13,858 research outputs found

    Large weight code words in projective space codes

    Get PDF
    AbstractRecently, a large number of results have appeared on the small weights of the (dual) linear codes arising from finite projective spaces. We now focus on the large weights of these linear codes. For q even, this study for the code Ck(n,q)⊥ reduces to the theory of minimal blocking sets with respect to the k-spaces of PG(n,q), odd-blocking the k-spaces. For q odd, in a lot of cases, the maximum weight of the code Ck(n,q)⊥ is equal to qn+⋯+q+1, but some unexpected exceptions arise to this result. In particular, the maximum weight of the code C1(n,3)⊥ turns out to be 3n+3n-1. In general, the problem of whether the maximum weight of the code Ck(n,q)⊥, with q=3h (h⩾1), is equal to qn+⋯+q+1, reduces to the problem of the existence of sets of points in PG(n,q) intersecting every k-space in 2(mod3) points

    The use of blocking sets in Galois geometries and in related research areas

    Get PDF
    Blocking sets play a central role in Galois geometries. Besides their intrinsic geometrical importance, the importance of blocking sets also arises from the use of blocking sets for the solution of many other geometrical problems, and problems in related research areas. This article focusses on these applications to motivate researchers to investigate blocking sets, and to motivate researchers to investigate the problems that can be solved by using blocking sets. By showing the many applications on blocking sets, we also wish to prove that researchers who improve results on blocking sets in fact open the door to improvements on the solution of many other problems

    On the lengths of divisible codes

    Get PDF
    In this article, the effective lengths of all qrq^r-divisible linear codes over Fq\mathbb{F}_q with a non-negative integer rr are determined. For that purpose, the Sq(r)S_q(r)-adic expansion of an integer nn is introduced. It is shown that there exists a qrq^r-divisible Fq\mathbb{F}_q-linear code of effective length nn if and only if the leading coefficient of the Sq(r)S_q(r)-adic expansion of nn is non-negative. Furthermore, the maximum weight of a qrq^r-divisible code of effective length nn is at most σqr\sigma q^r, where σ\sigma denotes the cross-sum of the Sq(r)S_q(r)-adic expansion of nn. This result has applications in Galois geometries. A recent theorem of N{\u{a}}stase and Sissokho on the maximum size of a partial spread follows as a corollary. Furthermore, we get an improvement of the Johnson bound for constant dimension subspace codes.Comment: 17 pages, typos corrected; the paper was originally named "An improvement of the Johnson bound for subspace codes

    A study of (xvt,xvt−1)-minihypers in PG(t,q)

    Get PDF
    AbstractWe study (xvt,xvt−1)-minihypers in PG(t,q), i.e. minihypers with the same parameters as a weighted sum of x hyperplanes. We characterize these minihypers as a nonnegative rational sum of hyperplanes and we use this characterization to extend and improve the main results of several papers which have appeared on the special case t=2. We establish a new link with coding theory and we use this link to construct several new infinite classes of (xvt,xvt−1)-minihypers in PG(t,q) that cannot be written as an integer sum of hyperplanes

    Tree-Based Construction of LDPC Codes Having Good Pseudocodeword Weights

    Full text link
    We present a tree-based construction of LDPC codes that have minimum pseudocodeword weight equal to or almost equal to the minimum distance, and perform well with iterative decoding. The construction involves enumerating a dd-regular tree for a fixed number of layers and employing a connection algorithm based on permutations or mutually orthogonal Latin squares to close the tree. Methods are presented for degrees d=psd=p^s and d=ps+1d = p^s+1, for pp a prime. One class corresponds to the well-known finite-geometry and finite generalized quadrangle LDPC codes; the other codes presented are new. We also present some bounds on pseudocodeword weight for pp-ary LDPC codes. Treating these codes as pp-ary LDPC codes rather than binary LDPC codes improves their rates, minimum distances, and pseudocodeword weights, thereby giving a new importance to the finite geometry LDPC codes where p>2p > 2.Comment: Submitted to Transactions on Information Theory. Submitted: Oct. 1, 2005; Revised: May 1, 2006, Nov. 25, 200

    Field reduction and linear sets in finite geometry

    Get PDF
    Based on the simple and well understood concept of subfields in a finite field, the technique called `field reduction' has proved to be a very useful and powerful tool in finite geometry. In this paper we elaborate on this technique. Field reduction for projective and polar spaces is formalized and the links with Desarguesian spreads and linear sets are explained in detail. Recent results and some fundamental ques- tions about linear sets and scattered spaces are studied. The relevance of field reduction is illustrated by discussing applications to blocking sets and semifields
    • …
    corecore