11 research outputs found

    Semantic web service architecture for simulation model reuse

    Get PDF
    COTS simulation packages (CSPs) have proved popular in an industrial setting with a number of software vendors. In contrast, options for re-using existing models seem more limited. Re-use of simulation component models by collaborating organizations is restricted by the same semantic issues however that restrict the inter-organization use of web services. The current representations of web components are predominantly syntactic in nature lacking the fundamental semantic underpinning required to support discovery on the emerging semantic web. Semantic models, in the form of ontology, utilized by web service discovery and deployment architecture provide one approach to support simulation model reuse. Semantic interoperation is achieved through the use of simulation component ontology to identify required components at varying levels of granularity (including both abstract and specialized components). Selected simulation components are loaded into a CSP, modified according to the requirements of the new model and executed. The paper presents the development of ontology, connector software and web service discovery architecture in order to understand how such ontology are created, maintained and subsequently used for simulation model reuse. The ontology is extracted from health service simulation - comprising hospitals and the National Blood Service. The ontology engineering framework and discovery architecture provide a novel approach to inter- organization simulation, uncovering domain semantics and adopting a less intrusive interface between participants. Although specific to CSPs the work has wider implications for the simulation community

    Ontology engineering for simulation component reuse

    Get PDF
    Commercial-off-the-shelf (COTS) simulation packages (CSPs) are widely used in industry, although they have yet to operate across organizational boundaries. Reuse across organizations is restricted by the same semantic issues that restrict the inter-organizational use of web services. The current representations of web components are predominantly syntactic in nature lacking the fundamental semantic underpinning required to support discovery on the emerging semantic web. Semantic models, in the form of ontology, utilized by web service discovery and deployment architectures provide one approach to support simulation model reuse. Semantic interoperation is achieved through the use of simulation component ontologies to identify required components at varying levels of granularity (including both abstract and specialized components). Selected simulation components are loaded into a CSP, modified according to the requirements of the new model and executed. The paper presents the development of an ontology, connector software and web service discovery architecture. The ontology is extracted from simulation scenarios involving airport, restaurant and kitchen service suppliers. The ontology engineering framework and discovery architecture provide a novel approach to inter-organizational simulation, adopting a less intrusive interface between participants. Although specific to CSPs the work has wider implications for the simulation community

    A framework for deriving semantic web services

    Get PDF
    Web service-based development represents an emerging approach for the development of distributed information systems. Web services have been mainly applied by software practitioners as a means to modularize system functionality that can be offered across a network (e.g., intranet and/or the Internet). Although web services have been predominantly developed as a technical solution for integrating software systems, there is a more business-oriented aspect that developers and enterprises need to deal with in order to benefit from the full potential of web services in an electronic market. This ‘ignored’ aspect is the representation of the semantics underlying the services themselves as well as the ‘things’ that the services manage. Currently languages like the Web Services Description Language (WSDL) provide the syntactic means to describe web services, but lack in providing a semantic underpinning. In order to harvest all the benefits of web services technology, a framework has been developed for deriving business semantics from syntactic descriptions of web services. The benefits of such a framework are two-fold. Firstly, the framework provides a way to gradually construct domain ontologies from previously defined technical services. Secondly, the framework enables the migration of syntactically defined web services toward semantic web services. The study follows a design research approach which (1) identifies the problem area and its relevance from an industrial case study and previous research, (2) develops the framework as a design artifact and (3) evaluates the application of the framework through a relevant scenario

    Service-oriented simulation using web ontology

    Get PDF
    Copyright © 2012 Inderscience Enterprises Ltd.Commercial-off-the-Shelf (COTS) Simulation Packages (CSPs) have proved popular in a wider industrial setting. Reuse of Simulation Component (SC) models by collaborating organisations or divisions is restricted, however, by the same semantic issues that restrict the inter-organisation use of other software services. Semantic models, in the form of ontology, utilised by a web-service-based discovery and deployment architecture provide one approach to support simulation model reuse. Semantic interoperation is achieved using domain-grounded SC ontology to identify reusable components and subsequently loaded into a CSP, and locally or remotely executed. The work is based on a health service simulation that addresses the transportation of blood. The ontology-engineering framework and discovery architecture provide a novel approach to inter-organisation simulation, uncovering domain semantics and providing a less intrusive mechanism for component reuse. The resulting web of component models and simulation execution environments present a nascent approach to simulation grids

    A reputation framework for behavioural history: developing and sharing reputations from behavioural history of network clients

    Get PDF
    The open architecture of the Internet has enabled its massive growth and success by facilitating easy connectivity between hosts. At the same time, the Internet has also opened itself up to abuse, e.g. arising out of unsolicited communication, both intentional and unintentional. It remains an open question as to how best servers should protect themselves from malicious clients whilst offering good service to innocent clients. There has been research on behavioural profiling and reputation of clients, mostly at the network level and also for email as an application, to detect malicious clients. However, this area continues to pose open research challenges. This thesis is motivated by the need for a generalised framework capable of aiding efficient detection of malicious clients while being able to reward clients with behaviour profiles conforming to the acceptable use and other relevant policies. The main contribution of this thesis is a novel, generalised, context-aware, policy independent, privacy preserving framework for developing and sharing client reputation based on behavioural history. The framework, augmenting existing protocols, allows fitting in of policies at various stages, thus keeping itself open and flexible to implementation. Locally recorded behavioural history of clients with known identities are translated to client reputations, which are then shared globally. The reputations enable privacy for clients by not exposing the details of their behaviour during interactions with the servers. The local and globally shared reputations facilitate servers in selecting service levels, including restricting access to malicious clients. We present results and analyses of simulations, with synthetic data and some proposed example policies, of client-server interactions and of attacks on our model. Suggestions presented for possible future extensions are drawn from our experiences with simulation

    1 A Survey on Service Quality Description

    Get PDF
    Quality of service (QoS) can be a critical element for achieving the business goals of a service provider, for the acceptance of a service by the user, or for guaranteeing service characteristics in a composition of services, where a service is defined as either a software or a software-support (i.e., infrastructural) service which is available on any type of network or electronic channel. The goal of this article is to compare the approaches to QoS description in the literature, where several models and metamodels are included. consider a large spectrum of models and metamodels to describe service quality, ranging from ontological approaches to define quality measures, metrics, and dimensions, to metamodels enabling the specification of quality-based service requirements and capabilities as well as of SLAs (Service-Level Agreements) and SLA templates for service provisioning. Our survey is performed by inspecting the characteristics of the available approaches to reveal which are the consolidated ones and which are the ones specific to given aspects and to analyze where the need for further research and investigation lies. The approaches here illustrated have been selected based on a systematic review of conference proceedings and journals spanning various research areas in compute
    corecore