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Abstract. We present characterization results on weighted minihypers. We
prove the weighted version of the original results of Hamada, Helleseth, and
Maekawa. Following from the equivalence between minihypers and linear codes
meeting the Griesmer bound, these characterization results are equivalent to
characterization results on linear codes meeting the Griesmer bound.

1. Linear codes meeting the Griesmer bound, minihypers, and
blocking sets

A linear [n, k, d]-code C over the finite field Fq of order q is a k-dimensional
subspace of the n-dimensional vector space V (n, q) of vectors of length n over Fq.
The minimum distance d of the code C is the minimal number of positions in which
two distinct codewords of C differ [17].

It is interesting to use linear codes having a minimal length n for given k, d, and
q. The Griesmer bound is one of the many relations between the parameters n, k, d
of a linear [n, k, d]-code C that exist, and states

n ≥
k−1∑
i=0

⌈
d

qi

⌉
= gq(k, d),

where dxe denotes the smallest integer greater than or equal to x [10, 18].
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Considering this lower bound on the length n for given values k, d, and q, the
question arises whether there exists a linear [n, k, d]-code whose length n is equal
to the lower bound gq(k, d). For some values of the parameters k, d, and q, linear
codes of length equal to gq(k, d) are known to exist, for other values it is proved
that no such codes exist.

Let PG(N, q) be the N -dimensional projective space over the finite field of order
q. For i ≥ 0, put vi = (qi−1)/(q−1), which is the number of points in PG(i−1, q).
A weight function w of PG(N, q) is a mapping from the point set of PG(N, q) to the
set of non-negative integers. For a point P , the integer w(P ) is called the weight of
the point P , and for a set M of points, its weight is the sum of the weights of its
points. The sum of the weights of all points is the total weight of w. In principle, a
minihyper is nothing else than such a weight function, but usually the definition is
in the following way, which gives some information on w.

Definition 1.1. An {f,m;N, q}-minihyper, f ≥ 1, N ≥ 2, is a pair (F,w), where
w is a weight function of PG(N, q) of total weight f , and F is the set of points of
positive weight, and m is the minimum weight of the hyperplanes of PG(N, q).

Of course, the set F is determined by the weight function w. When the range
of w is {0, 1}, the converse is true and then the minihyper is identified with F and
called a non-weighted minihyper. Thus, a non-weighted {f,m;N, q}-minihyper of
PG(N, q) is a set F of f points of PG(N, q) such that m is the minimum weight of
the hyperplanes. This is the definition of a minihyper given by Hamada and Tamari
in [15] and it was generalized to the definition of a weighted minihyper in [7].

Linear [n, k, d]-codes meeting the Griesmer bound can be linked with non-weighted
minihypers in PG(k − 1, q) when d ≤ qk−1 and with (weighted) minihypers in
PG(k− 1, q) when d > qk−1. We explain first of all the link for 1 ≤ d ≤ qk−1. Then
d can be written uniquely as d = qk−1 −

∑h
i=1 qλi such that:

(a) 0 ≤ λ1 ≤ · · · ≤ λh < k − 1,
(b) at most q − 1 of the values λi are equal to a given value.

Using this expression for d, the Griesmer bound for a linear [n, k, d]-code over Fq

can be expressed as:

n ≥ vk −
h∑

i=1

vλi+1.

Hamada showed that in the case d = qk−1 −
∑h

i=1 qλi , there is a one-to-one
correspondence between the set of all non-equivalent [n, k, d]-codes meeting the
Griesmer bound and the set of all projectively distinct {

∑h
i=1 vλi+1,

∑h
i=1 vλi ; k −

1, q}-minihypers [11]. More precisely, the link is described in the following way.

Let G = (g1 · · · gn) be a generator matrix for a linear [n, k, d]-code C, d ≤ qk−1,
meeting the Griesmer bound. It can be shown that gi 6= ρgj, ρ ∈ F∗q , for i 6= j. Then
the set PG(k− 1, q) \ {g1, . . . , gn} is the minihyper linked to the code C meeting the
Griesmer bound.

For d > qk−1, the link between linear codes meeting the Griesmer bound and
weighted minihypers is as follows.
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Characterization results on weighted minihypers 3

Let G = (g1 · · · gn) be a generator matrix for a linear [n, k, d]-code over Fq,
d > qk−1, meeting the Griesmer bound. We again look at a column of G as be-
ing the coordinates of a point in PG(k − 1, q). Let the point set of PG(k − 1, q)
be {s1, . . . , svk

}. Let mi(G) denote the number of columns in G defining si. Let
m(G) = max{mi(G)‖i = 1, 2, . . . , vk}. Then θ = m(G) is uniquely determined by
the code C and we call it the maximum multiplicity of the code. Define the weight
function w : PG(k − 1, q) → N as w(si) = θ − mi(G), i = 1, 2, . . . , vk. Let F =
{si ∈ PG(k − 1, q)||w(si) > 0}, then (F,w) is a {

∑k−2
i=0 εivi+1,

∑k−2
i=0 εivi; k − 1, q}-

minihyper with weight function w if d = θqk−1−
∑k−2

i=0 εiq
i, with 0 ≤ εi ≤ q− 1, i =

0, . . . , k − 2.

Now the question arises how to construct linear codes meeting the Griesmer
bound. The standard construction method is of Belov, Logachev, and Sandimirov
[2]. This construction method is easily described by using the corresponding mini-
hypers. We first of all describe the construction for non-weighted minihypers.

Consider in PG(k − 1, q) a union of pairwise disjoint ε0 points P1, P2, . . . , Pε0 ,
ε1 lines `1, `2, . . ., `ε1 , ε2 planes, ε3 solids, . . . , εk−2 (k − 2)-dimensional subspaces
π1

k−2, . . . , π
εk−2
k−2 , with 0 ≤ εi ≤ q − 1, i = 0, . . . , k − 2. Then such a set defines a

non-weighted {
∑k−2

i=0 εivi+1,
∑k−2

i=0 εivi; k − 1, q}-minihyper.

If one allows subspaces that are not mutually disjoint, then the union has to be
replaced by the weight function, that is, the sum of the characteristic functions of
the subspaces. These minihypers will correspond to linear codes with d > qk−1.

Now that the standard examples of minihypers, or equivalently, of linear codes
meeting the Griesmer bound, are known, the characterization problem on minihy-
pers, or equivalently, on linear codes meeting the Griesmer bound, arises:

characterize (weighted) {f,m; k − 1, q}-minihypers for given parameters f =∑k−2
i=0 εivi+1, m =

∑k−2
i=0 εivi, k, and q.

Fundamental research on this characterization problem was performed by Hamada
and Helleseth who studied minihypers thoroughly, and who developed many tech-
niques that have proven to be very useful in the study of minihypers. Their main
result can be formulated as follows.

Result 1.2. (Hamada, Helleseth, and Maekawa [13, 14])
A non-weighted {

∑k−2
i=0 εivi+1,

∑k−2
i=0 εivi; k−1, q}-minihyper, where

∑k−2
i=0 εi <

√
q+

1, is a union of εk−2 hyperplanes, εk−3 (k−3)-dimensional spaces, . . . , ε1 lines, and
ε0 points, which all are pairwise disjoint, so is of Belov-Logachev-Sandimirov type.

The main result of this paper generalizes this result of Hamada, Helleseth, and
Maekawa to weighted minihypers. To state the result, we define a concept which
generalizes the Belov, Logachev, and Sandimirov construction. Our definition is
a generalization of a similar definition from [9]. Let S1, . . . , Su be subspaces of
PG(k− 1, q). Define as follows a weight function from the point set of PG(k− 1, q)
to the set of integers:

for each point P , its weight w(P ) is the number of indices i with P ∈ Si.

In other words, w is the sum of the characteristic functions of the subspaces Si.
If F is the union of the subspaces Si, then (F,w) is a minihyper, and we call it the
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4 J. De Beule, K. Metsch and L. Storme

sum of the subspaces S1, . . . , Su. We explicitly note that it is allowed that the list
S1, . . . , Su contains a subspace Si several times.

With this definition, the original Belov, Logachev, and Sandimirov construction
can be described as a sum of mutually skew subspaces. Our main theorem of this
paper is the following.

Main Theorem. A (weighted) {
∑N−1

i=0 εivi+1,
∑N−1

i=0 εivi; N, q}-minihyper (F,w),
q ≥ 4, where ε0, . . . , εN−1 are non-negative integers satisfying

∑N−1
i=0 εi <

√
q + 1,

is a sum of εN−1 hyperplanes, εN−2 (N − 2)-dimensional spaces, . . . , ε1 lines, and
ε0 points.

2. Technical lemmas

Let q be a prime power. Every integer f > 0 can be uniquely written in the
form f =

∑
i≥k εivi+1 for some integer k ≥ 0 where 1 ≤ εk ≤ q and 0 ≤ εi ≤ q − 1

for i > k. This enables us to define (just for this paper) the q-successor of f as
the integer Tq(f) :=

∑
i≥k εivi. We also define Tq(0) := 0. Thus Tq is a map from

the set of the non-negative integers to itself. When q is clear from the context,
we simply write T . Applying T more than once to a number, results in numbers
T i(f) = T (T i−1(f)). The {f, h;N, q}-minihypers related to Griesmer codes often
have the property that h = T (f). It is also important to note that many of these
minihypers have the property that T j(f) is the minimum weight of the subspaces
of codimension j. This motivates the following lemmas. We note that variants of
the lemmas, either of smaller total weight or non-weighted versions or statements
without proofs, can be found in the literature, e.g. in [9], [12], and [13].

Lemma 2.1. Let w be a weight function from the point set of PG(N, q) to the set
of non-negative integers of total weight f at most qvN+1. Then some hyperplane
has weight at most T (f).

Proof. This is trivial, if the total weight f is zero. Otherwise f =
∑N

i=0 εivi+1,
where for some k we have εi = 0 for i < k, 1 ≤ εk ≤ q, and 0 ≤ εi ≤ q− 1 for i > k.
Then T j(f) =

∑
i≥j εivi+1−j . Let hj be the minimum weight of the subspaces

of codimension j and put hj := T j(f) + δj for an integer δj . Then h0 = f , so
δ0 = 0. Also hN+1 = TN+1(f) = δN+1 = 0. Considering for j ≥ 1 all subspaces
of codimension j on a fixed subspace of codimension j + 1 and weight hj+1 gives
hj+1 + vj+1(hj − hj+1) ≤ f . If one substitutes for f , hj , and hj+1, this reads as
follows

δj+1 ≥ δj −
−δj +

∑j−1
i=0 εivi+1

vj+1 − 1
.(1)

Here
∑j−1

i=0 εivi+1 ≤ qvj = vj+1 − 1. Assume that δ1 > 0. Then we find recursively
that δN+1 ≥ δN ≥ · · · ≥ δ1 > 0. As δN+1 = 0, this is impossible.

Lemma 2.2. Let (F,w) be an {f, T (f);N, q}-minihyper with f =
∑N

i=0 εivi+1,
0 ≤ εi ≤ q − 1 for all i.

(a) For each j with 0 ≤ j ≤ N , the minimum weight of the subspaces of codimen-
sion j is T j(f) =

∑N
i=j εivi+1−j.

(b) Suppose that ∆ is a subspace of codimension two of weight T 2(f). Then for
each of the q + 1 hyperplanes π0, . . . , πq on ∆, the restriction of w to πj is a
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{δj +T (f), T 2(f);N−1, q}-minihyper inside πj, where the δj are non-negative
integers such that

∑q
j=0 δj = ε0.

Proof. (a) Using the same notations as in the previous lemma, we again find the
inequalities (1). However, as εi ≤ q − 1, we have this time that

∑j−1
i=0 εivi+1 ≤

vj+1 − 2. As δ0 = δ1 = 0, we find recursively δN+1 ≥ δN ≥ · · · ≥ δ1 = 0. As
δN+1 = 0, it follows that δi = 0 for all i. This proves (a).

(b) As w(πi) ≥ T (f), then w(πi) = T (f) + δi for non-negative integers δi. Using∑
i(w(πi) − w(∆)) = f − w(∆), this gives

∑q
i=0 δi = ε0. As every subspace of

codimension 2 has weight at least T 2(f) and as w(∆) = T 2(f), the restriction of w
to πi gives a minihyper with the stated parameters.

Proposition 2.3. Let (F,w) be an {f, T (f);N, q}-minihyper, f =
∑N−1

i=0 εivi+1

for non-negative integers εi satisfying
∑N−1

i=0 εi ≤ q − 1. Let U be a subspace. If
u := dim(U) ≤ N − 2, then also suppose that U is not contained in F . Then
the restriction of w to U is a {

∑u−1
i=0 mivi+1,

∑u−1
i=1 mivi;u, q}-minihyper for some

non-negative integers mi with
∑u−1

i=0 mi ≤
∑N−1

i=0 εi.

Proof. We prove this by induction on the codimension of U . If N = u, the statement
is trivial.

Now we study the case that U is a hyperplane. As h := w(U) ≤ f , then
h =

∑N−1
i=k mivi+1 with k ≥ 0, 0 < mk ≤ q, and 0 ≤ mi ≤ q − 1 for i > k.

Assume that h > 0. Consider a subspace S of U of dimension N − 2. Then
h+ q(T (f)−w(S)) ≤ f and thus h− qw(S) ≤

∑N−1
i=0 εi. As h = qT (h)+

∑N−1
i=k mi,

it follows that

qT (h) +
N−1∑
i=k

mi ≤ qw(S) +
N−1∑
i=0

εi.(2)

As
∑N−1

i=0 εi < q, this implies that w(S) ≥ T (h). Then Lemma 2.1 applied to
the restriction of w onto U shows that T (h) is the minimum weight of the (N − 2)-
subspaces of U . Considering such a subspace S in (2), we find

∑N−1
i=k mi ≤

∑N−1
i=0 εi.

For the induction step, we now consider the case that U has codimension at least
two and a point of weight zero. Let H be a hyperplane on U . As we have proved the
assertion for hyperplanes, we know that w induces in H a {

∑N−1
i=0 nivi+1,

∑N−1
i=1 nivi;

N − 1, q}-minihyper, with
∑N−1

i=0 ni ≤
∑N−1

i=0 εi ≤ q − 1. As U , and hence H, con-
tains a point of weight zero, Lemma 2.2 applied to the minihyper in H shows
that nN−1 = 0. Therefore we can apply the induction hypothesis to U consid-
ered as a subspace of H. This gives the desired minihyper in U where not only∑u−1

i=0 mi ≤
∑N−1

i=0 εi but even
∑u−1

i=0 mi ≤
∑N−2

i=0 ni.

We need one more definition. If w is a weight function on PG(N, q), then for any
subspace S of PG(N, q), we call the number m := min{w(P )|P ∈ S} the multiplicity
of the subspace S; we also say that the subspace S occurs with multiplicity m in
the minihyper. Of course, if S has dimension s and multiplicity m, then the weight
w(S) of S is at least vs+1m.

Lemma 2.4. Suppose that w is a weight function on the point set of PG(N, q),
which is the sum of the characteristic functions of r ≤ q − 1 non-empty subspaces
S1, . . . , Sr. Then for any non-empty subspace T , the following results hold.

(a) The multiplicity of T is equal to the number of subspaces Si that contain T .
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6 J. De Beule, K. Metsch and L. Storme

(b) If dim(T ) ≥ 1, then there exists an (N − 1)-subspace ∆ that does not contain
any of the subspaces T, S1, . . . , Sr and such that T∩∆ has the same multiplicity
as T .

Proof. (a) Let m be the number of subspaces Si containing T . Then the remaining
r − m ≤ q − 1 subspaces Si cannot cover T . Hence, T possesses a point that has
weight m. Therefore, T has multiplicity m.

(b) At most r ≤ q−1 non-empty and proper subspaces of T have the form T ∩Si

for some i. Thus some hyperplane S of T will not contain any of these. Then every
subspace Si that contains S also contains T , so S and T have the same multiplicity.
Also S is a proper subspace of all subspaces 〈S, Si〉 and as r ≤ q−1, this implies that
some hyperplane ∆ on S will not contain any of the subspaces T, S1, . . . , Sr.

3. {ε1(q + 1) + ε0, ε1; k − 1, q}-minihypers

In this section, we prove the basic results on minihypers in PG(2, q). Since an
{f, t; 2, q}-minihyper meets every line in at least t points, there is a strong connection
to the theory of blocking sets in projective planes. Our first lemma generalizes a
result on blocking sets of [1], in which the following lemma is proved for non-
weighted minihypers without restriction on t.

Lemma 3.1. A weighted {f, t; 2, q}-minihyper (B,w), with 1 ≤ t < q−1 and q ≥ 3,
contains a line or satisfies f ≥ tq +

√
tq + 1.

Proof. We assume in the proof that t ≥ 2. For, if t = 1, then B defines a blocking
set w.r.t. the lines of PG(2, q). It follows from [4, 5] that every blocking set B, not
containing a line of PG(2, q), contains at least q +

√
q + 1 points.

Defining m :=
∑

P∈B(w(P ) − 1) and s = f − tq − 1, we have |B| = f − m =
qt + 1 + s−m. Suppose that B contains no line. Then there exist points not in B.
As the q + 1 lines on such a point all have weight at least t, we find f ≥ (q + 1)t,
that is, s ≥ t − 1. Also, if l is a line, then considering a point of l that is not in B
and the other q lines on this point, we find w(l) ≤ f − tq = s + 1.

Consider a point X. The sum of the weights of the lines on X is f + q · w(X).
Hence, the sum of the numbers w(l)−t for the lines l on X is f +qw(X)−(q+1)t =
s + 1− t + qw(X). This we use to estimate the number

∆ :=
∑
P 6∈B

∑
Q∈B

w(Q) · (w(PQ)− t),

where PQ denotes the line through the points P and Q. First of all, for P /∈ B, we
have ∑

Q∈B

w(Q) · (w(PQ)− t) =
∑
P∈l

|l ∩B|(|l ∩B| − t)

≤
∑
P∈l

(s + 1)(|l ∩B| − t) = (s + 1)(s + 1− t),

since this is a sum of weights of lines l on P , where each line l on P occurs w(l) ≤ s+1
times. As |B| = f −m, we find

∆ ≤ (q2 + q + 1− f + m)(s + 1)(s + 1− t).
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If Q ∈ B, then each line on Q has at least q − s points not in B and thus we find
similarly ∑

P /∈B

w(Q) · (w(PQ)− t) ≥ (q − s)
∑
Q∈l

w(Q)(|l ∩B| − t)

= w(Q)(q − s)(s + 1− t + qw(Q)),

where the sum is over all lines l on Q. Using∑
Q∈B

w(Q)(s + 1− t + qw(Q)) = f(s + 1− t + q) + q
∑
Q∈B

w(Q)(w(Q)− 1)

≥ f(s + 1− t + q) + 2qm,

we find a lower bound on ∆. Comparing both bounds yields

(q2 + q + 1− f + m)(s + 1)(s + 1− t) ≥ (q − s)(f(s + 1− t + q) + 2qm).

We may assume that s ≤
√

qt, since otherwise we are done. Using 2 ≤ t < q−1 and
s ≤

√
tq < (q + t)/2, we see that the coefficient of m on the left hand side is smaller

than the coefficient of m on the right hand side. Hence, the inequality remains true
when deleting the m-terms. Using f = qt+1+s, the remaining inequality simplifies
to

s2 ≥ tq + (t− 1)(s− t).
If s ≥ t, then we find s ≥

√
tq as desired. Assume finally that s < t. Then s = t−1,

f = tq + t, and every line on a point not in B must have exactly weight t. Since B
contains no line, then every line has weight exactly t. But counting the total weight
using the lines on a point X, we find f = (q +1)t− qw(X), which implies w(X) = 0
for all points, that is, f = 0. As t ≥ 2, this is a contradiction.

For weighted multiple blocking sets having at least one point of weight one,
we can obtain better results using polynomial techniques. These improvements
are described in [6], where they are used to prove characterization results on non-
weighted minihypers. In [8], using polynomial techniques, the following corollary is
proved. Together with Lemma 3.1, it will play an important role in characterizing
planar minihypers.

Result 3.2. Let (B,w) be a weighted {ε1(q+1)+ε0, ε1; 2, q}-minihyper with ε1+ε0 <
q. Then every point of (B,w) that lies on a line of weight ε1 lies on at least
q + 1− ε0 − ε1 different lines of weight ε1.

We can now prove a characterization result on certain weighted {f,m;N, q}-
minihypers (F,w). The main goal will always be to prove that a minihyper is a sum
of subspaces of the ambient projective space.

Lemma 3.3. A weighted {ε1(q + 1) + ε0, ε1; 2, q}-minihyper (F,w), with ε1 + ε0 <√
q + 1 and q ≥ 4, is a sum of ε1 lines and ε0 points.

Proof. The case ε0 = 0 is discussed in [8, Theorem 2.5] and in [16, Theorem 20]. In
[8, Theorem 2.5], it is proven that there does not exist a weighted minimal ε1-fold
blocking set (B,w) in PG(2, q) of size |(B,w)| = ε1(q + 1) + 1 for ε1 < (q + 1)/2.
So such a weighted ε1-fold blocking set can be reduced to an ε1-fold blocking set in
PG(2, q) of size ε1(q + 1), which is a sum of ε1 lines by the previous results.

Hence, from now on, we assume that ε0 ≥ 2. For q = 7, this means that also
an {q + 1 + 2, 1; 2, q}-minihyper must be discussed. This is a 1-fold blocking set in
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8 J. De Beule, K. Metsch and L. Storme

PG(2, 7). By results of Blokhuis [3], such a weighted blocking set is the sum of one
line and two points. So suppose from now on that q ≥ 9.

For ε1 = 0, this lemma is trivial. So suppose that ε1 > 0. By Lemma 3.1, F
contains a line l. We shall show in the next paragraph that this line has weight at
least q + ε1. Thus, removing l from (F,w) (that is, reducing the weight of every
point of l by one) yields an {(ε1 − 1)(q + 1) + ε0, ε1 − 1; 2, q}-minihyper. Then an
induction argument on ε1 completes the proof.

Assume that l has only weight q + ε1 − δ for some δ > 0. As l is contained in F ,
then δ ≤ ε1 − 1. Now we reduce only the weight of q + 1 − δ different points from
l by one; this results in a {(q + 1)ε′1 + ε′0, ε

′
1; 2, q}-minihyper with ε′1 = ε1 − 1 and

ε′0 = ε0 + δ, in which l will have weight ε′1. If we consider a point of l whose weight
has not been reduced, then the other q lines on this point will have the same weight
as before, that is, at least weight ε1 = ε′1 + 1. This contradicts Result 3.2. Note
that Result 3.2 requires ε′1 + ε′0 < q; as ε′1 + ε′0 ≤ 2(ε1 + ε0 − 1) < 2

√
q, this follows

from q ≥ 9.

We now generalize this to arbitrary dimensions.

Proposition 3.4. An {ε1(q + 1) + ε0, ε1;N, q}-minihyper (F,w), N ≥ 2, q ≥ 4,
and ε1 + ε0 <

√
q + 1, is a sum of ε1 lines and ε0 points.

Proof. We use induction on N ; the case N = 2 being handled in the previous
lemma. Now assume that N ≥ 3 and that the statement holds for N − 1.

Consider a point P ∈ PG(N, q) \F . Projecting (F,w) from P onto a hyperplane
π of PG(N, q), with P /∈ π, yields in the following way a minihyper (F ′, w′) in
PG(N − 1, q) = π. The set F ′ is defined as the projection of F from P , i.e. P ′ ∈ F ′

if and only if the line PP ′ intersects the set F . For any point P ′ ∈ F ′, we define
w′(P ′) = w(PP ′). It is clear that (F ′, w′) is an {ε1(q + 1) + ε0, ε1;N − 1, q}-
minihyper. By the induction hypothesis on N , (F ′, w′) is a sum of ε1 lines and ε0
points.

Consider a line l′ contained in the projection (F ′, w′) that occurs m times in this
sum. Then w′(l′) ≥ (q + 1)m and w′(l′) ≤ qm + ε1 + ε0 < (m + 1)q. The plane
τ generated by l′ and P has weight w(τ) = w′(l′). Proposition 2.3 shows that w
induces in τ an {m(q + 1) + n, m; 2, q}-minihyper (F ′′, w′′) with m + n < 1 +

√
q.

By Lemma 3.3, (F ′′, w′′) is a sum of m lines and n points. Thus, the line l′ is the
projection of m lines contained in F .

Since this holds for all lines l′ contained in (F ′, w′), we thus find ε1 (not nec-
essarily distinct) lines l1, . . . , lε1 contained in F that are projected to the lines of
(F ′, w′). Our argument also shows the following. If a line l occurs x times in the
list l1, . . . , lε1 , then every point of l has weight at least x. We want to show that the
sum of the lines l1, . . . , lε1 is contained in the minihyper (F,w). For this we have to
show for each point X that w(X) is equal or larger to the number of indices i with
X ∈ li.

To see this, we select a line h on X that meets F only in X, and we project
again as before but using this time for P a point of h that is different from X.
As already noticed, the projection (F ′, w′) of (F,w) contains a sum of ε1 lines. As
ε0 + ε1 <

√
q + 1, it is readily seen that these ε1 lines are the images of the lines

l1, . . . , lε1 . As h meets F only in X, then the point X ′ onto which X is projected
satisfies w′(X ′) = w(X). Now, if X lies on x of the lines l1, . . . , lε1 , then X ′ lies

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX
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on x of the projected lines, and as (F ′, w′) contains the sum of these lines, we have
w′(X ′) ≥ x. Hence, w(X) ≥ x.

Now we have shown that (F,w) contains in fact the sum of the lines l1, . . . , lε1 ,
and is therefore the sum of these lines and of ε0 points.

4. Proof of the main theorem

We start with a lemma that will be used to find large subspaces in minihypers.

Lemma 4.1. Let (F,w) be a {
∑N−1

i=0 εivi+1,
∑N−1

i=1 εivi;N, q}-minihyper with q ≥ 4
and

∑N−1
i=0 εi <

√
q + 1. Suppose that P is a point of F lying on two subspaces S1

and S2 of multiplicity m1 and m2 such that m1 + m2 > w(P ). Then the subspace
〈S1, S2〉 is completely contained in F .

Proof. As m1,m2 ≤ w(P ), then m1 and m2 are positive and thus S1 and S2 are
contained in F . Therefore the statement is trivial, if one of the subspaces S1 and
S2 contains the other. Otherwise, 〈S1, S2〉 is the union of planes 〈l1, l2〉 with lines
li on P and in Si. It suffices thus to show that these planes are contained in F .

Assume that such a plane π := 〈l1, l2〉 is not contained in F . Then Proposition
2.3 gives w(π) = a1(q + 1) + a0, with integers a0, a1 ≥ 0 and a1 + a0 <

√
q + 1, and

such that every line of π has weight at least a1. Since each point of li has weight
at least mi and since the other q − 1 lines of π on P each have weight at least a1,
we find

a1(q + 1) + a0 = w(π) ≥ w(P ) + qm1 + qm2 + (q − 1)(a1 − w(P )).

Since m1 + m2 ≥ w(P ) + 1, it follows that 2a1 + a0 ≥ q + 2w(P ). As w(P ) ≥ 1,
q ≥ 4, and 2a1 + a0 < 2(

√
q + 1), this is impossible.

Consider in PG(N, q) a {
∑t

i=0 εivi+1,
∑t

i=0 εivi;N, q}-minihyper (F,w), with 0 ≤
t < N and

∑t
i=0 εi <

√
q +1. We want to show that it is a sum of subspaces, where

the sum consists of εi subspaces of dimension i for i = 0, . . . , t. The proof is by
induction on t. The case when t = 0 is trivial. The case t = 1 was proved in the last
section. In the rest of this section, we prove the induction step. We thus suppose
that t ≥ 2 and that the assertion is true for smaller values of t. We also assume
that εt > 0, because otherwise we can immediately apply the induction hypothesis.

Lemma 4.2. Consider a (t − 1)-subspace U with the property that there exists
a hyperplane π0 on U of weight w(π0) = γ0 +

∑t
i=1 εivi, with γ0 ≤ ε0. Then

m(U) =
∑

m(T ) where the sum runs over all t-subspaces T containing U .

Proof. We prove this by induction on m(U). If m(U) = 0, this is trivial. Suppose
now that m(U) > 0. By the induction hypothesis of this section, we see that the
restriction of w to π0 is a sum of γ0 + ε1 + · · ·+ εt <

√
q + 1 subspaces. Lemma 2.4

shows that π0 has a hyperplane ∆ not containing any of the subspaces of this sum,
that is, the weight of ∆ is

δ :=
t∑

i=2

εivi−1,

and such that S := U ∩ ∆ has dimension t − 2 and multiplicity m(U). This shows
already that U is the only subspace of the sum π0 ∩ (F,w) passing through S.
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Consider the remaining hyperplanes π1, . . . , πq on ∆. By Lemma 2.2, the restric-
tion of w to the hyperplanes πi produces {γi +

∑t
j=1 εjvj ,

∑t
j=2 εjvj−1;N − 1, q}-

minihypers in πi, where γi ≥ 0 and
∑q

i=0 γi = ε0. The global induction hypothesis
of this section shows that these minihypers can be uniquely written as a sum of
subspaces. The number of subspaces in this sum is γi + ε1 + · · ·+ εt <

√
q + 1. As

w(∆) = δ, we see that ∆ does not contain any of the subspaces that occurs in the
sum for πi. In particular, S is not one of the subspaces occurring in the sum that
makes up the minihyper in πi.

Let U j
i , j = 1, . . . , ri, be the different (t − 1)-subspaces of πi on S that have

positive multiplicity mi,j (thus r0 = 1 and U1
0 = U and m0,1 = m(U) = m(S)).

Lemma 2.4 gives
∑

j mi,j = m(S) for each i.
First consider the case that ri = 1 for all i, that is, U1

i is the only (t − 1)-
subspace of positive multiplicity of πi on S, and m(U1

i ) = m(S). By Lemma 4.1,
the t-subspace T := 〈U1

1 , U1
2 〉 is contained in F . Then T ∩πi is a (t−1)-subspace of

πi of positive multiplicity containing S. Hence, T∩πi = U1
i for all i and thus T is the

union of the subspaces U1
0 , . . . , U1

q . As all these subspaces have multiplicity m(S),
we see that all points of T have weight at least m(S), that is, T has multiplicity
at least m(S) = m(U). As the multiplicity of T cannot exceed the one of U ,
then m(T ) = m(U). By construction, no other t-subspace of positive multiplicity
contains U (or S).

Now consider the case that some ri > 1, say r1 > 1. As
∑

j m(U j
1 ) = m(S), it fol-

lows that m(U j
1 ) < m(S) = m(U) for all j. Thus, the induction hypothesis applied

to U j
1 gives

∑
m(T ) = m(U j

1 ) where the sum runs over all t-subspaces T containing
U j

1 . As π1 does not contain a t-subspace of (F,w), we see that different subspaces U j
1

produce different subspaces T , in fact that every t-subspace of positive multiplicity
contains exactly one of the subspaces U j

1 . Therefore
∑

m(T ) =
∑

j m(U j
1 ) = m(S)

where the first sum runs over all t-subspaces containing S. Every t-subspace of
positive multiplicity occurring in this sum meets π0 in a (t−1)-subspace of positive
multiplicity and containing S. As U is the only such (t−1)-subspace of π0, all these
t-subspaces contain U and so we are done as m(U) = m(S).

Lemma 4.3. The weighted minihyper (F,w) contains a sum of εt subspaces of
dimension t.

Proof. Using Lemma 2.2, we find a subspace ∆ of codimension two with the fol-
lowing property. If π0, . . . , πq are the hyperplanes on ∆, then the restriction of w

to πj is a {γj +
∑t

i=1 εivi,
∑t

i=2 εivi−1;N − 1, q}-minihyper in πj where γj ≥ 0
and

∑q
j=0 γj = ε0. The global induction hypothesis of this section shows that the

minihyper in πj is a sum of subspaces, containing εi subspaces of dimension i − 1
for i = 2, . . . , t, and ε1 + γj points.

Consider π0. Let U1, . . . , Us be the different (t − 1)-subspaces occurring in the
sum that make up the minihyper in π0 and let Ui occur mi times in this sum. Then∑s

i=1 mi = εt. By Lemma 2.4, the subspace Ui has multiplicity mi; also the Ui

are all (t − 1)-subspaces of π0 of positive multiplicity. As w(π0) < vt+1, then π0

contains no t-subspace of positive multiplicity. Lemma 4.2 applied to the Ui now
shows the following. If T is the set of all t-subspaces of positive multiplicity, then∑

T∈T m(T ) = εt; moreover, we have m(U) =
∑

U⊂T∈T m(T ) for every (t − 1)-
subspace U of π0.
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Now, if P is a point of π0, then the sum of the m(U) over all (t − 1)-subspaces
U of π0 on P is less than or equal to w(P ) (because we know the structure of the
minihyper in π0). Therefore, the sum of the m(T ) over all t-subspaces T ∈ T that
contain P is less than or equal to w(P ). Since the same property can be proved
for the points of π1, . . . , πq, it holds for all points. Thus using each T ∈ T exactly
m(T ) times, then the sum of these εt t-subspaces is contained in (F,w).

Theorem 4.4. A weighted {
∑t

i=0 εivi+1,
∑t

i=0 εivi;N, q}-minihyper (F,w), q ≥ 4,
where t ≤ N −1, 0 ≤ εi ≤ q−1, i = 0, . . . , t,

∑t
i=0 εi <

√
q +1, is a sum of

∑t
i=0 εi

subspaces, where for each i exactly εi of these subspaces have dimension i.

Proof. By the preceding lemma, w contains a sum of εt non-necessarily distinct
subspaces T1, . . . , Tεt of dimension t. This means for each point P that w(P ) is at
least as large as the number of subspaces Ti that contain P . Let Si be a (fixed)
hyperplane of Ti. We define as follows a new weight function w′. For every point P ,
we define w′(P ) to be equal to w(P ) minus the number of affine spaces Ti \ Si that
contain P . Note that w′(P ) ≥ 0 for all points P . Clearly the sum of the weights
w′(P ) over all points is εtq

t less than the corresponding sum for the original function
w, and thus it is ∑

P

w′(P ) = εtvt +
t−1∑
i=0

εivi+1 =: f.

We analyze the w′-weight of the hyperplanes π. If π does not contain any of the
Si, then it also does not contain any of the t-subspaces Ti; in this case we have

w′(π) = w(π)− εtq
t−1 ≥

t∑
i=1

εivi − εtq
t−1 = εtvt−1 +

t−1∑
i=1

εivi =: h.

If π contains a subspace Si, then we have w′(π) ≥ vt, which is even better. There-
fore Lemma 2.1 shows that w′ defines an {f, h;N, q}-minihyper. The induction
hypothesis in this section shows that this minihyper is a sum of subspaces, namely
εt + εt−1 subspaces of dimension t − 1 and, for i < t − 1, another εi subspaces of
dimension i. As

∑t
i=0 εi <

√
q+1, the subspaces S1, . . . , Sεt must occur in this sum.

It follows that (F,w) is the sum obtained from the previous sum when replacing Si

by Ti.

The following corollary now follows immediately, which is in fact the known result
of Hamada, Helleseth, and Maekawa (Result 1.2).

Corollary 4.5. A non-weighted {
∑t

i=0 εivi+1,
∑t

i=1 εivi;N, q}-minihyper F , q ≥ 4,
with

∑t
i=0 εi <

√
q + 1, is the union of εt t-dimensional subspaces, εt−1 (t − 1)-

dimensional subspaces, . . ., ε1 lines, and ε0 points, which are all pairwise disjoint.

Proof. In a non-weighted minihyper, we can define the weight function w by giving
the points of F weight one, and the points not belonging to F weight zero. Then F
can be described as a sum of the subspaces mentioned in the statement of this corol-
lary, but since the points of F have weight one, these subspaces must be pairwise
disjoint.
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