower WCR were perceived as more physically dominant, physically fit, and better able to protect loved ones; these characteristics differentially mediated the effect of WCR on short-term, long-term, and general attractiveness ratings. Greater understanding of the judgments women form regarding WCR may yield insights into motivations by men to manipulate their body image

    A comprehensive comparison between design for testability techniques for total dose testing of flash-based FPGAs

    Get PDF
    Radiation sources exist in different kinds of environments where electronic devices often operate. Correct device operation is usually affected negatively by radiation. The radiation resultant effect manifests in several forms depending on the operating environment of the device like total ionizing dose effect (TID), or single event effects (SEEs) such as single event upset (SEU), single event gate rupture (SEGR), and single event latch up (SEL). CMOS circuits and Floating gate MOS circuits suffer from an increase in the delay and the leakage current due to TID effect. This may damage the proper operation of the integrated circuit. Exhaustive testing is needed for devices operating in harsh conditions like space and military applications to ensure correct operations in the worst circumstances. The use of worst case test vectors (WCTVs) for testing is strongly recommended by MIL-STD-883, method 1019, which is the standard describing the procedure for testing electronic devices under radiation. However, the difficulty of generating these test vectors hinders their use in radiation testing. Testing digital circuits in the industry is usually done nowadays using design for testability (DFT) techniques as they are very mature and can be relied on. DFT techniques include, but not limited to, ad-hoc technique, built-in self test (BIST), muxed D scan, clocked scan and enhanced scan. DFT is usually used with automatic test patterns generation (ATPG) software to generate test vectors to test application specific integrated circuits (ASICs), especially with sequential circuits, against faults like stuck at faults and path delay faults. Despite all these recommendations for DFT, radiation testing has not benefited from this reliable technology yet. Also, with the big variation in the DFT techniques, choosing the right technique is the bottleneck to achieve the best results for TID testing. In this thesis, a comprehensive comparison between different DFT techniques for TID testing of flash-based FPGAs is made to help designers choose the best suitable DFT technique depending on their application. The comparison includes muxed D scan technique, clocked scan technique and enhanced scan technique. The comparison is done using ISCAS-89 benchmarks circuits. Points of comparisons include FPGA resources utilization, difficulty of designs bring-up, added delay by DFT logic and robust testable paths in each technique

    Power Droop Reduction In Logic BIST By Scan Chain Reordering

    Get PDF
    Significant peak power (PP), thus power droop (PD), during test is a serious concern for modern, complex ICs. In fact, the PD originated during the application of test vectors may produce a delay effect on the circuit under test signal transitions. This event may be erroneously recognized as presence of a delay fault, with consequent generation of an erroneous test fail, thus increasing yield loss. Several solutions have been proposed in the literature to reduce the PD during test of combinational ICs, while fewer approaches exist for sequential ICs. In this paper, we propose a novel approach to reduce peak power/power droop during test of sequential circuits with scan-based Logic BIST. In particular, our approach reduces the switching activity of the scan chains between following capture cycles. This is achieved by an original generation and arrangement of test vectors. The proposed approach presents a very low impact on fault coverage and test time

    Testability Analysis and Improvements of Register-Transfer Level Digital Circuits

    Get PDF
    The paper presents novel testability analysis method applicable to register-transfer level digital circuits. It is shown if each module stored in a design library is equipped both with information related to design and information related to testing, then more accurate testability results can be achieved. A mathematical model based on virtual port conception is utilized to describe the information and proposed testability analysis method. In order to be effective, the method is based on the idea of searching two special digraphs developed for the purpose. Experimental results gained by the method are presented and compared with results of existing methods
    corecore