
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

DOCTOR OF SCIENCES

Methods for Improving QoS-driven Management of Web Services and their Services
and their Service Level Agreements

Herssens, Caroline

Award date:
2010

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/studentthesis/methods-for-improving-qosdriven-management-of-web-services-and-their-services-and-their-service-level-agreements(8417a854-93ad-4a69-8ae9-3d37119102df).html

Methods for Improving QoS-driven
Management of Web Services and

their Service Level Agreements

Caroline Herssens

Louvain School of Management

University of Namur

Thèse présentée en vue de l’obtention du grade de

Docteur en Sciences de Gestion

March 2010

mailto:caroline.herssens@uclouvain.be
mailto:caroline.herssens@uclouvain.be
mailto:caroline.herssens@uclouvain.be

Examination committee
Advisor : Pr. Stéphane Faulkner
Examiner : Pr. Manuel Kolp
Examiner : Pr. Marco Saerens
Reader : Pr. Yves Pigneur
Reader : Pr. Esteban Zimanyi

ii

Acknowledgements

I would like to acknowledge the Professor Stéphane Faulkner, my advisor, for the numerous
discussions about this work, his patience and the trust he gave me. I especially notice the
pragmatism and the efficiency of his supervision. I thank Stéphane for his continuous support
to the fulfillment of this thesis.

I thank the Professor Marco Saerens for his precious collaboration and advices to the achieve-
ment of my thesis. Most of all, I thank Marco for his kindness and his enthusiasm.

I thank the Professors Manuel Kolp, Yves Pigneur and Esteban Zimanyi for accepting to
participate to the jury of this dissertation.

I thank the Professor Philippe Chevalier for the supervision of the jury and for his punctual
help.

I also would like to thank the Doctor Ivan J. Jureta for his involvement in this work and the
time he spent reading and commenting it. I also thank him for his relevant suggestions, his
effectiveness and his many ideas.

I thank past and present members of the Louvain School of Management, among others:
Adrien, Anne-Cécile, Anne-Laure, Bertrand, Catherine, Didier, Donatien, Florence, François F.,
François M., Géraldine, Jean-Christophe, Jérôme, Kenneth, Kevin, Luh, Silvia, Valérie and
Youssef. I thank them for the numerous talks about research and other topics.

I thank Valérie Klein for her time and her proofreading.

I finally thank my family and my friends for their support.

Abstract

The Internet is today subject to growing needs of information exchanges and modular appli-
cations. The Web now proposes information through different media (texts, pictures, videos,
sounds) available on different websites (social networks, blogs, hosting sites) reached from a
large set of devices (PCs, PDAs, smartphones). The data transfered is related to an infinite
amount of topics as stock exchange information, picture editing or flight booking. To cope
with such possibilities, one of the most fitted solution is offered by the use of Web Services.
Web Services are self-describing, open components that support rapid, low-cost composition
of distributed applications over the Web.

Web Services Management tackles issues as installation, configuration, collecting metric and
tuning to ensure responsive service execution. Improving the management of Web Services is
essential to increase the adoption of Web Services and to impose the adoption of standards.
There are different possibilities to improve Web Services management but managing services
through quality offers large opportunities. The emergence of Web Services involves an in-
creasing number of available services on the Internet. A service requester is then faced to a
large choice while it executes a service. Indeed, a particular functionality can be offered by
numerous Web Services emanating from multiple providers. To discriminate among available
services, the requester has to compare the quality levels offered by providers. Quality pro-
vides several opportunities to respond to most management issues (i.e.: service monitoring,
performance measurement, capacity planning) and, more specifically, allows to differentiate
functionally equivalent services.

This thesis presents a set of contributions related to the management of Web Services through
quality information. The first significant contribution we made is a quality model that en-
ables stakeholders of the service execution to specify their capabilities and expectations about
quality. This model is essential to allow a quality driven management of Web services. The
quality model is used by stakeholders to express involved quality criteria, measurement func-
tions, precisions about favored qualities and quality information that are necessary to manage
Web services. The second important contribution proposed in this work is a set of methods
improving the management of Web services with help of quality information specified by
stakeholders of the service execution. Three different methods are proposed: (1) A selec-
tion method which defines the best service according to non-functional requirements of the
requester while multiple services are available to perform the same task at different quality
levels. (2) A composition method which defines the best available composition of services to
perform a complex task involving several services. (3) The last method proposed is a model
enabling to determine the profile of a requester based on quality evaluations given to past
services execution. The profiling method allows to automatically recommend to the requester
services that correspond to his quality expectations. The last essential contribution of this
thesis concerns the management of Service Level Agreements that allows to define quality
contract between services requesters and providers. We propose two models enabling to im-
prove the SLA control and monitoring. (1) The first model relies on normative autonomous
agents managing services activities. In our proposal, normative agents are able to control
the execution of a service while observing its quality conformance. (2) The second proposed
model enables to monitor a service execution through context information. Quality elements
are related to different context categories and context modifications are handled in order to
ensure the quality conformance to the initial contract.

Contents

List of Figures vii

List of Tables ix

Glossary xi

1 Introduction 1
1.1 Contributions . 3

1.1.1 Quality of Service Definition and Specification . 4
1.1.2 QoS-driven management of Web Services . 4
1.1.3 SLA management . 6

1.2 Organization . 6

I Quality of Service Definition and Specification 9

2 Quality Management of Web Services : Context 13
2.1 Web Service Quality Definition . 13
2.2 Quality of Service Monitoring . 15

2.2.1 Functional management . 15
2.2.2 Non-functional management . 16

3 Quality of Service Specification Model 17
3.1 Introduction . 17
3.2 Motivation and Case Study . 19

3.2.1 Motivation . 19
3.2.2 Case study . 19

3.3 Quality Model for Service-Oriented Systems . 21
3.3.1 Quality characteristics submodel (Q) . 22
3.3.2 Quality value submodel (V) . 23
3.3.3 Quality dependency submodel (D) . 25
3.3.4 Quality priority submodel (P) . 26

3.4 Comparison with Prior Quality Models . 26
3.4.1 Q-WSDL . 27
3.4.2 WSLA . 28
3.4.3 DAML-QoS . 28
3.4.4 Maximilien and Singh . 29
3.4.5 Zeng and colleagues . 29

3.5 QVDP and QoS in UML . 30
3.5.1 Elements of the metamodel . 30
3.5.2 Comparison of the QVDP and the UML QoS Framework Metamodel 32
3.5.3 Extending the UML QoS Framework Metamodel 32

iii

CONTENTS

3.5.4 Case study . 34
3.6 Discussion . 36

3.6.1 Experience . 37
3.6.2 User Evaluation . 38
3.6.3 Strengths . 39
3.6.4 Weaknesses . 39
3.6.5 Future work . 39

3.7 Conclusions . 40

II QoS-driven Management of Services 41

4 QoS based Service Selection 45
4.1 Introduction . 45
4.2 Preliminaries . 46

4.2.1 Overview of the service selection approach . 46
4.2.2 Case study . 48

4.3 Conceptual Foundations . 48
4.4 Selection Framework . 49

4.4.1 Fixing hard constraints . 50
4.4.2 Hierarchies of QoS Characteristics and QoS Dimensions 50
4.4.3 Priorities as between criteria weights . 50
4.4.4 Preferences as intra criterion comparison . 51
4.4.5 Benefits/costs analysis . 53

4.5 Discussion of our Framework . 54
4.5.1 Between criteria weighting . 54
4.5.2 Intra criterion comparison . 54
4.5.3 Hierarchy . 55
4.5.4 Benefits/costs analysis . 55

4.6 Related Work . 55
4.7 Conclusions . 56

5 QoS based Service Composition 57
5.1 Introduction . 57
5.2 Service Selection Model . 58
5.3 Service Evaluation . 60

5.3.1 QoS preferences . 60
5.3.2 QoS priorities . 61
5.3.3 Computation of the QoS rating . 61

5.4 RL-Based Composition . 62
5.4.1 Baseline . 62
5.4.2 Reinforcement learning based on randomized shortest paths 62

5.5 Experimental Results . 64
5.5.1 Comparison to classical competing methods . 64
5.5.2 Entropy impact to variations of quality level . 65

5.6 Related Work . 66
5.7 Conclusions . 67

6 User Profiling 71
6.1 Introduction . 71

6.1.1 Context . 72
6.1.2 Problem . 73
6.1.3 Contributions . 73

iv

CONTENTS

6.2 Computing True Feedback . 74
6.2.1 Preparing preferences . 75
6.2.2 Preparing priorities . 75
6.2.3 Feedback evaluation . 75

6.3 Computing a Feedback Profile . 76
6.3.1 Description of the basic model . 76
6.3.2 Accounting for truncation . 77
6.3.3 The complete likelihood function of the model . 78
6.3.4 Estimating the parameters . 78

6.4 Experiments . 80
6.4.1 Experimental setup . 81
6.4.2 Predictability of a Feedback Profile . 81
6.4.3 Studies of the residuals . 82
6.4.4 Applications . 84
6.4.5 Discussion of the results . 88

6.5 Related Work . 89
6.6 Conclusions . 91

III SLA Management 93

7 Normative Management of Service Level Agreements 97
7.1 Introduction . 97
7.2 Case Study and Conceptual Foundations . 98

7.2.1 Case Study . 98
7.2.2 Service Level Agreement . 99
7.2.3 Mutual Obligations . 99
7.2.4 Supervised Interaction . 100

7.3 The Architecture and the Process for SLA Management 100
7.3.1 SLA management architecture . 101
7.3.2 SLA Management Process . 101

7.4 Evaluation . 105
7.5 Related Work . 106
7.6 Conclusions . 107

8 Context driven Adaptation of SLAs 109
8.1 Introduction . 109
8.2 Case Study . 110
8.3 Conceptual Foundations . 111

8.3.1 Context categories . 111
8.3.2 Context dependencies . 112

8.4 Dynamic SLA Adaptation . 114
8.4.1 Managing Service Level Agreements . 114
8.4.2 Adapting Service Level Agreements . 115

8.5 Related Work . 117
8.6 Conclusions . 118

IV Conclusions 119

9 Conclusions 121
9.1 Summary . 121
9.2 Main Contributions . 122

v

CONTENTS

9.3 Limitations . 122
9.3.1 Validation strategy . 123

9.4 Future Work . 124

V Appendices 127

A Service Selection Approaches 129
A.1 Service Selection Criteria . 129
A.2 Categorization of Approaches . 130

B Service Composition Approaches 131
B.1 Services Composition using Workflows . 131
B.2 Services Composition using Artificial Intelligence Planning 131

C Service Level Agreement Management Approaches 133
C.1 WSLA . 133
C.2 WS-Agreement . 133
C.3 SLang . 134

Bibliography 135

vi

List of Figures

3.1 Graphical user interface of the ENVISAT/MERIS MGVI web service 20
3.2 An illustration of the result provided by the ENVISAT/MERIS MGVI Web Service . . . 21
3.3 Submodels of extended UML QoS Framework metamodel. Extensions are in bold. 33
3.4 UML QoS Metamodel with proposed extensions . 34
3.5 UML QoS Characteristics submodel . 35
3.6 UML QoS Constraints submodel . 35
3.7 UML QoS Offered Constraints . 36
3.8 UML QoS Priorities submodel . 36
3.9 UML QoS Preferences submodel . 37

4.1 Vegetation indexes . 48
4.2 UML metaclasses to user modeling . 48
4.3 User specifications . 49
4.4 Benefits and costs hierarchies . 51

5.1 Directed Acyclic Hypergraph representation of the service composition 59
5.2 Comparison to similar methods . 65
5.3 Evolution of the average cost with θ = 0.5 . 68
5.4 Evolution of the average cost with θ = 1 . 68
5.5 Evolution of the average cost with θ = 1.5 . 68
5.6 Evolution of the average cost with θ = 2 . 68
5.7 Evolution of the average cost with θ = 2.5 . 68
5.8 Evolution of the average cost with θ = 3 . 68
5.9 Evolution of the average cost with θ = 0.5 . 69
5.10 Evolution of the average cost with θ = 1 . 69
5.11 Evolution of the average cost with θ = 1.5 . 69
5.12 Evolution of the average cost with θ = 2 . 69
5.13 Evolution of the average cost with θ = 2.5 . 69
5.14 Evolution of the average cost with θ = 3 . 69

6.1 Symbols representing the actors and information involved before and after a transaction. . 72
6.2 Dimensions of feedback profiles. 74
6.3 Comparison between the real (generated, x-axis) and the predicted (estimated, y-axis)

value of qk . 82
6.4 Comparison between the real (generated, x-axis) and the predicted (estimated, y-axis)

value of aql . 82
6.5 Comparison between the real (generated, x-axis) and the predicted (estimated, y-axis)

value of axl . 82
6.6 Comparison between the real (generated, x-axis) and the predicted (estimated, y-axis)

value of bl . 82
6.7 Real (generated) clusters of client profiles. 83

vii

LIST OF FIGURES

6.8 Predicted (estimated) clusters of client profiles. 83
6.9 Comparison between the real (generated, x-axis) and the predicted (estimated, y-axis)

value of qk for the Feedback Profile model. 85
6.10 Comparison between the real (generated, x-axis) and the predicted (estimated, y-axis)

value of qk for the IR model. 85
6.11 Comparison between the real (generated, x-axis) and the predicted (estimated, y-axis)

value of qk for the Brockhoff model. 85
6.12 Comparison between the real (generated, x-axis) and the predicted (estimated, y-axis)

value of qk for the SA method. 85
6.13 Collusion corresponding to a rating bias of 1.0 detected with the Feedback Profile model. 86
6.14 Collusion corresponding to a rating bias of 1.0 detected with the Brockhoff model. 86
6.15 Collusion corresponding to a rating bias of 0.3 detected with the Feedback Profile model. 86
6.16 Collusion corresponding to a rating bias of 0.3 detected with the Brockhoff model. 86
6.17 Performances of the different models, on the MovieLens dataset, without (gray bar) and

with (black bar) truncation. 87
6.18 Users profiles represented in dimensions bl, axl and aql . 89
6.19 Users profiles represented in dimensions axl and bl. 89
6.20 Users profiles represented in dimensions aql and bl. 89
6.21 Users profiles represented in dimensions axl and aql . 89
6.22 Professors’ sensitivities to students’ brand image. 90
6.23 Professors’ sensitivities to deception. 90
6.24 Professors’ outlook. 90

7.1 SLA management architecture . 102
7.2 Roles fulfilled by normative agents . 103
7.3 Simulation Results . 106

8.1 Graphical interface of the EOLI-SA service . 110
8.2 Context categories and between-category interactions . 111
8.3 SLA Management Architecture . 115
8.4 Current tasks of the provider . 116

viii

List of Tables

3.1 Comparison of QVDP with a selection of prior quality models. 27
3.2 Comparison of the QVDP and the UML QoS Framework Metamodel. 32

4.1 Available services that meet QoS constraints . 52
4.2 Final score of available services . 54

6.1 Comparison between average residuals get with the Feedback Profile model and the Brock-
hoff model. 83

6.2 Comparison between average brand images residual get with the Feedback Profile model,
the Brockhoff model, the IR model and the SA method. 84

6.3 Performances of the different models on the MovieLens dataset, without and with truncation. 87
6.4 Performances of the different models on the students dataset, without and with truncation. 88

8.1 Context particularities of MERIS/MGVI and EOLI-SA services 112
8.2 Examples of Context Dependencies . 113
8.3 Examples of SLAs . 114
8.4 Web Service context of MERIS/MGVI and EOLI-SA services after an increasing of the

execution charge . 117
8.5 SLAs resulting from the increasing of the execution charge 118

ix

GLOSSARY

x

Glossary

AC Quality levels required by C

ACl Quality levels required by client l

AClj Quality level required by the client l for the
quality property j

AC
priorrules
lj Rules of priorities between quality levels re-

quired by client l for quality property j

AC
priorstrength
lj Strength of priorities between quality levels

required by client l for quality property j

ACmod
l Modalities of quality levels required by client

l

ACmod
lj Modalities of quality levels required by client

l for property j

AC
opt
l Optimal values of quality levels required by

client l

AC
opt
lj Optimal values of quality levels required by

client l for quality property j

AC
prior
l Priorities between quality levels required by

client l

AC
prior
lj Priorities between quality levels required by

client l for quality property j

aq
l Sensitivity of the client l to the brand image

of providers

ax
l Sensitivity of the client l to the deception in-

duced by of the gap between the expected and
the delivered quality level

AP Advertised quality levels of P

APki Advertised quality levels of provider k for
transaction i

APkiαj Advertised quality levels of quality property j
announced by provider k of the service α ful-
filling the task i

APkij Advertised quality levels of quality property j
of provider k for transaction i

bl Bias of the client l

C Client of a transaction

cs Cost of the service s

D The dependency submodel

DAH Directed Acyclic Hypergraph

f Feedback given by C to P

f̄ True feedback given by C to P

Fl Feedback profile of the client l

i transaction

k provider

l client

MAS Multi-Agent System

M Mediator agent between Ps and C

nc Total number of clients

nkl Total number of transactions occurring be-
tween provider k and client l

N Total number of transactions

NoMAS Norm oriented Multi-Agent System

np Total number of providers

OP Observed quality levels of P

OPki Observed quality levels of provider k for trans-
action i

OPkiαj Actually observed quality levels of quality
property j offered by provider k of the service
α fulfilling the task i

OPkij Observed quality levels of quality property j
of provider k for transaction i

P The priority submodel

P Provider of a transaction

q̄ Quality characteristic

Q The quality submodel

q Quality dimension

qk Brand image of the provider k

QoS Quality of Service

QVDP The Quality-Value-Dependency-Priority
model

rs Rating of a service s

R Reputation score of P

RP Reputation score of P

RL Reinforcement Learning

s Service

sij Service j able to fulfill the task i

σl Stability of the client l in providing constant
ratings

SLA Service Level Agreement

SLO Service Level Objective

SOS Service-oriented System

ti Task of the composition process to be fulfilled
by a service

tf
j

i Functional constraint j of the task i

tf Set of functional requirements of a task

tnfj

i Non-functional constraint j of the task i

tnf Set of non-functional requirements of a task

V The value submodel

WS Web service

xkli True feedback of transaction i occurring be-
tween provider k and client l

ykli Feedback of transaction i occurring between
provider k and client l

zkli Truncated feedback of transaction i occurring
between provider k and client l

xi

GLOSSARY

xii

Chapter 1

Introduction

The Internet is today subject to growing needs of information exchanges and modular applications.
The Web now proposes information through different media (texts, pictures, videos, sounds) available
on different websites (social networks, blogs, hosting sites) reached from a large set of devices (PCs,
PDAs, smartphones). The data transfered is related to an infinite amount of topics as stock exchange
information, picture editing or flight booking. To cope with such possibilities, one of the most fitted
solution is offered by the use of service-oriented computing.

Papazoglou and Georgakopoulos [162] define services as self-describing, open components that support
rapid, low-cost composition of distributed applications. Services are offered by service providers organi-
zations that procure the service implementations, supply their service descriptions, and provide related
technical and business support. The service implementation and deployment is achieved through the
Web Service Standard. The Web Service standard is a recent paradigm of emerging Web components.
It combines a set of technologies, protocols, and languages to allow automatic communication between
Web applications through the Internet. A Web Service is any application that exposes its functionalities
through an interface description and makes it available for use by other programs on the Web. More
precisely, the World Wide Web Consortium (W3C) [218] defines a Web Service as a software system
designed to support interoperable machine-to-machine interaction over a network. Web Services rely on
multiple existing technologies. These are described with the Web Service Description Language (WDSL)
which defines Web Services as endpoints operating on messages containing either document-oriented
or procedure-oriented information [217]. Usually, Web Services use the HyperText Transfer Protocol
(HTTP) [216] as a fundamental communication protocol, carrying communication messages between
Web Services and their clients. To communicate data, Web Services use the extensible markup language
(XML) [220]. SOAP is a lightweight protocol designed for exchanging structured information in a de-
centralized, distributed environment [219]. Finally, the Universal Description, Discovery and Integration
(UDDI) standard defines a universal method for enterprises to dynamically discover and invoke Web
Services [155].

In addition to technologies supporting Web Services, several specifications about Web Services allow
support activities (e.g.: WS-Policy [12], WSFL [122], WS-Security [149], WS-Management [48], etc.).
The aim of such specifications is to improve the monitoring, the security, the orchestration and other
activities related to the execution of Web Services. Among such activities, the Web Service Management
tackles issues as installation, configuration, collecting metric and tuning to ensure responsive service
execution. It involves gathering information about the managed service platform, services and business
processes and managed-resource status and performance via root-cause failure analysis, SLA monitoring
and reporting, service deployment, life-cycle management and capacity planning [163]. Improving the
management of Web Services is essential to increase the adoption of the service-oriented computing and
to impose the adoption of standards.

There are different possibilities to improve Web Services management but managing services through
quality offers large opportunities. The emergence of Web Services involves an increasing number of
available services on the Internet. A service requester is then faced to a large choice while it executes

1

1. INTRODUCTION

a service. Indeed, a particular functionality can be offered by numerous Web Services emanating from
multiple providers. The requester’s choice is usually driven by his utility function which means that he
chooses the service that maximizes its utility. To discriminate among available services, the requester has
to compare the quality levels offered by providers. The quality level of a service is usually denominated
as its Quality of Service (QoS) which is a combination of several characteristics of a service, such as avail-
ability, security, response time or throughput [143]. E.g.: two services providing the same functionality
can be differentiated by their response time with one service fulfilling the functionality in 200 milliseconds
and the other in 450 milliseconds. QoS can then play a major role in the Web Service management. The
first research question addressed in this thesis is: ‘How to improve the management of services through
the use of quality information? ’

Quality provides several opportunities to respond to most management issues (i.e.: service monitoring,
performance measurement, capacity planning) and, more specifically, allows to differentiate functionally
equivalent services. Quality information can be easily expressed by the requester in order to state its
requirements about quality and by the service provider to advertise its capabilities about the quality level
offered. Quality information is critical to improve the management of Web Services in accordance with
stakeholders expectations. However, quality information must be properly defined, collected and used to
improve the efficiency of management activities. In this thesis, we propose to improve the management
of Web Services through a quality driven framework tackling Web Services management activities.

Beyond quality-driven management of Web Services, another issue is essential to monitor Web Services
executions. In order to ensure the right execution of a Web Service, it is essential to define a contract
between stakeholders and to control its execution. This contract guarantees that the provider capabilities
meet the requester expectations about functionalities and quality to deliver. The agreement about the
service functionality and the quality level to deliver is stated between the requester and the provider
with a Service Level Agreement (SLA). An SLA is a contract between the said parties which specifies
the Quality of Service (QoS) levels that should be met [109]. However, an SLA definition does not
guarantee the accurate execution of the service, i.e.: some agreements can be unmet (e.g.: the execution
time observed is longer than expected) or the whole service execution can fail. To prevent and avoid
such unexpected failures, the management of SLAs is essential. Although an SLA usually defines the
functionality to deliver, its mains specifications refer to the level of quality criteria involved in the contract.
SLAs then need an appropriate definition of quality and a continual observation of quality levels provided.
The second research question addressed in this thesis is: ‘How to improve the management of Service
Level Agreements through the use of quality information? ’

SLAs mainly define quality to be achieved during services executions. Hence, it is then essential to
monitor quality levels and to track unexpected changes in quality delivered. The framework we propose
in this thesis allows to improve the SLA management through the use of quality information. The SLA
management checks the Web Service behavior and proposes corrective actions to be taken while the
service misses its quality objectives.

Scope of the thesis

This thesis presents contributions related to the management of Web services and service level agreements.
This work addresses actual issues of Web services management and proposes different models and methods
to solve these issues. Three main areas are approached in this thesis. The first area is the definition of a
quality model allowing to express requirements about expected quality levels of a service transaction. The
second area is the quality-driven management of Web services. We propose different methods relying on
the quality model to improve and automate the management of Web services through quality information.
The third area is the management of service level agreements. The SLA management is complementary
to the QoS management of Web services. It allows to formally define the quality agreements of service
users and providers resulting from quality-driven management methods. However, this thesis does not
address all issues related to the management of Web services. Some research area as policy management,
security or workflow engineering are not argued. We focus our efforts on quality-driven management of
Web services. The three research areas considered make a coherent whole responding to some of the main

2

1.1 Contributions

current issues of quality-driven Web services management.

Epsitemological field

The epistemological perspective of this thesis is the structuralism. Service-oriented Systems are subject
to numerous recognized standards, languages and models. These standards improve the utilization of
services but restrain their management possibilities. Models and languages act as power structures and
narrow the research scope that must conform to them. The contributions proposed in this thesis are the
resulting effects of social interactions occurring between involved actors of services executions. Indeed,
this work aims at improving the management of Web services from the user side through a quality
approach. The quality model and the proposed management methods have been designed according to
user requirements about services utilization. Our work is driven by social interactions between services
users and services providers. This research is within an existing conceptual framework and proposes new
contributions resulting from social interactions between involved actors (i.e.: developers, requesters and
providers).

1.1 Contributions

This thesis proposes contributions related to the issues of QoS management of Web Services and their
SLA contracts management. The management of Web services and their SLAs is essential to ensure the
requester satisfaction in spite of the increasing quantity and complexity of services available on the Web.
The first significant contribution we made is a quality model that enables stakeholders of the service
execution to specify their capabilities and expectations about QoS. This model is essential to allow a
quality driven management of Web services. The QoS model is used by stakeholders to express involved
quality criteria, measurement functions, precisions about favored qualities and quality information that
are necessary to manage Web services. Quality specifications made by services requesters and providers
can step in several service monitoring models and methods. The second important contribution pro-
posed in this work is a set of methods improving the management of Web services with help of quality
information specified by stakeholders of the service execution. Three different methods are proposed:
(1) A selection method which defines the best service according to non-functional requirements of the
requester while multiple services are available to perform the same task at different quality levels. (2)
A composition method which defines the best available composition of services to perform a complex
task involving several services. This composition method relies on quality information to propose the
composition that will best satisfy the requester’s expectations. (3) The last method proposed is a model
enabling to determine the profile of a requester based on quality evaluations given to past services execu-
tion. The profiling method allows to automatically recommend to the requester services that correspond
to his quality expectations. The last essential contribution of this thesis concerns the management of
Service Level Agreements that allows to define quality contract between services requesters and providers.
We propose two models enabling to improve the SLA control and monitoring. (1) The first model re-
lies on normative autonomous agents managing services activities. In our proposal, normative agents
are able to control the execution of a service while observing its quality conformance. (2) The second
proposed model enables to monitor a service execution through context information. Quality elements
are related to different context categories and context modifications are handled in order to ensure the
quality conformance to the initial contract.

This thesis is organized through three main parts. The different parts provide advances allowing a
QoS-driven management of SLAs. The first part is dedicated to the conceptual foundations of service
quality and management quality. This part also outlines the quality model. The second part proposes
management methods to improve the Web Services management through a quality dimension. The
third part presents advances in management of SLAs established between the stakeholders of the service
execution. The specific contributions related to each part are detailed here.

3

1. INTRODUCTION

1.1.1 Quality of Service Definition and Specification

This first part defines main concepts involved in the QoS management. Part I outlines service quality, it
proposes a QoS definition and explains its importance in service management. Next, it presents a brief
state of the art of Web Service management. Once the foundations of QoS have been laid down, Part I
introduces our quality model. The quality model will provide the specification of a conceptualization. The
quality model proposed, the Quality-Value-Dependency-Priority (QVDP) model, can be used by any part
concerned by the specification of QoS: (1) The service requester who wishes to specify its expectations
regarding the service quality level to achieve during the service execution. (2) The service provider in
order to advertise the quality level that provided services can reach. (3) Any stakeholder involved in the
service management in order to use information about expectations or capabilities or to monitor quality
level values.

The QVDP model provides quality constructs enabling to specify advanced concepts such as the
priorities between quality characteristics, the preferences over values of quality characteristics and the
dependencies. In comparison to existing QoS models, the QVDP model has several advantages: (1) It does
not predefine characteristics. Indeed, the QVDP model can be used to specify usual QoS characteristics
(e.g.: the latency, the availability or the reliability) but also to define context-specific characteristic
(e.g.: reactivity of stock exchange information or resolution of photo editing). (2) The measurement
of quality characteristics is left to involved actors. The requester and the provider can specify their
definition of metrics and their aggregation functions. (3) It provides advanced concepts such as priorities,
preferences and dependencies. Such constructs allow to give a rich description of how services perform.
The specifications of these concepts are particularly relevant to manage trade-offs at runtime. These
constructs clarify the characteristics and their respective values which must be optimized (priorities and
preferences). These also provide an explicit representation of how qualities interact (dependencies), i.e.,
how some variation of a quality affects the degree of satisfaction of others.

We compare the QVDP model to several existing models. We compare it especially to the UML QoS
metamodel [157]. We also extend the UML QoS metamodel it to allow the specification of advanced
concepts introduced in QVDP.

1.1.2 QoS-driven management of Web Services

The QoS model proposed in Part I allows large possibilities of service management. Once requester
expectations and providers capabilities have been defined with the QoS model, the resulting specifications
offer a sound basis to process monitoring and management operations. Such operations involve QoS
measurement, specification matching, service selection or contract definition. Part II outlines three QoS-
driven management operations: (1) a selection method; (2) a composition method, and; (3) a profiling
method, enabling to define the behavior and the reactivity of a service user.

The first method proposed in Part II is a selection method. This method uses QoS specification
provided by the service requester and the service providers in order to fix the most suited service among
available ones. Each provider advertises its performance capabilities with the QoS model introduced in
Part I. To select the most appropriate service, the method applies trade-offs upon basis of priorities and
preferences information specified by the service user. The selection method proceeds along the following
steps: (1) The selector rejects services that do not fulfill user expectations about values of QoS properties.
(2) The selector organizes QoS properties into positive and negative hierarchies that make explicit the
contribution to more generic quality properties (e.g., responsiveness). (3) The selector links weights
to QoS properties that reflect their relative importance. (4) Pairwise comparisons of values of quality
properties are made by the service selector. (5) The result of pairwise comparisons is combined to the
weights of criteria to determine the score of positive and negative hierarchies. Cost/benefit analysis is
then performed on each service to establish their ranking and determine the most suitable service to the
user request.

The second method proposed in Part II is a composition method. A composition of service is used
to fulfill complex tasks involving multiple elementary services (e.g.: a travel booking involves flight
booking and accommodation booking). In composition problems, the pool of available services fulfilling

4

1.1 Contributions

the different tasks may vary. As the selection issue, the composition issue can be driven by quality and
many QoS criteria can be used to describe the services. The best composition is the one that best fits
to the requester’s quality expectations. The composition method presented in this thesis is QoS-driven
and relies on QoS specifications about requester priorities and preferences and about provider advertised
and observed quality levels. These specifications have been introduced in the QoS model presented in
Part I. With these specifications, the composition method uses a reinforcement learning algorithm to
define optimal service compositions. In order to solve the composition issue, we propose a two-step
service composition method. (1) We apply a multi-criteria method to aggregate QoS characteristics
to obtain a single rating for each service. (2) These aggregated ratings are input to a reinforcement
learning algorithm. This algorithm finds the composition that maximizes the QoS delivered to the
requester according to its expectations. The RL approach is capable of handling variations in the pool
of available services by exploring compositions other than those that historical data shows appropriate,
i.e., the algorithm handles the exploration-exploitation tradeoff. Interestingly enough, the introduced
RL algorithm guarantees (asymptotically) optimal exploitation for a given exploration level. Our first
experiments reported here illustrate that, for a given level of exploration, our algorithm is more efficient
than comparable approaches. The contributions of this chapter are the QoS aggregation and the RL
algorithm, so that no commitments are made on, e.g., how composition proceeds once a selection is
identified, how interoperability is ensured, and so on. This ensures that our results are generic.

The third method proposed in Part II is a user profiling method. A profiling method allows to define
the usual behavior of a consumer. The behavior of a service user is useful to anticipate its expectations
and recommend services to execute according to its profile. As other issues presented in Part II, the
user profiling method relies on information specified by the QoS model. To build a user profile, we refer
to its specification about preferences and priorities and observe its reactivity regarding expected and
observed performances of the service. The priorities and preferences specifications have been elicited in
the QoS model presented in Part I. The method proposed computes the feedback profile of users after
service transactions. After each transaction, the method compares the true (unbiased) feedback that
should have been given with the feedback actually given by the service user. The unbiased feedback is
a function of the user preferences, the user priorities, the quality level advertised by the provider and
the quality level observed during the transaction. The service quality is then computed with a function
of the magnitude and the direction of the gap between expected service and perceived service. The
actual feedback is then a unbiased quantification of the gap between user’s expectations (priorities and
preferences, expected quality level) and observed values of quality properties after the transaction. The
feedback profile is then the source of the difference observed between the actual feedback and the feedback
given by the user after the transaction. On the basis of such differences, the method presented computes
the feedback profiles of users. A feedback profile characterizes a user on three dimensions, called outlook,
sensitivity to deception and, sensitivity to brand image. Outlook describes a user’s degree of optimism
or pessimism in feedbacks. Outlook reflects the fact that some users consistently give more favorable or
defavorable feedback. We then have two kinds of sensitivity. The sensitivity to deception characterizes
a user’s degree of deception when delivered quality varies from expected quality. Deception occurs while
the quality level delivered is lower than the quality level expected by the user. Users can be slightly or
strongly sensitive to deception and can be averse if it exists an aversion effect to the deception. Deception
sensitive users will react negatively to deception (i.e., they will decrease their feedbacks) while deception
averse ones will positively react (i.e., they will increase their feedbacks) when the observed level of quality
is lower than the quality level advertised by the provider. In other words, for the same deception related
to the same gap between quality expected and delivered, users will react differently. The sensitivity to
brand image characterizes the effect of provider’s brand image on the user. Users will react differently to
provider’s image, their feedbacks can be sensitive to the image of the provider but also adverse if the user
has an aversion to image of providers. Users that are brand image sensitive will improve their feedbacks
for providers with a notorious brand image while users averse to brand image will decrease their feedbacks
for such users.

5

1. INTRODUCTION

1.1.3 SLA management

The third part of this thesis presents models improving the management of Service Level Agreements.
SLA contracts usually concern the obligations of the parts involved in the transaction. The obligations
mainly define the quality level to be achieved by the provider during the transaction. The SLA definition
is then connected to the user expectations and the provider capabilities specification made with the QoS
model introduced in Part I. Part III introduces two models enabling a QoS-driven management of SLA.

The first approach proposed in Part III present an architecture managing SLAs based on normative
agent. This architecture monitors the SLA achievement through: (1) A language enabling the communi-
cation between stakeholders involved in the SLA (i.e.: the service provider and the service requester). (2)
The definition of a SLA that meets the provider capabilities and the client requirements. (3) The service
execution monitoring to check the conformance between quality level expected and actually observed.
(4) The insurance of the SLA achievement with mutual obligations involving both stakeholders of the
contract. (5) A third part controller which monitors and evaluates the SLA execution and penalizes the
agent that does not fulfill its obligations.

The second approach proposed in Part III enables an autonomic adaptation of SLA responding to
occurring context modifications. To this aim, context elements are classified into five distinct context
categories: user, provider, resource environment and the Web Service itself. The proposed approach also
relies on dependencies existing between elements of context enabling to propagate context modifications.
These dependencies have been previously introduced in the QoS model presented in Part I. The SLA
approach is composed of an architecture leaning on an SLA manager to drive the autonomic adaptation
based on context elements. The adaptation process uses context elements and dependencies to enable
an autonomic adjustment of existing SLAs to ensure the service conformance to user expectations. The
adaptation process involves the following steps : (1) Context modifications are reported to the SLA
manager that identifies changes and starts the adaptation process. (2) Observed context variations are
propagated through context dependencies existing over different elements of context by the SLA manager.
(3) Once context variations have been propagated to all context categories, the SLA manager checks the
compatibility between user expectations and provider capabilities. (4) Upon base of the result of the
compatibility checking, the SLA manager keeps the existing SLA, set up a new SLA between the user
and the same provider or select another service better fitting user expectations.

1.2 Organization

Most chapters in this thesis have been published as peer-reviewed publications or have directly served
in the elaboration of other publications. In this respect, this thesis provides neither a central treatment
of related work nor a discussion of limitations. Each of these considerations is locally dealt with in the
relevant chapters, and for the given topics.

Part I introduces the conceptual foundations used throughout this thesis. This part defines the quality
of service and lays the foundations of quality driven management of Web Services. Chapter 2 introduces
the context of the quality management of Web Services and concisely outlines existing Web Service quality
management approaches. Chapter 3 proposes a quality model allowing several Web Service management
processes. This quality model allows requesters to specify quality expectations, providers to advertise
service qualities and management third parties to compare alternative Web Services through multiple
quality criteria.

Part II of this thesis presents methods improving the QoS-driven management of Web Services. Chap-
ter 4 proposes a service selection method based on quality properties of a service. The selection method
relies on the quality model introduced in Chapter 3 to apply multi-criteria decision making methods
(MCDM). MCDM methods are applied on quality criteria elicited with the quality model in order to
define the available service which best suits user expectations. Chapter 5 proposes a service composition
method based on the QoS users’ expectations and providers’ capabilities. The selection method relies
on specifications provided with the quality model introduced in Chapter 3 and a reinforcement learning
method to determine the best possible combination of available services. Chapter 6 proposes a user

6

1.2 Organization

profiling method relying on the formulation of QoS users’ expectations. The profiling method improves
the management of Web Services by enabling accurate recommendations of services according to their
observed consumer behavior.

Part III presents models improving the management of Service Level Agreements. Chapter 7 proposes
a normative management of service level agreements defined between Web Services. The normative
management improves the achievement of contract defined between stakeholders of the service execution.
Chapter 8 proposes to use context to manage SLA during service executions. The context management
of SLA allows to prevent and react to unexpected failures occurring during Web Services executions.

Part IV concludes this thesis. Finally, a summary is given and principal directions for future work
are identified and discussed.

7

1. INTRODUCTION

8

Part I

Quality of Service Definition and
Specification

9

Outline of Part I

The first part of this thesis focuses on the introduction of concepts addressed in this thesis and the
definition of conceptual foundations required to manage web services from quality information. The
main contribution of this part is the definition of a quality model used by requesters and providers to
specify theirs capabilities and expectations about QoS. A such model is essential to allow the management
of web service through non-functional properties.

Chapter 2 introduces the context of the quality management of web services. It first gives a com-
prehensive definition of the web service quality. It then introduces the state-of-the-art about quality
monitoring in service-oriented computing.

Chapter 3 proposes a quality model to allow requesters specify quality expectations, providers adver-
tise service qualities and management third parties compare alternative services. Upon basis of observed
similarities between various existing quality model, we review these and integrate then into a single
quality model called QVDP. We also highlight the need for integration of priority and dependency infor-
mation within any quality model for services an propose precise submodels for doing so. Our intention
is for the proposed model to serve as a reference point for further developments in quality models for
service-oriented systems. To this aim, we extend the part of the UML metamodel specialized for Quality
of Service with QDVP concepts unavailable in UML. Chapter 3 has been published in Software Quality
Journal [103].

11

12

Chapter 2

Quality Management of Web
Services : Context

This Chapter briefly introduces the context of this research. The Chapter 2 defines the Quality of Service
concept and presents the foundations of QoS monitoring with its state-of-the-art.

2.1 Web Service Quality Definition

Before executing a web service, numerous factors are involved in the choice of a service provider. Factors
can be: the user’s expectations, the provider’s capabilities, the inherent characteristics of the service and,
the perceived value of the service [151]. Among such factors, quality is a critical issue. When competing
providers deliver the same functionalities, usually, the service the most requested is the one that deliver
the better quality attributes at the lowest cost. Garvin has analyzed in [60] how quality can be perceived in
different domains as economics, philosophy or marketing. Among existing views (transcendent, product-
based, user-based, manufacturing-based and value based) of quality, two are particularly relevant to the
web services quality issue: the product view and the user view.

• The product view Garvin’s hypothesis is that if a product is manufactured with good internal
properties, it will have good external properties. The quality level of a product indicates the
presence or absence of measurable product properties. The product view of quality can be assessed
in an objective manner [151].

• The user view is about the extent to which a product meets user needs and expectations. It is then
useful to identify what product attributes users consider to be important [151].

According to these two definitions of quality level, we choose to refer to the user-view of quality. The
user-view definition of quality is well suited to web services because:

• The same functionality can be provided by several providers, at different quality levels. A web
service can also be offered by the same provider at different quality levels. The pool of available
web service for a same functionality is then significant;

• There are also numerous potential users of web services, with different expectations. An user can
also modify its expectations and change its consumer profile;

• A product-view of quality will result to a limited pool of web service with few available web services
for a given functionality.

The user-view is then the quality view the most suited to web services. It enables a large pool of available
services in which users can find the one that best fits their expectations.

The aim of this thesis is to provide management tools enabling the service user to execute services
according to its expectations. To this aim ,we first provide a framework that allows the user to express

13

2. QUALITY MANAGEMENT OF WEB SERVICES : CONTEXT

its needs (Part 1). This framework supports the quality user-view of web service. We then use this
framework to determine services that best fit user’s needs in web services issues such as selection or
composition (Part 2). These steps are also related to the quality user-view of a service. We finally
provide Service Level Agreements management tools, enabling to control contracts established between
providers and users (Part 3). Agreements are managed according to users needs and then also refer to a
user-view of quality.

The quality characteristics of a service need to be quantified to compute its efficiency and to compare
its performance with other similar services. Measurement of characteristics allows to have a quantitative
perception of the quality. The measurement usually establishes baselines for qualities and allows to
quantify the improvement of modifications [151]. From the users view, the measurement of quality is
characterized by quality factors such as reliability, availability or usability. Such factors are aggregated
to define the overall Quality of Service (QoS). QoS reflects the quality of a web service, both in terms of
correctness of functional behaviour and level of supported QoS. Many definitions and existing methods
provide an overview of quality criteria [62; 87; 88; 89; 113; 136]. However, some definitions better fits to
the web service quality measurement. The main quality criteria used to define QoS of a web service have
been defined by Mani and Nagarajan [131]:

• Availability: Availability is the quality aspect of whether the Web service is present or ready for
immediate use. Availability represents the probability that a service is available. Larger values
represent that the service is always ready to use while smaller values indicate unpredictability of
whether the service will be available at a particular time. Also associated with availability is time-
to-repair (TTR). TTR represents the time it takes to repair a service that has failed. Ideally smaller
values of TTR are desirable.

• Accessibility: Accessibility is the quality aspect of a service that represents the degree it is capable
of serving a Web service request. It may be expressed as a probability measure denoting the success
rate or chance of a successful service instantiation at a point in time. There could be situations when
a Web service is available but not accessible. High accessibility of Web services can be achieved by
building highly scalable systems. Scalability refers to the ability to consistently serve the requests
despite variations in the volume of requests.

• Integrity: Integrity is the quality aspect of how the Web service maintains the correctness of the
interaction in respect to the source. Proper execution of Web service transactions will provide the
correctness of interaction. A transaction refers to a sequence of activities to be treated as a single
unit of work. All the activities have to be completed to make the transaction successful. When a
transaction does not complete, all the changes made are rolled back.

• Performance: Performance is the quality aspect of Web service, which is measured in terms of
throughput and latency. Higher throughput and lower latency values represent good performance
of a Web service. Throughput represents the number of Web service requests served at a given time
period. Latency is the round-trip time between sending a request and receiving the response.

• Reliability: Reliability is the quality aspect of a Web service that represents the degree of being
capable of maintaining the service and service quality. The number of failures per month or year
represents a measure of reliability of a Web service. In another sense, reliability refers to the
assured and ordered delivery for messages being sent and received by service requestors and service
providers.

• Regulatory: Regulatory is the quality aspect of the Web service in conformance with the rules, the
law, compliance with standards, and the established service level agreement. Web services use a lot
of standards such as SOAP, UDDI, and WSDL. Strict adherence to correct versions of standards
(for example, SOAP version 1.2) by service providers is necessary for proper invocation of Web
services by service requestors.

14

2.2 Quality of Service Monitoring

• Security: Security is the quality aspect of the Web service of providing confidentiality and non-
repudiation by authenticating the parties involved, encrypting messages, and providing access con-
trol. Security has added importance because Web service invocation occurs over the public Internet.
The service provider can have different approaches and levels of providing security depending on
the service requestor.

In addition to these criteria, some criteria may be added according to the user expectations or the
execution context of the web service. E.g.: the responsiveness is a critical criteria for web service providing
stock exchange information.

2.2 Quality of Service Monitoring

The section presented here is inspired by Benharref et al. [14]. Once quality characteristics of a service
are defined, the quality must be appropriately managed. Quality criteria must be measured and moni-
tored. Management issues of Web service are usually divided into two dimensions: (1) management of
functional aspects, namely fault management, and (2) management of non functional aspects such as
Quality of Service. Usually, management of web services is highly platform-dependent, implying some
limitations: (1) management features are usually available to web services providers but often not to
other partners (clients, third parties); (2) management solutions are usually restricted to only one man-
agement aspect, functional or non-functional; and (3) most of management solutions require considerable
amount of computer and network resources to be deployed and used. Among existing approaches of
web service management, the World Wide Web Consortium (W3C)1 presents a set of requirements that
Web service (WS) management architectures should satisfy to provide management features [21]. This
includes the definition of standard metrics, management operations, and methodologies for accessing
management capabilities. The complying architectures must provide a manageable, accountable, and
organized environment for Web Services operations. It must support at least resource accounting, usage
auditing and tracking, performance monitoring, availability, configuration, control, security auditing and
administration, and service level agreements. Another approach in which the WS provides specific inter-
faces for management is presented by Farell and Kregel [51] in which the developer is supposed to supply
commands and APIs for management operations that are invoked by the management system. Casati
et al. [34] classify the management of WS into three levels: infrastructure-level, application-level, and
business-level. The infrastructure-level deals with the Web service platform while the application-level
focuses on the WS themselves. The business-level takes into consideration the conversations between a
WS and its client.

Such management approaches assume that the WS provide operations that one can invoke. Developers
have to develop and deploy these operations in addition to the core business operations the WS is offering.

Some management tools to be integrated into WS environment are already available. Hewlett
Packard’s WS management engine [76] is a collection of software components that enables some man-
agement features, including the definition and enforcement of SLA. Parasoft [164] provides a set of tools
(SOAP test, .TEST, WebKing) to assist during the lifecycle of a WS. These tools have to be installed
and configured, thus requiring extra resources and introducing new cost for WS providers.

Work on WS management can be divided into two main groups: works targeting functional aspects
of WS and works tackling non-functional aspects. The first group is about the correctness of interactions
between WS and their clients while the second group is concerned with QoS management of WS. The
second group is concerned with the QoS management of WS.

2.2.1 Functional management

The majority of work on functional management is based on active testing where appropriate test cases
have to be carefully generated, executed, and their result analyzed. This unavoidable phase of active
testing has, however, practical limitations. First of all, exhaustive testing is impractical for quite large

1http://www.w3c.org/

15

2. QUALITY MANAGEMENT OF WEB SERVICES : CONTEXT

WS. In fact, test cases can not cover all possible execution scenarios that a WS will have to handle
while serving client’s requests. The size of test cases is bounded by the cost a Web services provider
is willing to spend on testing activities. Usually, active testing stops whenever developers are confident
that the Web service is good enough to be put into the market. Many recent results were published
lately describing test cases generation methods for Web services; they are mainly based on static analysis
of WSDL documents. Xiaoying et al. [7] present a method for test data generation and test operation
generation based on three types of dependencies: input, output, and input/output. ChangSup et al. [111]
combined both EFSM models and WSDL documents to generate test cases.

2.2.2 Non-functional management

The management of QoS includes definition of QoS attributes, QoS publication, discovery, validation,
and monitoring. Existing approaches for QoS management can be classified into two groups: one based
on extending related technologies including WSDL and UDDI to support QoS and the other mandating
independent entities to perform some or all of QoS management tasks. In the first category, W3C (2003)
extends SOAP header to include QoS information. WSDL is also extended to describe QoS parameters,
their associated values, computation units (e.g., millisecond, request/second), and so forth. UDDIe, a
UDDI extension, consists of extending the current UDDI data structure with QoS information [192]. The
aim of these extensions is to allow QoS-based publication and discovery of Web services. In the second
group, solutions are presented for one or more of the following QoS management operations:

• QoS attributes: The first step in QoS management is the definition of evaluations criteria and
attributes. A set of attributes have been defined, studied, and used in software engineering for a
long time [53; 65; 182].

• QoS publication and discovery [105; 173; 189]: This operation allows providers to include QoS
information in WSDL. This information is then used by requestors when selecting the appropriate
Web service in terms of functional and QoS requirements.

• QoS verification [105; 189; 208]): This operation allows the provider to certify that the QoS claimed
by the Web Service is accurate.

• QoS negotiation [189]: If the available published QoS requirements do not satisfy a clients needs,
negotiation operations and strategies can be followed to reach an agreement on different QoS at-
tributes.

• QoS monitoring [13; 94; 184; 189]: Performs monitoring of Web services during interactions with
clients to assess if the QoS attributes agreed upon in previous points are delivered.

16

Chapter 3

Quality of Service Specification
Model

This Chapter has been published in Software Quality Journal [103]. The Chapter 3 presents the first
significant contribution of this thesis, our quality model. The quality model is essential to allow a quality
driven management of web services. The quality model is used by requesters and providers to provide
quality specifications considered in services management. The expression of requirements and capabilities
enables to drive activities as the services selection and composition from stakeholders sides. The definition
of an appropriate quality model is essential to enable the efficiency of a quality-driven management of
web services. The quality model proposed here will be used to specify quality information required to
apply the methods proposed in Part II.

3.1 Introduction

Quality has been variously defined as value, conformance to specifications, conformance to requirements,
fitness for use, loss avoidance, or achieving and/or exceeding customer expectations (see, e.g., [175] for
a business-oriented overview). Reasoned, structured, and systematic action taken to achieve desired
quality—i.e., quality management—has been an active area of enquiry in various fields, most notably
business (e.g., [46; 52; 61; 90; 97]). In relation to software engineering, the International Organization
for Standardization [85] and the IEEE [82] define software quality as the totality of features and charac-
teristics of a software product that bear on its ability to satisfy stated or implied needs. Ensuring the
quality of software has become a major issue in research and practice since the 1970s [18]. As increasingly
complex software plays a critical role in business and other areas of life, it is clear that comprehensive and
precise methods and tools are needed to create and run software that is, among other, safe, dependable,
and efficient [158]. Service-oriented systems (e.g., [138; 162]) intended for enabling the Semantic Web
[16; 190] are no exception.

Service-oriented systems are one relevant current response to the increasing complexity of computing
systems and the variability of their operating environments (e.g., [54; 110; 202]). A service is a self-
describing and self-contained modular application designed to execute a well-delimited task, and that can
be described, published, located, and invoked over a network [138; 162]. Services are offered by service
providers, i.e., organizations that ensure service implementations, supply service descriptions, and provide
related technical and business support. A service-oriented system (SOS) incorporates service composers.
A service composer receives service requests from human users or other systems, then discovers, selects,
and coordinates the execution of services so as to fulfill a given service request. SOS fit well the Semantic
Web, i.e., a next-generation of the World Wide Web on which services’ properties, capabilities, interfaces,
effects, and qualities, and data exchanged between services are described in an unambiguous, machine-
understandable form. Within efforts towards the realization of the Semantic Web, ontologies prove a
particularly relevant means for enabling the sharing, understanding, and automated processing of data

17

3. QUALITY OF SERVICE SPECIFICATION MODEL

about, and exchanged between, heterogeneous services available on the Web. It is now well established
that the aims of automated service discovery, access, composition, and management cannot be achieved
without expressive ontologies [11; 79; 140; 198].

An ontology is a specification of a conceptualization [68]. Among the various ontologies relevant for a
SoS—including those for, e.g., interfaces, capabilities, and behaviors of services—an ontology to describe
quality attributes (such as, e.g., security, safety, performance) and reason thereon is necessary. A quality
(or Quality of Service, i.e., QoS) ontology is used (i) in service requests to specify expectations on quality
levels to achieve when fulfilling the request; (ii) by service providers to advertise quality levels that their
services can achieve; and (iii) by service composers to select among alternative services, those that are to
take part in fulfilling the service request. Limited expressiveness of a quality ontology (a) unnecessarily
restricts the requester when defining expectations on service delivery; (b) does not allow a service provider
to give a rich description of how its services perform; and (c) limit the set of criteria over which a service
composer compares alternative services when performing service composition.

Various SOS quality ontologies proposed in the literature integrate concepts and constructs intended
for the representation of similar aspects of a system’s quality. For instance, all admit the need for metrics,
so that all include constructs for the definition of a metric’s identifier, unit, observed and desired values,
and so on. Such apparent similarities (reviewed in §3.4) led us to conclude that an effort is needed
for their comparison and integration within a comprehensive framework. Knowing that work on SOS
quality ontologies will further evolve, such a framework is intended to (i) integrate the previous results
within a comprehensive and consistent quality model from which the various prior ontologies can be
derived; (ii) assist in future work on SOS quality conceptualization by facilitating the positioning of new
modeling primitives w.r.t. available ones; and (iii) to make it clear how various proposed ontologies
overlap, and thus, what constructs are agreed upon as necessary when modeling quality. The framework
is therefore not an ontology per se, but a model which integrates various relevant concepts and constructs
for conceptualizing quality in SOS, and which is instantiated when defining ontologies.

The proposed model has two salient characteristics. First, it does not itself define particular qualities
(such as, e.g., availability, reliability, safety, security, adaptability, maintainability)—instead, it lets the
modeler decide what sets of measures that can be collected over the given SOS are aggregated (and how
they are aggregated) to define such qualities. In this respect, the model is not an attempt at settling the
debates on what a universal definition of, e.g., usability would be. Second, it integrates two submodels
that are novel w.r.t. available quality ontologies—namely, a submodel for specifying priority between
qualities, and a submodel for specifying the dependencies between qualities (i.e., how one quality varies
when another one varies). Both submodels are particularly important for managing tradeoffs at runtime:
without the former, it is unclear what quality to optimize when the optimization of some quality harms
the degree of satisfaction of another; without the latter, we do not have an explicit representation of how
qualities interact (i.e., we do not know how some variation of a quality affects the degree of satisfaction
of others).

The proposed quality model has been validated in two realistic application settings. We have used
part of the quality model elsewhere [100; 101] to specify the quality information in service requests,
to characterize the quality of individual services, and to define quality criteria used when comparing
alternative services within a reinforcement learning algorithm for automated service composition. Herein
we present a case study performed in cooperation with the European Space Agency (ESA). The case
study illustrates how the proposed model has been used to represent quality information about a service
that ESA makes available to researchers. We describe the case study in detail below (§3.2). The quality
model is then presented and exemplified through the case study (§3.3). Source quality models used to
define the proposed model are then reviewed (§3.4). Among the related efforts we discuss, we place
particular attention on the part of the Unified Modeling Language specialized for QoS [157]. We compare
it in detail with our quality model, extend the UML QoS metamodel with novel primitives, and show
how the extended model is used within the case study (§3.5). The chapter closes with a discussion of the
proposed model (§3.6), along with conclusions (§3.7).

18

3.2 Motivation and Case Study

3.2 Motivation and Case Study

3.2.1 Motivation

We have highlighted earlier that expressive quality models are necessary to engineer high-quality systems.
Our principal motive for the present work stems from our observation (discussed in detail later on §3.4)
that currently available quality models cannot be used to describe considerations clearly relevant when
representing and reasoning about quality. Namely, they are of limited use when preferences and priorities
are to be written down in a quality model. In other words, available models have difficulties expressing
evidently relevant quality information. For example, we need to express in a quality model that it is
preferred for the value of a quality metric to be in one given range than in another, whereby satisfying
this preference is less important than maintaining some values for overall response time. In the said
requirement, both preferences and priorities intervene. Moreover, we may consider this requirement
conditionally on the satisfaction of another requirement—we therefore require not only a quality model
which allows preference and priority orders to be expressed, but also conditional preferences and priorities.
Such considerations are beyond the expressivity of most available quality models, as we show later on
(§3.4). We cannot hope to engineer high quality systems if we cannot accommodate quality-related
requirements that come naturally to engineers and future users.

3.2.2 Case study

ESA program on Earth observation allows researchers to access and use infrastructure operated and data
collected by the agency. The infrastructure comprises a high performance computing cluster, significant
storage capacity, and services accessible through the Web.1 The platform, called “ESA Grid Processing
on-Demand” can be used to access data collected by the Envisat ESA satellite, deployed to measure the
atmosphere, ocean, land, and ice over a five year period. It is also possible for researchers to execute
their own algorithms on the data.2

The case study focuses on the information provided by the MERIS instrument on the Envisat ESA
satellite. MERIS is a programmable, medium-spectral resolution, imaging spectrometer operating in
the solar reflective spectral range. MERIS is used in observing ocean color and biology, vegetation and
atmosphere and in particular clouds and precipitation. In relation to MERIS, web services are made
available by the ESA for access to the data the instrument sends and access and use of the associated
computing resources.

We are interested in the remainder in the service called “MERIS MVGI Regional”, which provides
vegetation indexes for a given region of the globe. A vegetation index measures the amount of vegetation
on the Earth’s surface. MERIS is a particularly relevant for the acquisition of such data for it increases
precision over comparable instruments. The service which accesses the MERIS data generates regional
maps for specific time periods. A visual example of what the service provides to the user is given in Figure
3.2. Below, we briefly review the functional requirements that the service satisfies. We then consider
quality requirements.

Functional requirements. The service processes MERIS data and extracts the vegetation index. The
processing can be selected for any time range (with the start of the satellite mission as the earliest time
point); an option is available to delimit the region of the world of interest. The graphical user interface
used to access the service is shown in Figure 3.1. Figure 3.2 illustrates the visualization of the output
obtained for the Senegal region. The following are the required inputs of the service: Time range, Bouding
box (to select a region of the globe), Dataset, Publish site, and Projection type.

Quality requirements. Due to the calculations executed by the service and its parallel use, expected
delays and availability are relevant quality considerations from the user’s perspective. To make this
information available to the users, quality considerations need to be expressed and measured during
the execution of the service. We focus on three such considerations, namely availability, reliability, and

1http://gpod.eo.esa.int
2http://eopi.esa.int/esa/esa?type=file&ts=1186489893497&table=aotarget&cmd=image&id=1260

19

3. QUALITY OF SERVICE SPECIFICATION MODEL

Figure 3.1: Graphical user interface of the ENVISAT/MERIS MGVI web service

latency. For now we define them as follows. We then return to each throughout the chapter and illustrate
how they are defined using the model we propose.

• Availability indicates the duration when a component is available for queries. Its value in percent
is obtained as follows [173]:

Availability =
upT ime

upT ime+ downTime

Historical data on the service’s operation indicate that the values are higher than 94%.

• Reliability is a measure of confidence that the service is free from errors. Its value is given in percent
and calculated as follows:

Reliability =
succeededAttempts

succeededAttempts+ failedAttempts

Relliability historically remained above 82%.

20

3.3 Quality Model for Service-Oriented Systems

Figure 3.2: An illustration of the result provided by the ENVISAT/MERIS MGVI Web Service

• Latency measures the mean time taken by the platform to return the expected result. The value is
given in minutes.

Latency =
∑n

1 networkT ime+ selection/compositionT ime+ executionT ime

n

where n is the total number of past executions. Latency should not exceed 6 hours by day of
the selected period but must be superior to 4 hours by day of the selected period. (This range is
certified for a service requestor having network bandwidth of a least 15 mbits/s.)

This basic specification is incomplete. Further explanations are needed. For example, how different
values are obtained is not described in the above informal specification. A quality model will provide a
checklist of relevant information and in this respect assist the requestor and the provider in evaluating
and managing the quality of the service.

3.3 Quality Model for Service-Oriented Systems

We introduce the quality model which integrates all components of the ontologies compared and reviewed
in the subsequent part of the chapter (§3.4). We call it the Quality-Value-Dependency-Priority (QVDP)
model. The instantiation of its modeling primitives is illustrated using simple examples mainly for clarity
of presentation.

Definition 1. The Quality-Value-Dependency-Priority (QVDP) model QVDP ≡ 〈Q,V,D,P〉 consists
of: the Quality Characteristics submodel Q, the Quality Value submodel V, the Quality Dependency
submodel D, and the Quality Priority submodel P.

Overall, the QVDP intergates submodels for different purposes related by shared modeling primitives.
Q integrates the concepts of quality dimension q which is instantiated to represent measurable properties
of a given SOS and quality characteristic q̄. A quality dimension can also be an aggregate of other
quality dimensions obtained by applying some aggregation function. By grouping measurable q into q̄,
the modeler can define how more abstract quality aspects of a system (e.g., safety, security, usability,
maintainability, etc.) are conceptualized in a given SOS. A q is characterized using a set of attributes
which contains predefined, commonly used attributes and optional attributes to be defined as needed by
the modeler for a particular SOS or class of SOSs. V is instantiated when specifying desired values (in
service requests or when advertising services) for various quality dimensions and/or quality dimension
aggregates.

While it is established that a quality model should represent the information on quality characteristics
and their measurable quality dimensions, as in Q and V, this information alone is of limited use in
dealing with tradeoffs at runtime. Since it is unlikely that various quality dimensions can all be satisfied
to the desired extent simultaneously in a given SOS, indications are required on: (i) how various quality
dimensions are interdependent, and (ii) what quality dimensions to optimize within a set of interdependent
and conflicting quality dimensions (this is of relevance when defining service requests). A quality model is
an apparent candidate for including modeling primitives for providing these indications. To respond to (i),

21

3. QUALITY OF SERVICE SPECIFICATION MODEL

we complement Q and V with the quality dependency submodel D, which is instantiated to represent that
some value of a quality dimension is accompanied by some value of another q. To address (ii), we include
the quality priority submodel P which is instantiated to define a (partial or complete) priority ordering
over the various quality dimensions. By extending the basic quality modeling information considered in
Q and V with that of D and P, we enrich the quality information with information relevant for managing
tradeoffs at runtime in a SOS. This is a novelty of the QVDP.

Below, each submodel of QVDP is defined for a particular SOS. We thus speak of, e.g., a set of
quality dimensions in a submodel instance since the instantiation of the submodel for a given SOS will
necessarily involve the definition of a non-empty set of quality dimensions. We believe that this facilitates
the understanding of what is obtained when using the QVDP model.

3.3.1 Quality characteristics submodel (Q)

Definition 2. The Quality Characteristics submodel for a given SOS

Q ≡
〈
〈{q1, . . . ,qn}, {α1, . . . , αm}, fq〉 ,

〈
{q̄1, . . . , q̄p}, f q̄

〉
, f (q,q̄)

〉
consists of:

1. 〈{q1, . . . ,qn}, {α1, . . . , αm}, fq〉 which contains a set {q1, . . . ,qn} of quality dimensions defined for
the given SOS, a set {α1, . . . , αm} of aggregation functions, and a function fq : P({q1, . . . ,qn})×
{α1, . . . , αm} 7−→ {q1, . . . ,qn} which maps a set of quality dimensions onto a quality dimension
obtained by applying the aggregation function α on the set of quality dimensions. An aggregation
procedure α specifies how to aggregate a set of quality dimensions. (P denotes powerset.)

2. 〈{q̄1, . . . , q̄p}, f q̄〉 which contains a set {q̄1, . . . , q̄p} of quality characteristics for the given SOS,
and a function f q̄ : P({q̄1, . . . , q̄p}) 7−→ {q̄1, . . . , q̄p} which maps a sets of quality characteristics
onto a quality characteristic which is defined as a group of the former.

3. A function f (q,q̄) : P({q1, . . . ,qn}) 7−→ {q̄1, . . . , q̄p} which maps a set of quality dimensions onto a
quality characteristic. The quality characteristic is defined as the given set of quality dimensions.

Example 1. Among the quality characteristics of the MERIS MGVI Regional service, we look into latency.
Let Latency be an aggregate quality dimension obtained by summing the time needed to communicate
the service request over the network and to receive the desired output (measured using NetworkTime), the
time required for select and compose the services needed to fulfil the request (Selection/CompositionTime),
and the time needed to execute the composition (ExecutionTime). Latency is part of the Performance quality
characteristic. The following diagram illustrates how these measures fit into the terminology of the above
Definition 2, and thus in the instance of Q for a given SOS.

q̄i q̄j q̄k

q̄l

f q̄hhhhhhhhhhhh

44hhhhhhhhhhhh

Performance = q̄m

f q̄

OO

q̄n

f q̄VVVVVVVVVVVV

jjVVVVVVVVVVVV

qi

f(q,q̄)hhhhhhhhh

44hhhhhhhhh

Latency = qj

f(q,q̄)

OO

qk

f(q,q̄)VVVVVVVVV

jjVVVVVVVVV

NetworkTime = ql

fqhhhhhhhh

44hhhhhhhh

Selection/CompositionTime = qm

fq

OO

ExecutionTime = qn

fqVVVVVVVV

jjVVVVVVVV

Definition 3. A Quality Dimension q is a collection of the following attributes and attribute sets:

1. Name gives q a unique identifier. This identifier is the name of the quality dimension;

2. Description is a human-readable description of the quality dimension;

3. Purpose indicates why a given quality dimension is defined;

22

3.3 Quality Model for Service-Oriented Systems

4. Type identifies the type of the quality dimension according to a taxonomy of variable types;

5. Unit defines the unit of measurement for q;

6. Aggregate is given for a q that is an aggregate of other quality dimensions. This attribute indicates
the aggregation procedure and the quality dimensions aggregated to obtain q.

7. MeasurementSource indicates what is measured and how on/in the SOS in order to associate a value
to the given quality dimension;

8. MeasurementTransformation defines the algorithm or formula used to transform the data obtained by
measurement into the value reported for q (e.g., average, moving average, etc.);

9. {AdditionalAttribute1, . . . ,AdditionalAttributen} is the set of n additional attributes defined by the
modeler.

A quality dimension can be seen as a metric used to quantify a quality characteristic using a certain
(transformed) measurement on a property or behavior of a given SOS. Attributes are used to describe
various characteristics of the metric.

Example 2. Latency for the MERIS service is is a collection of the following quality dimensions: Net-

workTime, Selection/CompositionTime and ExecutionTime. Let the dimension NetworkTime be an aggregate of
SendTime and ReceiveTime, the former being the time for the service request to arrive from the requester
to the composer, while the latter is the time for the composition execution output to be sent from the
composer to the requestor. The following can describe NetworkTime:

Name NetworkTime
Description Average time (over 100 same requests) it takes to send and receive in-

formation between a service requestor and a service composer w.r.t. a
given service request.

Purpose Used as an indicator when deciding what quantity of network bandwidth
to demand from the bandwidth provider.

Type Continuous/Ratio
Unit Millisecond (ms)
Aggregate NetworkTime = fq({ SendTime, ReceiveTime }, AggregateSum)
Measurement
Source

Measurement sources for SendTime: requestTime attribute value for
a ServiceRequest class instance and requestReceptionTime attribute
value for a Composer class instance. Measurement sources for Receive-
Time: requestCompletionTime attribute value for a Composer class in-
stance and requestEndTime attribute value for a ServiceRequest class
instance.

Measurement
Transformation

NetworkTime = 1
100

∑100
i=1(SendTimei + ReceiveTimei)

Above, MeasurementSource assumes that a service request is described, among other, with a class called
ServiceRequest which carries the attribute requestTime, and that its value can be collected by, e.g., a
monitoring service (or some other SOS component). This value is then used, along with other values
(as indicated in the MeasurementSource attribute) to calculate SendTime and ReceiveTime. In other words,
MeasurementSource identifies where to find data to calculate quality dimension values.

We place no particular constraints on the structure of a quality characteristic. It is merely a means
to organize quality dimensions that are considered as somehow related by the modeler.

Definition 4. A Quality Characteristic q̄ is a set of distinct (aggregate) quality dimensions.

3.3.2 Quality value submodel (V)

V is instantiated to define how quality is to be measured on a given SOS. At runtime, it is necessary
to provide means for expressing desired values of the various quality dimensions. This information is
subsequently used by composers to discriminate among alternative services when performing service
composition—services that cannot achieve desired values for a set of quality dimensions will not be
selected to participate in a composition. Simplistic models for expressing desired values over quality
dimensions involve the definition of a single desired value. This is inappropriate because interdependencies
between different behaviors of the givens SOS are likely—it is thus necessary to relate the achievement

23

3. QUALITY OF SERVICE SPECIFICATION MODEL

of a particular quality dimension value with conditions on the system and/or its operating environment,
and conditions that the achievement of some quality dimension value entails in the system and/or its
operating environment. Hence the concepts of value precondition and value postcondition in the Quality
Value submodel. Uncertainty in system operation leads to the probabilistic characterization of value and
value pre/postcondition pairs.

Definition 5. The Quality Value submodel V for a given SOS is a set of p tuples, where each tuple
i = 1, . . . , p is of the form〈
qi.Name,

{〈
vi,1,vPre,i,1,vPPre,i,1,vPost,i,1,vPPost,i,1

〉
, . . . ,

〈
vi,n,vPre,i,n,vPPre,i,n,vPost,i,n,vPPost,i,n

〉}
,
{
vUi,1, . . . ,v

U
i,m

}〉
where:

1. qi.Name is the value of the attribute Name of the quality dimension qi.

2.
{〈

vi,1,vPre,i,1,vPPre,i,1,vPost,i,1,vPPost,i,1

〉
, . . . ,

〈
vi,n,vPre,i,n,vPPre,i,n,vPost,i,n,vPPost,i,n

〉}
is the set of values

for a given quality dimension qi, where each tuple associates a particular value v with a value
precondition vPre and the probability vPPre that the value v will be achieved if the precondition holds,
and a value postcondition vPost and the probability vPPost for the postcondition to hold if the given
value of q is achieved.

3. v declares values for a given q. The values are declared using syntax and semantics which differ
depending on whether Type of q is continuous or discrete. If continuous, the semantics is defined in
terms of an interpretation (C, ·cI), which uses the continuous domain C defined by Type of q, and
an interpretation function ·cI which associates with each v a vcI in C. If discrete, the domain of
the interpretation is a set D which includes all allowed discrete values as defined by the value of
Type of q, and the interpretation function ·dI associates with each e a edI in D. Below, the syntax,
semantics, and syntax rules are given for the continuous and discrete case.

Type of q is continuous. Type of q is discrete.
Syntax Semantics Syntax Semantics

v vcI ∈ C e edI ∈ D
¬v C \ vcI ¬e D \ edI

(≥ v) {v′cI | v′cI ≥ vcI} E EdI ⊆ D, EdI = {edI | ∀e ∈ E}
¬ (≥ v) C \ (≥ v)cI ¬E C \ EdI

(≤ v) {v′cI | v′cI ≤ vcI} Ei ∨ Ej EdI
i ∪ EdI

j

¬ (≤ v) C \ (≤ v)cI Ei ∧ Ej EdI
i ∩ EdI

j

(≤ v) ∨ (≥ v) (≤ v)cI ∪ (≥ v)cI

(≤ v) ∧ (≥ v) (≤ v)cI ∩ (≥ v)cI

Syntax formation rules Syntax formation rules

λc ::= v | (≥ v) | (≤ v) λd ::= e | E
Λc ::= λc | ¬Λc | Λc

i ∨ Λc
j | Λc

i ∧ Λc
j Λd ::= λd | ¬Λd | Λd

i ∨ Λd
j | Λd

i ∧ Λd
j

v ::= Λc v ::= Λd

4. vPre gives an assertion which describes the precondition for the value(s) defined in v to be achieved.

5. vPPre indicates the probability that a value in v will be achieved if the precondition vPre holds.

6. vPost gives an assertion which describes the postcondition that holds after achieving a value in v.

7. vPPost indicates the probability that the postcondition vPost holds if a value in v is achieved.

8.
{
vUi,1, . . . ,v

U
i,m

}
is the set of partial preference orderings vU ≡ (·)

U

� (·) on values for a given q1.
U

�

defines a partial order (i.e.,
U

� is a reflexive, transitive, and anti-symmetric relation). Both (·) follow
the syntax and semantics of either Λc or Λd (depending on whether Type is continuous or discrete).

Values specified on the left hand side of
U

� are preferred at least as much as the values given on the
right hand side of the preference ordering relation. Strict ordering is defined in a strainghtforward

manner (i.e., x
U

� y ≡ x
U

� y ∧ ¬(y
U

� x)).

24

3.3 Quality Model for Service-Oriented Systems

Example 3. The following provides the instantiation of the quality value submodel for one value of
NetworkTime, one of the dimension aggregated to define the Latency characteristic. Preconditions and
postconditions are normally written in a formal language (e.g., the Semantic Web Rule Language (SWRL)
[80]). Below, natural language and simple structured expressions are used to avoid introducing more
formalism in this chapter. The probabilities are usually estimated and continually updated at runtime.

q.Name NetworkTime
v (≤ 3500ms) ∧ (≥ 1500ms)
vPre ConnectionFailureProbability ≤ 0.05

vP
Pre 70%

vPost Change of network bandwidth unnecessary.

vP
Post 90%

vU ((≤ 350Oms) ∧ (≥ 1500ms))
U
� (> 3500ms)

3.3.3 Quality dependency submodel (D)

The quality dependency submodel is instantiated to express interdependencies between values of distinct
quality dimensions. As noted earlier, the dependency submodel is of particular relevance for managing
tradeoffs: it is the quality dependency model that makes explicit the possible tradeoffs, and summarizes
how values of quality dimensions are related so that the outcome of tradeoffs can be anticipated.

Definition 6. The Quality Dependency submodel D ≡ {d} for a given SOS is a set of dependency
relations for pairs of distinct quality dimensions. Each dependency relation is written using the following
formation rule:

d ::=
(

qi.Name
Λk|Λl−→ qj .Name

)
@(φ, P) |

(
qi.Name

Λk|Λl←→ qj .Name

)
@(φ, P)

|
(
qi.Name

f←→ qj .Name
)

@(φ, P)

where:

• qi.Name is the value of the Name attribute of qi and qj .Name is the value of the Name attribute of
some other quality dimension qi.

• Syntax and semantics of Λk follow that of Λc if the quality dimension qi is of continuous type; if
not, then the syntax and semantics of Λd are followed. Same applies for Λl and qj .

• The dependency is directed if Λk and Λl are related with “−→”, so that it if the value Λk of qi is
achieved, the value specified in Λl will be achieved for qj at the probability P . “←→” indicates
that the dependency is directed both ways: if either of the quality dimensions reaches its given
value Λ, the other will also have its value in its given Λ, at the probability P .

• When the relationship between the values of two quality dimensions can be described with a func-
tion, f gives that functional relationship.

• As the dependency may only be relevant when particular conditions hold, a condition φ can be
added to indicate when the interaction applies (otherwise, φ remains empty). The condition is
written as an assertion in the language used to write value precondition and value postcondition.

• P is a value that designates the probability for the dependency to be actually observed. It is usually
estimated at runtime.

Example 4. The motivating example makes appear that the availability of the service is calculated with
the help of the dimension DownTime. Similarly, the reliability depends on FailedAttempts. It seems clear
that the number of failed attempts will be influenced by the down time of the system. The probability
to observe this particular dependency of values is 0.8:(

DownTime
(increases)|(increases)−→ FailedAttempts

)
@(0.8)

25

3. QUALITY OF SERVICE SPECIFICATION MODEL

3.3.4 Quality priority submodel (P)

In addition to D, P is another novelty of the proposed QVDP model. When a pair of quality dimensions
is such that the values of both cannot be simultaneously optimized when, e.g., seeking appropriate service
compositions, priority must be known over the pair in order to know which of the two to optimize at the
expense of the other. The quality priority submodel is instantiated in order to make explicit the priority
order between pairs of quality dimensions. Clearly, and as highlighted earlier, the priority submodel
combines with the dependency submodel when managing tradeoffs: the latter indicates what pairs of
quality dimensions are involved in tradeoffs, while the former indicates what to decide when tradeoff is
to be performed between quality dimensions.

Definition 7. The Quality Priority submodel

P ≡
〈
{〈pq

1 , φ1〉, . . . , 〈pq
n, φn〉}, {〈p

q̄
1 , φ1〉, . . . , 〈pq̄

m, φm〉}
〉

for a given SOS contains a set of (conditioned) priority orders for pairs of distinct quality dimensions,
and a set of (conditioned) priority orders for pairs of quality characteristics. For quality dimensions, each

priority order is pq ≡ qi.Name
P

� qj .Name, where qi.Name is different from qj .Name. The given priority
order indicates that optimizing qi is important at least as much as optimizing qj . For each quality

characteristic, the priority is given as pq̄ ≡ q̄i
P

� q̄j .
P

� is a partial order; strict priority is defined as

usual (i.e., x
P

� y ≡ x
P

� y ∧ ¬(y
P

� x)). A priority order is conditioned if the optional φ is specified. If φ
holds, the given priority order applied. φ is written as an assertion in the language used to write value
precondition and value postcondition.

Example 5. A requester of a service providing information such that those provided by the MERIS MGVI
Regional web service can instantiate the quality priority submodel to indicate in a service request that
it is strictly more important to him to optimize reliability than latency, i.e., pq̄

i = Reliability
P

� Latency.
This priority reflecting the fact that due to the long execution time expected for extracting the result,
the requestor prefers to insure himself that the service will properly achieve and wait longer than the
opposite. At the level of quality dimensions, the same request can indicate, e.g., that it is strictly more
important to optimize the network time than to optimize the selection and composition time (i.e., the
requester is interested in having the request transmitted rapidly, even if this entails longer time to find
the appropriate services and their composition): pq

k = NetworkTime
P

� Selection/CompositionTime.

3.4 Comparison with Prior Quality Models

Table 3.1 summarizes the comparison. It indicates concepts and constructs of prior quality ontologies
and models that correspond to those of QVDP. The table highlights the novelty of including submod-
els and constructs for representing preference, dependency, and priority among quality dimensions and
characteristics.

Only some of the many approaches capable to describe service quality are considered here. Other
approaches include: QuA [199], QML [58], WSOL [205], UniFrame [24], CORBA Trading Object Service
[156], QuO [126], SLAng [195]. They are not overviewed here for two reasons: first, previous comparisons
(e.g., [195]) indicate that the fragments of their models specialized for service QoS description are subsets
of the set of concepts and constructs present in the approaches considered herein; second, the aim here
is only to identify key concepts and constructs manipulated when specifying a service’s QoS, so that we
do not discuss how each of the concepts adapts to a particular implementation framework – therefore,
we do not consider in this section the results focused on adopting and adapting the reviewed approaches
to particular implementation technologies and frameworks.

In Table 3.1, “
√

” indicates that the given concept or construct can be expressed in the relevant
quality model, but the name of concept or construct for doing so cannot be identified in the cited work.
“×” indicates that the given QVDP concept or construct has no corresponding concept or construct in
the relevant quality model.

26

3.4 Comparison with Prior Quality Models

Table 3.1: Comparison of QVDP with a selection of prior quality models.

QVDP Q-WSDL WSLA DAML-QoS Maximilien and
Singh

Zeng and col-
leagues

Q QoS profile Service Level
Agreement

QoS Profile
√

Quality vector

q QoS dimension Metric Metric Quality Quality criterion
Name name name metricName

√ √

Description definition
√ √ √ √

Purpose × × × ×
√

Type type type
√ √ √

Unit unit unit
√ √ √

Aggregate ×
√ √ √ √

Measurement
Source

source Function or Mea-
surement Direc-
tive

√ √ √

Measurement
Transformation

×
√

Function AggregateQuality
√

Additional At-
tribute

× × × QAttribute ×

α × Function or Mea-
surement Direc-
tive

√ √ √

fq ×
√ √ √ √

q̄ QoS characteris-
tic and QoS cat-
egory

QoS Property × × ×

f q̄ × × × × ×
f(q,q̄) √ √

× × ×
V × Service Level Ob-

jectives or Action
Guarantees

QoS Precondi-
tion, QoS Effect,
QoS constraints

QoS Policy ×

v value
√ √

QValue typical
√

vPre ×
√ √

× ×
vPPre × × × × ×
vPost ×

√ √
× ×

vPPost × × × × ×
vU direction

√
× ×

√

D × × × QRelationship
√

d × × × ValueImpact,
ValueDirection

√

P × × × ×
√

pq × × × ×
√

φ (for pq) × × × × ×
pq̄ × × × ×

√

φ (for pq̄) × × × × ×

3.4.1 Q-WSDL

D’Ambrogio proposes Q-WSDL [41], a Quality of Service1 (QoS) extension to WSDL [39] which includes
a set of QoS characteristics accepted in a UML extension for specifying QoS [157]. In Q-WSDL, a service’s
QoS is described through QoS characteristics (e.g., Availability), each quantified through QoS dimensions
(e.g., UpTime). A QoS dimension is described with a value, unit of the value, source of measurement (e.g.,
measured, assumed, predicted, etc.), and optionally, a type of statistical value (e.g., mean, variance, etc.)
and an order relation to compare values (i.e., to answer which values are preferred). QoS categories bring
together QoS characteristics related to a common subject—e.g.: reliability and availability are grouped in the
dependability category.

Q-WSDL highlights the need to specify preferences over quality values, yet remains limited in doing
so compared to QVDP. Namely, Q-WSDL allows specifying the desired direction for the value of the
quality dimension, but cannot deal with value preconditions and value postconditions, or uncertainty
thereof (i.e., through probabilities). Q-WSDL is not extensible, in that it has no apparent mechanism for
introducing additional attributes to finely describe a quality dimension. In contrast to all other models
noted in Table 3.1, Q-WSDL omits aggregation of quality characteristics. Note that lack of means to
represent dependency and priority information in Q-WSDL entails that any directives on tradeoffs need

1According to the relevant ISO standard [86], QoS refers to characteristics that contribute to the overall quality of a
service as perceived by the consumer of the service. A QoS characteristic is a quantifiable aspect of QoS which is defined
independently of the means by which it is represented, managed, or controlled.

27

3. QUALITY OF SERVICE SPECIFICATION MODEL

to be specified outside the quality model. Additional representation formalism (unspecified in case of
Q-WSDL) is thus necessary, and further effort is consequently required for ensuring consistency between
the information in the quality model and the tradeoff formalism. Such problems are avoided in QVDP.

3.4.2 WSLA

While focusing on the contracting between the service provider and requester, the Web Service Level
Agreement language [109] integrates similar kind of information as the Q-WSDL when describing quality
characteristics. The Web Service Level Agreement (WSLA) language [109] focuses on the contracting
between the service provider and requester. It is used to specify quality of service within a Service Level
Agreement (SLA). A quality dimension is expressed by a SLA parameter and described with a name,
type, unit, definition and purpose. The value of a parameter is quantified by a metric, whereby a metric
can be an aggregate of other metrics. If aggregate, it is given by a function or a measurement directive; a
function uses other metrics as operands while a measurement directive specifies how an individual metric
is retrieved from the source. For example, a function can be such that the value of the metric used to
calculate the Availability characteristic can be obtained by dividing the value of UpTime by the value of
the sum of UpTime and DownTime. Typical examples of measurement directives are the uniform resource
identifier of a hosted computer program, a protocol message, or the command for invoking scripts of
compiled programs. The notion of value specification is similar to the concept of obligation which define
guarantees and constraints on SLA parameters. These obligations cover the service level objectives that
represent promises with respect to the state of SLA parameters and the action guarantees that are
promises of a signatory party to perform an action. Value preconditions and postconditions in QVDP
enable can be used to express such constraints-related information. A service level objective expresses
a commitment to maintain a particular state of the service in a given period, e.g., the SLA parameter
TimeNeededToTransferData must be lower than 100 ms if the SLA parameter NetworkTime is less than 30
ms. An action guarantee expresses a commitment to perform a particular activity if a given precondition
is met; e.g., sending an event to one or more signatory party and supporting parties, opening a problem
report, performing the payment of a penalty, or of a premium, and so on.

While close to QVDP in terms of specifying quality dimensions and quality characteristics, and de-
scribing values thereof, WSLA is similar to Q-WSDL in not providing indications on how to deal with
tradeoffs. This is an important limitation, since a contract between a provider and a requester can involve
situations in which tradeoffs need to be managed. For instance, adding dependency information would
allow the provider to check whether some requested levels of quality dimensions can be realized: knowing
their interdependency, the provider might highlight that the requested levels are unrealistic, or that more
desirable levels can be achieved. Adding priority indications can lead to more extensive contracts, in
which contingencies can be managed in a finer way: e.g., if the provider indicates that in some situation
particular levels of some metrics cannot be achieved together, the requester might indicate which of the
metrics is to be optimized in place of others when such a situation occurs. Both dependency and prior-
ity information thus appear relevant when contracting between the provider and the requester, but are
absent from the WSLA.

3.4.3 DAML-QoS

Zhou and colleagues [233] extend DAML-S with a means for describing QoS in a generic manner. Apart
from the usual definition of concepts for metrics, metric types, and metric aggregation, their DAML-QoS
ontology introduces the possibility for defining QoS characteristics whose value at the service’s input is
different from its value at output (e.g., in a converter, input and output bit rates differ). Since QVDP is
not directly associated to a particular model of the service-oriented system, relating service inputs and
outputs to different values can be accomplished by instantiating the quality value submodel, and defining
a function to map specific values to inputs or outputs of a given service. Also, the service may only be
capable of achieving some specific quality level if some external quality level is satisfied (e.g., for two
interacting services, a minimal throughput rate at the first service might be needed if the second service

28

3.4 Comparison with Prior Quality Models

is to ensure some desired throughput rate), so that a condition on QoS characteristics can be defined (as
a QoSPrecondition). Similarly, the level of quality achieved over the service’s various QoS characteristics
may change the effects of the service—the effect of QoS can be defined as QoSEffect in DAML-QoS. Both
of these are supported with value preconditions and postconditions in QVDP.

While DAML-Qos is innovative in terms of value preconditions and value postconditons when com-
pared to other prior quality models, DAML-QoS cannot deal with preferences over values, dependencies,
and priorities. It thus suffers from the same limitations as Q-WSDL and WSLA when contrasted to
QVDP: we see no explicit means in DAML-QoS to address tradeoffs at runtime.

3.4.4 Maximilien and Singh

Maximilien and Singh [134] describe service QoS through an ontology which abstracts from particular
QoS characteristics: each QoS characteristic is called a quality, is associated to a typed variable, indica-
tions on how it is measured, and its relationships to other qualities (in terms of strength and direction).
Namely, QMeasurement quantifies a quality while AggregateQuality combines several Qmeasurements
into aggregate metrics. QRelationships indicate related qualities in a manner that shows through their
values. A quality related to another has a valueimpact (weak, mild and strong) and a valuedirection
(opposite or parallel). A QRelationship is similar to a dependency specification, though the latter allows
more precise information to be given on relationahips between metrics. The QoSPolicy specification indi-
cates a level of commitment of the provider to the advertised policy (bestEffort, guaranteed, notSpecified
or noGuarantee). As QoSPolicy aims at add constraints on the value, so that it is equivalent to the value
specification.

An important characteristic of Maximilien and Singh’s approach is the integration of information on
relationships between qualities using the notions of value impact and value direction. Their approach
qualifies value impact as either weak, mild, or strong, while value direction is described as either opposite
or parallel. QVDP thus covers their dependency representation, adds the possibility to indicate conditions
for interdependencies and uncertainty thereon, and allows more detail in describing interactions. Again,
as Q-WSDL, WSLA, and the DAML-QoS, Maximilien and Singh’s model has no means to deal with
priority.

3.4.5 Zeng and colleagues

Zeng and colleagues [228] use an ad-hoc informal quality model in which they represent price, execution
duration, reputation, reliability and availability to guide service composition at runtime. A quality of
service is expressed by means of a quality vector. The vector is composed of quality criteria that we
define with quality dimensions. Each of the criteria is described similarly to our quality dimension, that
is, by a name, a unit, a type, a short definition and an (optional) expression defining how to perform the
measurement. The desired values are given with modalities which depend on the quality’s purpose; e.g.,
execution price is minimized whereas reliability is maximized. The idea is the same in the preference
fragment of our quality value submodel where an order relation is given between possible values. Zeng
and colleagues represent priority by associating weights to each of the criteria used in the aggregation
function which is optimized when performing service composition.

Zeng and colleagues’ approach is closest to QVDP in terms of dependency and priority representation,
although it is comparatively limited when dealing with value descriptions. Both interdependency and
priority representations in Zeng and colleagues’ proposal remain implicit from the specific set of quality
criteria they use during composition. In this respect, theirs is not a quality model per se, but a particular
case of an implicit quality model. In this sense, they do not discuss a quality model, but only specific
quality dimensions and their application in service composition. In addition, QVDP differs in the detail
it allows—e.g., we can specify conditions for priority orderings to apply while this is not considered by
Zeng and colleagues.

29

3. QUALITY OF SERVICE SPECIFICATION MODEL

3.5 QVDP and QoS in UML

Among the related efforts, the UML Profile for Modeling Quality of Service and Fault Tolerance Charac-
teristics and Mechanisms [157] stands out in its coverage of various concepts and constructs for conceptu-
alizing quality and its status of standard. Therein, a metamodel is proposed as an extension to the UML
metamodel to support the definition of QoS properties for systems of which other aspects are modeled
with UML. In this section, we review that metamodel, compare it to QVDP, and extend the UML QoS
metamodel with concepts and constructs available in QVDP and unavailable there. Finally, we propose
a case study using the UML QoS Framework and our extensions derived form the service presented in
section 3.2.

3.5.1 Elements of the metamodel

The UML QoS Framework metamodel includes different submetamodels describing the QoS extension for
UML. The QoSCharacteristics package contains the elements required to define QoSCharacteristics and
QoSDimensions. The QoSConstraints package comprises the modeling elements used to describe QoSCon-
tracts and QoSConstraints. The last package, QoSLevels covers components specifying QoSModes and
QoSTransitions. We review these packages below:

• QoSCharacteristics package

– QoSCharacteristic
A QoSCharacteristic is a description for some quality consideration, such as, e.g., latency,
availability, reliability, capability. A characteristic is quantified by means of specific parameters
and methods. These concepts are provided by the metaclass QoSParameter. Extensions and
specializations of such elements are available with the sub-parent self-relation. A characteristic
has the ability to be derived into various other characteristics as suggested by the templates-
derivations self-relation. The attribute isInvariant indicates if the value of the characteristic can
be dynamically updated.

– QoSDimension
A QoSDimension specifies a measure that quantifies a QoSCharacteristic. The attribute direc-

tion defines the direction (increasing, decreasing) in which it is desired that the value of the
QoSDimension moves. Unit and statistiqualQualifier attributes specify, respectively, the unit for
the value dimension and the type of the statistical qualifier; e.g.: maximum value, minimum
value, range, mean, frequency, distribution, etc.

– QoSCategory
QoSCategories are used to group QoSCharacteristics related to the same abstract quality
consideration or topic, such as, e.g., performance or security. While performance may group,
e.g., latency and trouhgput, security might bring together, e.g., reliabiality and availability.
QoSCategories are therefore not quantifiable themselves, but rely on the quantification of their
components.

– QoSValue
QoSValues are instantiations of QoSDimensions that define specific values for dimensions de-
pending on the value definitions given in QoSDimensionSlots.

– QoSDimensionSlot
A QoSDimensionSlot represents the value of QoSValue. It can be either a primitive QoSD-
mension or a referenced value of another QoSValue.

– QoSContext
While constraints usually combine functional and non-functional considerations about the
system, QoSContext is used to describe the context in which quality expression are involved.
A context includes several QoSCharacteristics and model elements. A single QoSCharacteristic
defines the QoSContext for expressions whose references are only to this QoSCharacteristic.

30

3.5 QVDP and QoS in UML

The attribute isQoSObservation defines that a QoSContext represents an environment of quality
observation. The quality observation records the values of characteristics included in the
relation BasedOn. This way, constraints including more than one quality characteristic can be
represented. The main aim of constraints is to limit the set of allowed values of characteristics.

• QoSConstraints Package

– QoSConstraint
The aim of QoSConstraints is to restrict values of QoSCharacteristics. Constraints describe
limitations on characteristics of modeling elements identified by application requirements and
architectural decisions. Constraints rely on contexts which establishes the QoS characteristics
and functional element that can be involved in the constraints. To limit allowed values, con-
straints put maximum and minimum values to characteristics as well as dependencies between
characteristics. These quality constraints can be seen from provider’s and client’s point of view
leading to approaches named “constraints provided” and “constraints offered”. The attribute
qualification refers to the nature of the constraint, with the following possible values: guaranteed,
best-effort, treshold-best-effort, compulsory-best-effort, and none. Each constraint is associated to at
least one QoSContext which references values related to the constraint.

– QoSRequired
Required QoSConstraints can be defined either by the provider either by the client. When the
requirements are defined by the client, the provider must support the required quality that
fulfill the client’s required constraints. This constraint limits the set of values the client accepts
for the given characteristic. The required constraints can also be defined by the provider, in
this case, the client must achieve some required level of quality to obtain the quality that the
provider offers.

– QoSOffered
The set of QoSOffered by a client or a provider defines its interface—that is, it advertises the
qualities for which the offered component is designed. Evidently then, quality is not guaranteed
for characteristics that do not appear in QoSOffered.

– QoSContract
QoSContract is assembles client and provider constraints. In general, client required QoS need
to be subsets of provider offered QoS and similarly, provider required QoS need to be subsets
of client provided QoS. If no matching is possible between offered and provided constraints,
the contract needs to be negotiated between parties involved.

– QoSCompoundConstraint
A QoSCompoundConstraint is a set of constraints that together represent a constraint for one
model element. Another purpose of compound constraints is to allow the representation of a
global constraint composed of a set of subconstraints. This way, we can define a precedence
relation between subconstraints, to represent, e.g., how to decompose a latency constraint in
a set of subconstraints.

• QoSLevelsPackage

– QoSLevel
Depending of available infrastructure and particular algorithms, a service can be executed to
several working modes; each working mode provides different qualities for the same services.
A QoSLevel is intended to represent a mode of QoS that a service can support, so that a
QoSLevel is associated to each of these working modes.

– QoSTransition
A QoSTransition specifies an allowed transition between QoSLevels.

– QoSCompoundLevel
A QoSCompoundLevel includes all QoSLevels involved in the quality behavior of a service.

31

3. QUALITY OF SERVICE SPECIFICATION MODEL

Table 3.2: Comparison of the QVDP and the UML QoS Framework Metamodel.

QVDP UML QoS

Q QoSContext
q QoSDimension
Name

√

Description ×
Purpose ×
Type

√

Unit unit
Aggregate ×
Measurement Source QoSDimensionSlot
Measurement Transformation statisticalQualifier
α ×
fq ×
q̄ QoSCharacteristic and QoSCategory

f q̄ sub-parent relationship

f(q,q̄) QoSParameter

V ×
v QoSConstraint
vPre Provider QoSRequired

vPPre

√
(QoSLevel)

vPost QoSOffered

vPPost

√
(QoSLevel)

vU direction

D
√

d QoSConstraint

P ×
pq ×
φ (for pq) ×
pq̄ ×
φ (for pq̄) ×

3.5.2 Comparison of the QVDP and the UML QoS Framework Metamodel

Table 3.2 sumarizes the comparison. In both models, QoS characteristics are quantified by dimensions
which own unit, type and name. In the UML QoS Framework metamodel, description and purpose do not
appear in the class describing dimensions. UML provides a way to define a parent characteristic from
sub-characteristics but does not allow the composition of a dimension from other dimensions. This way,
no aggregate function is provided by the QoSDimension metaclass. The QoSParameter metaclass defines
how a characteristic is composed from dimensions. The measurement transformation concept appears in
UML but possibilities are limited; the statistical qualifier only compute values with a modality (max-
value, minvalue, mean, and similar). The source of measurement is represented by the QoSDimensionSlot
metaclass in the UML QoS Framework metamodel. Valid values are limited by means of QoSConstraints
elements; provider’s required constraints allow to highlight preconditions while provider’s offered con-
straints can define postconditions. The probability associated to these conditions can be given using
QoSLevel. Even if levels do not define directly probabilities, they take into account available resources to
determine if constraints can be respected. The attribute direction indicates preference relations over values
for a same dimension. We can write dependencies as constraints over values of different dimensions. UML
QoS does not provide any elements enabling to point up priorities among dimensions or characteristics.

We see that the UML QoS Framework metamodel can be usefully extended with concepts and con-
structs from the QVDP. The extension is outlined below.

3.5.3 Extending the UML QoS Framework Metamodel

Figure 3.3 shows the submodels of the extented UML QoS Framework metamodel. Constraints are de-
fined over characteristics and levels and priorities are specifications of constraints. QoSCharacteristics,
QoSConstraints and QoSLevels were defined in the original metamodel while QoSPriorities and QoSPref-
erences are added submodels allowing to introduce, respectively, the concepts of priorities and preferences.
Besides these submodels, various extensions have been added to the model in order to express all ele-
ments available in QVDP. Figures 3.3 and 3.4 summarize the extended UML QoS Framework Metamodel.
Changes and extensions are given below.

32

3.5 QVDP and QoS in UML

Figure 3.3: Submodels of extended UML QoS Framework metamodel. Extensions are in bold.

QoSCharacteristics

QoSConstraints

QoSLevels QoSPriorities QoSPreferences

• Priorities submodel
As the UML QoS Framework metamodel does not account for priorities over quality elements,
the submodel presented here is an extension introducing extra classes to specify priorities over
characteristics and over dimensions.

– QoSPriority
The main class of this submodel is used to express rules that define priorities over characteris-
tics or dimensions. These rules determine the order at which characteristics or dimensions are
considered for optimization when services are being selected. A rule defines an order relation
between elements. Different methods can be used in order to rank characteristics or dimen-
sions; simple precedence relation can be established or weighted functions over elements can
be used to account for some criteria.

– QoSDimPriority and QoSCharactPriority
These classes are specializations of QoSPriority defining specific elements for priorities over,
respectively, characteristics and dimensions.

– QoSPriorityCondition
Conditions on priorities are constraints specifying when priorities hold. We use this element
to specify, e.g., the priority that holds only if some value over a quality dimension is achieved.

• QoSPreferenceSubmodel
We use the QoSPreferenceSubmodel to write preferences over values. In the original UML QoS
Framework metamodel, preferences are defined by means of an attribute that indicates the preferred
value direction (i.e., increase or decrease). The introduction of the QoSPreference submodel makes
the framework considerably more expressive; e.g.: set of values can be prefered over others under
some specific conditions.

– QoSPreference
The purpose of QoSPreference class is to sort values of dimensions. The sorting is established
by rules determining a precedence order between values. Rules can delimit precedence over dis-
joint sets of value and not only following a modality as previously proposed with the direction
attribute.

– QoSPreferenceCondition
The QoSPreferenceCondition class is a specialization of the QoSConstraint class. It indicates
conditions for the preference on values to hold.

• Aggregate and TransformationFunction In the original UML QoS Framework metamodel, the
value calculation is specified in the attribute statisticalQualifier of the QoSDimension class. That
approach allows us only to define the modality under which the value of a dimension can be

33

3. QUALITY OF SERVICE SPECIFICATION MODEL

Figure 3.4: UML QoS Metamodel with proposed extensions

OwnesOwner
*0..1

-isInvariant
QoSCharacteristic0..1

*Groupes

GroupedIn Template Parent

Derivations Sub*
*

*
1

QoSParameter

Type Parameter
1 *

-unit : string
-Aggregate
-TransformationFunction

QoSDimension

referenced*

Type
0..1

Typed
*

DimensionOf
1

Quantifier
1..*

-Value
QoSDimensionSlot

Value Evaluate
1*

-Value
QoSValue

Evaluates

Slot
*

1
0..1

ReferencedValue

-isQoSObservation
QoSContext

BasedOn*

*
Context

-Qualification
-EndToEndSource
-EndToEndTarget
-AllowedValues
-LogicalOperator

QoSConstraint

OppositeAssociation
**

Context

Supports
*

1..*

ValidValues Evaluates
* 0..1

QoSContractQoSRequired QoSOffered

Previous

Next

0..1

0..1

ContractContract * *
* *RequireAccorded OfferAccorded

QoSCompoundConstraint

SubConstraints
GlobalConstraints*

0..1

QoSPriorityCondition

-rules
QoSPriority

QoSCharactPriority

QoSDimPriority

Subject to

Subject to

Subject to

Constrains

0..1

0..1

0..1

1..n

*

*

ordinates

ordinates

Compose
Composed by

*

*

QoSPostCondition

QoSCategory

QoSLevel

QoSCompoundLevel

-AdaptationActions : String
QoSTransition

AllowedSpaces

Levels

0..1

0..1

0..1
GroupOfLevels

LevelsIncluded1..*

AllowedSpace*

*CurrentLevel

*

*

To

From

Source1

1Destination

QoSPreferenceCondition

-rules
QoSPreference

Constrains
1..n

Subject to
0..1

Ordinates*

Ordered by
1..n

calculated on a set value. In QVDP, it is possible to define a dimension from other dimensions,
so that the value calculation has to be more expressive. We augment expressivity by replacing
statisticalQualifier with two attributes: Aggregate which defines from which other dimensions the
value is calculated and TransformationFunction which provides the formula to compute the value
of the dimension.

• Compose-composed relationship
In QVDP it is possible to compose a dimension from other dimensions as for characteristics. This
possibility is expressed in the metamodel thanks to the compose-composedby self-relationship of
QoSDimension class.

• QoSPostCondition As no element in the original UML QoS Framework metamodel allows us to
specify the postcondition expressed in QVDP, this possibility is added under the form of a class
which is a specialization of the QoSConstraint class.

3.5.4 Case study

As suggested by the OMG, the UML metamodel can be used by service requestors and providers to
define their respective requests and capabilities about QoS. We propose in this case study some examples
of utilization of the UML QoS Metamodel to express such information. We refer to the service EN-
VISAT/MERIS MGVI Regional introduced in the section 3.2 to illustrate how to use the metamodel and
its submodels to organize QoS advertising specification.

34

3.5 QVDP and QoS in UML

Figure 3.5: UML QoS Characteristics submodel

<< QoS Dimension >> : NetworkTime
Unit: ms
Aggregate: {SendTime, ReceiveTime}, AggregateSum
Transformation Function:

<< QoS Characteristic >> : Latency

 << QoS Dimension >> : ReceiveTime
 Unit: ms

<< QoS Dimension >>: ExecutionTime
Unit: min

<< QoS Dimension >> : CompositionTime
Unit: ms

 << QoS Dimension >> : SendTime
 Unit: ms

Composed by

Composed by

Typed by

Typed by

Typed by

<< QoS Category >> : Performance

Grouped In

100

1

1

100 i i
i

SendTime ReceiveTime
=

+∑

Figure 3.6: UML QoS Constraints submodel

<< QoS Context >>

Contexts

<< QoS Required >> : Required for NetworkTime
Qualification : guaranteed
ConnectionFailureProbability ≤ 0,05

Contexts

<< QoS Constraint >> : Dependency
Qualification : best-effort
DownTime increases FailedAttempts increase

<< QoSPostCondition >> : Postcondition of NetworkTime
Qualification : guaranteed
Change of network bandwidth unneecessary

Contexts

Contexts

<< QoS Characteristic >> : Latency

The first submodel, the QoS Characteristic submodel, is illustrated in figure 3.5. It illustrates the
characteristic latency and the dimensions used to compute its value. The calculation of one of these
dimensions, Network Time is more developed with association of dimensions used to compose its own
value and its transformation function. The Performance Category groups all characteristics related to
the service performance. The modeling constructs initially introduced in the UML QoS Framework
Metamodel do not allow the quantification of a QoS Dimension by aother QoS Dimensions. However, in
the context of the ENVISAT/MERIS MGVI Regional service, the latency is a critical point. Specifying
how its different parts are computed permits to the user or the provider to specify its preferences at
different levels and so give an upper limit to the Receive Time, which is used to compose the Network Time.

The second submodel, the QoS Constraint submodel, is presented in figure 3.6. It exposes the context
and its related constraints. Among those, one constraint illustrates the dependency existing between the
down time and the total number of failed attempts. One is used to specify the precondition necessary
to an acceptable value of network time and another the induced postcondition. The specification of such
constraints, made by the service provider, in the context of our MERIS service, are used to inform the
service user of particular requirements and observations about service behavior. The specification of the
QoS Dependency related to the Down Time and the number of Failed Attempts is useful for the user of the
service because it enables the anticipation of quality degradations.

The constraint submodel is also used to indicate the service provider capabilities of QoS. These
capabilities are described with the help of QoS Offered, a specialization of QoS Constraint. The figure 3.7
highlights the capabilities of the MERIS MGVI Regional Service for the availability characteristic. To
advertise its capabilities about quality properties, the service provider has to specify them. In the context
or our case study, these specifications are simply the observations made on the system that are expressed

35

3. QUALITY OF SERVICE SPECIFICATION MODEL

Figure 3.7: UML QoS Offered Constraints

<< QoS Context >>

Contexts

<< QoS Characteristic >> : Availability

<< QoS Offered >> : Availability
Qualification : guaranteed
Availability > 94%

Contexts

Figure 3.8: UML QoS Priorities submodel

<< QoS Characteristic >> : Latency

<< QoS Priority >> : Availability /Latency
Availability Latency≻

Subject to

<< QoS PriorityCondition >>
Condition: Availability < 95 %

Subject to

with the help of the QoS Offered metaclass.
The QoS Priorities submodel is expressed in figure 3.8 and concerns a priority fixed between the

latency and the availability. Services as the MERIS MGVI Regional have an important latency, mainly
due to the huge execution time of their requests. This way, as the latency is important, it is not a relevant
characteristic to choose among alternatives and other characteristics as availability are more relevant to
discriminate among available services. Such a specification is written by the user of the ENVISAT/MERIS
MGVI Regional service that wishes express which quality properties to favor to others.

An example of expression abilities of the QoS Preferences submodel is proposed in figure 3.9. It
illustrates how to specify favored values for the network time dimension. This specification of desired
values for Network Time is written by the service user to make appear its expectations. The service user
makes a similar specification for every QoS property.

The UML QoS Framework permits to service providers and users to express simply their advertisings
and their requests. With our added extensions, it covers a large range of construct modeling and possibili-
ties. Their complete description enables their powerful utilization in selection or composition approaches.
Indeed, quality characteristics account for selection criteria in selection problems while they appear as
local or global constraints in composition issues. UML specifications of quality requirements (or offers
for providers) need to be translated in a language such that Q-WSDL in order to be sent and used by
services selectors or composers. The model of QoS needs or offers should be established with the help
of an appropriate tool allowing to construct the UML model and to translate this into an exchangeable
language between interested parts. Any tool that uses our QoS model will allow users to define their
expectations, requirements and advertisements. A tool that incorporates all of our proposed modeling
constructs can easily be used to state quality properties of the service. Moreover, a such tool can also
involve coherence rules to check the consistency of a model, with transitivity of priorities or propagation
of dependencies at different levels of specification.

3.6 Discussion

We have observed at the outset of the chapter that quality has been variously defined. While quality is
undoubtedly a polysemous concept, using it in software engineering requires agreement, even if local to
a system or application domain, as to what is understood by quality management and quality assurance
during the engineering, operation, and maintenance of software, and therefore service-oriented systems.
Quality modeling is in this respect one of key activities. A quality model in this perspective has several

36

3.6 Discussion

Figure 3.9: UML QoS Preferences submodel

<< QoS Dimension >> : NetworkTime
Unit: ms
Aggregate : {SendTime, ReceiveTime}, AggregateSum
Transformation Function:

<< QoS Preference >> : NetworkTime
NetworkTime
(≤ 3500 ms) (≥ 1500 ms) (> 3500 ms)∧ ≻

<< QoSValue >> : NetworkTimeValue

<< QoSDimensionSlot >> : NetworkTime

Valued by

Evaluates

Ordinates

purposes. Prominent among these are (i) to highlight the information to account for when representing
and reasoning about quality, (ii) to indicate how quality is measured so as to assist in the assessment
of a given software system, (iii) and to structure the information about users’ and software engineers’
quality requirements. The quality model proposed in this chapter has been designed with the said three
purposes in mind. It focuses on service-oriented systems whose salient characteristic is dynamicity during
operation, whereby dynamicity herein amounts primarily to the uncertainty about the levels of quality
that the system achieves during operation. The uncertainty arises from the fact that the pool of available
services varies over time. This may be desirable w.r.t. quality when new, more appropriate services
appear in the pool of available services, but can also be undesirable when some relevant services become
unavailable resulting in inconsistent quality levels.

3.6.1 Experience

Service orientation is intended to enable large scale systems. Many competing services are therefore
available to perform the same tasks. In such a setting, the service composer aims to select the set
of services that optimally satisfies the quality considerations laid out in the request, and this relative
to alternative sets of services that can perform the same tasks. Our quality model has been applied
primarily to the problem of web service selection. In an SOS, web service requesters specify tasks that
need to be executed and the quality levels to meet, whereas service providers advertise their services’
capabilities and the quality levels they can reach. Service selectors then match to the relevant tasks,
the candidate services that can perform these tasks to the most desirable quality levels. One of the key
problems in QoS-aware service selection lies in managing tradeoffs among QoS expectations at runtime,
that is, situations in which service requesters specify quality levels that cannot be simultaneously met.
We have used the quality model presented in this chapter within a wider service selection framework
[74], in order to be able to deal with QoS tradeoffs. That framework consists of: (i) rich QoS models
obtained by instantiating the model in the present chapter, used by service requesters when expressing
QoS expectations and service providers when describing services’ QoS; and (ii) a multi-criteria decision
making technique that uses the models for service selection. The additional expressivity of the quality
model presented in the present chapter proved a significant advantage in dealing with QoS tradeoffs.
Indeed, the multi-criteria method that was used requires the identification of preferences over QoS values
and priorities over QoS criteria, whereby a criterion equates with a quality dimension. The conceptual
bases laid out in the present chapter proved immediately useful in constructing a web service selection
framework that can deal with QoS tradeoffs.

The service selection framework [74] mentioned above uses a specific multi-criteria decision making
method to rank alternative services. In our other work [75], we have also used our quality model to
develop a generic addon to various service selection approaches so as to make these approaches aware

37

3. QUALITY OF SERVICE SPECIFICATION MODEL

of service requesters’ priorites over quality dimensions and/or characteristics. Instead of developing a
particular service selection procedure which accommodates priorities between QoS considerations, we
provided an extension compatible with (i.e., that can be used with) available selection approaches. Our
approach is based on the premise that SOS operate in a setting in which QoS levels vary and are observed
at runtime. The approach is based on a specific class of multi-criteria decision making techniques, called
the outranking methods. The approach enables the definition of a global priority constraint to be used
as an ordinary constraint in a service selection algorithm. We do not ask for a specific class of service
selection algorithms; any algorithm which proceeds to select the optimal services and accounts for QoS
considerations can be used in conjunction with the present proposal. This is for instance the case with
the reinforcement learning algorithm we suggested elsewhere [100; 101]. The global priority constraint
is relevant because: (i) it allows priorities to be accounted for during service selection in algorithms
that originally cannot accommodate priorities; (ii) it can be integrated with various available service
selection algorithms, and regardless of their specific optimization functions; (iii) it enables automatic
optimization of user preferences by the service composer. It is our quality model that provides the
conceptual foundations for the definition of the global priority constraint, and thereby the extension of
service selection algorithms to accommodate richer specification of quality-related requirements.

This quality model has primarily been applied to service-oriented systems, and we presented it in
that context in the present chapter. In this respect, we cannot advance claims on its applicability to
other kinds of systems. We can however, identify arguments in support for its wider relevance. First,
preferences and priorities expressed by the stakeholders (e.g., a system’s users, owners, and so on) are
not a kind of information specific to service-orientation. We have argued elsewhere [99] that preferences
and priorities are expressed by the system’s stakeholders and should be accounted over the course of the
requirements engineering phase in the software development process. Requirements engineering deals with
the elicitation, analysis, and specification of stakeholders’ functional and quality requirements. Decision
on the computing paradigm to adopt (e.g., service-orientation or agent-orientation, or a combination, or
otherwise) arises in part from the requirements that the stakeholders express. It follows that our quality
model may be used, at least as a starting point in the definition of quality models for kinds of systems
other than service-oriented ones. Second, we have used our model to extend the UML QoS framework,
which is not specific to service-oriented systems. Below, we consider the lessons learned from the use of
our quality model in the context of service-oriented systems.

3.6.2 User Evaluation

The quality model and the service selection approaches that arose from and use the model have been used
in cooperation with the European Space Agency, and the MERIS project. While this does not provide
enough empirical data on to reach definite conclusions on the ease of use of the present quality model,
some preliminary observations are available.

It was to be expected that a more expressive quality model requires more effort in use. This is the
case with our quality model. The additional effort equated to: (i) additional training of the modeling
participants that is necessary to understand the new modeling primitives and their use; (ii) effort involved
in acquiring and analyzing the information to carry over to the instances of the modeling primitives; (iii)
effort involved in using the instances of our quality model in decision-making during the engineering
of a service-oriented system. The effort involved in (i) and (ii) are topics for research in requirements
engineering, while (iii) is a concern for research in service selection. In practice, we have encountered
difficulties in relation to both issues (i) and (ii). In a separate discussion [99], we show that information
about preferences and priorities is not properly accounted for in ontologies for requirements engineer-
ing. The direct consequence of this is that there is limited research on the elicitation and analysis of
preferences and priorities in requirements engineering, and thereby little systematic guidance on these
tasks. In addressing issue (iii), we have used multi-criteria decision making techniques developed mainly
in management science. Our experiences with the use of these techniques are reported elsewhere [74; 75].
Overall, multi-criteria decision making techniques allowed us to automate some of the tasks involved in
using the instances of our quality model to rank services, while accounting for preferences and priorities

38

3.6 Discussion

of the service requesters. In addition, these techniques incorporate features that allowed us to address
issues (i) and (ii) to some extent. For example, and as explained elsewhere [74; 75], the methods we chose
can cope with partial specifications of preferences and priorities, thus limiting the amount of information
to elicit before instantiating our quality model. This is critical, for it reduces the efforts of both kinds (i)
and (ii) mentioned above.

A separate and difficult issue concerns dealing with change of quality dimensions or characteristics,
and/or preferences and priorities at runtime. It still remains unclear how precisely such changes affect even
the engineering of functional requirements, which appear easier to pin down than quality requirements.
Some changes can be managed. We have performed and presented elsewhere [102] our investigations on
the impact changes in functional and quality requirements on the requirements engineering process for
SOS. We showed therein that keeping track of changes is an issue that can only be properly dealt via
appropriate tool support, although we did conclude that no easy to use solution is available at present.

3.6.3 Strengths

Our model’s principal strength is its additional expressivity in comparison to related quality models for
SOS. This additional expressivity raised relevant questions in relation to the problems of web service
selection. Namely, we have shown elsewhere [74; 75] that the use of our quality model enables us to
capture more detailed information from the service requesters – in particular, their preferences and
priorities. This additional information proves invaluable when dealing with QoS tradeoffs during service
selection. Namely, when QoS levels requested by the users cannot be simultaneously reached, preferences
and priorities obtained by instantiating our quality model allow us to perform tradeoffs in accordance
with the requirements of the service requesters.

3.6.4 Weaknesses

We have observed in practice, within the context of the MERIS project, that additional effort was required
for the acquisition, analysis, and specification of preferences and priorities. We have presented elsewhere
[74; 75] our first investigations on how this additional effort can be reduced within a broader framework
for service selection in SOS. Our quality model does not feature primitives that are tailored to managing
change in quality dimensions and characteristics, and/or preferences and priorities.

3.6.5 Future work

Work with more expressive models requires additional resources. Striking a balance between expressivity
and efficiency is a difficult question, with answers undoubtedly confined to domain-specific experience.
Experience in the use of the model points out that additional effort involved in specifying preferences
and priorities is relevant for it provides guidance for service selection and composition in the face of
uncertainty about which services are available at any moment. Automating the elicitation of preferences
and priorities is a particularly relevant direction of future effort, especially as research and practice
moves towards automated service selection and composition in which preferences and priorities can be
revised and new elicited at runtime, then fed to automated service composers. Combining Brafman and
colleagues’ results [23] with the present quality model is of current interest.

Definition of quality dimensions and characteristics also requires guidance. Requirements engineering
frameworks, such as, e.g., Tropos [36], can be used to obtain initial functional and quality goals of the
service requesters. Metric definition needed for the writing of quality dimensions and quality character-
istics has been treated for instance by Basili and Rombach [10] whose Goal-Question-Metric approach
can be deployed to obtain quality dimensions and characteristics in a systematic manner. The use of our
quality model within these frameworks is a topic of ongoing work.

We do not address in this chapter the issue of model compatibility, that is, the situation in which
users and provider define the same quality property with different names or measurement transformation.
One appropriate approach towards ensuring the compatibility of models amounts to annotate then with
semantic information, then proceed to semantic matching – the reader may be interested in the approach

39

3. QUALITY OF SERVICE SPECIFICATION MODEL

suggested by Zeng and colleagues [230], where service requests are translated by accounting for semantic
information that is available. Such a process could be applied to quality specifications produced in our
approach in order to avoid compatibility issues.

Another relevant consideration for future effort is the provision of more precise semantics for the
various submodels and the subsequent more rigorous definition of the relationships between the proposed
submodels. Achieving this aim requires formal semantics which can be obtained in two ways. One is
to locate the model within a specific application domain, and therefore have domain-specific semantics.
Another way is to attempt to provide a general formal semantics for the notion of quality dimension and
build from there. In both cases the effort is currently only preliminary. Careful choices among alternative
semantics and their potential extensions is needed, and must therefore be relegated to a separate future
treatment.

3.7 Conclusions

Expressive quality models are needed to let requesters specify quality expectations, providers advertise
service qualities, and composers finely compare alternative services. Having observed many similarities
between various quality models proposed in the literature, we reviewed these and integrated them into a
single quality model for service-oriented systems. We advance current research by integrating precise sub-
models for dependency and priority information closely with concepts and constructs already established
as relevant when performing quality modeling.

The proposed quality model, the QVDP, integrates concepts and constructs for extensive representa-
tions of quality information. A simple, yet realistic example illustrated the relevance of instantiating the
various proposed concepts and constructs when performing quality modeling. We highlighted the need
for integration of dependency and priority information within any quality model for services. We pointed
out how lack of dependency and priority information limits the value of various prior quality models. As
a solution, we proposed precise submodels for representing dependencies and priorities between quality
dimensions and between quality characteristics. The comparison of QVDP with prior quality models
indicated that extending a particular quality model with dependency and priority submodels is possible.
It also highlighted that an expressive and practical quality model ought to closely integrate concepts and
constructs for all of the quality information already established as relevant in related research, with the
concepts and constructs of the dependency and priority submodels. To achieve such close integration
between the various relevant concepts and constructs, we proposed QVDP as an integrative model instead
of extending an existing quality model with the dependency and priority submodels. Our intention is for
the proposed QVDP model to serve as a reference point for further developments in quality models for
service-oriented systems.

While we have used simple examples to illustrate the use of QVDP, parts of the model have been
employed and tested elsewhere [100; 101]. There, we QVDP to specify quality expectations in service
requests and defining criteria to guide the learning of optimal service compositions. Our proposed ex-
tension of the UML metamodel for QoS [157] further facilitates the use of novel concepts and constructs
present within QVDP in actual applications.

Acknowledgments

We are grateful to Emmanuel Mathot of the European Space Agency, who provided precise information
about the GPOD project and assisted our efforts in describing quality information of services related
to the GPOD project. The first author acknowledges funding from the Belgian ICM/CIM Doctoral
Fellowship Program.

40

Part II

QoS-driven Management of Services

41

Outline of Part II

The second part of this thesis presents contributions related to the management of web services driven
by quality information. Services management is essential to ensure the efficiency of executions and to
prevent failures while quality plays an important role in service monitoring. Among others quality enables
to measure the performance of functionally equivalent web services. Moreover, service requesters do not
have the same behavior in relation to quality, they have different non-functional requirements. To offer
an user-driven approach of service management, it is essential to consider the quality expectations of
users. The different models proposed in this Part relies on QoS to improve the services management.
These models use the output provided by the service quality model presented in Chapter 3 to execute
management activities. Indeed, once QoS expectations have been formulated by the service user and
QoS capabilities expressed by the service provider, resulting specifications offer large possibilities as QoS-
driven selection, QoS-driven composition or QoS-driven classification. Each of the three Chapters of this
Part illustrates one management application. We detail these Chapters here:

Chapter 4 proposes a service selection method based on quality properties of a service. In service-
oriented systems, service requests specify users’ requirements at runtime, i.e.: tasks to execute and
Quality of Service criteria to meet and to optimize. Automated service selectors receive service requests,
then select the service capable of executing the required tasks at the expected QoS levels. Problems
arise when a selector cannot simultaneously optimize QoS criteria while enabling also the definition of
preferences over the values of QoS criteria, and priorities between QoS criteria. By drawing on multi-
criteria decision making techniques, we suggest a service selection framework that uses the information
specified with the QoS model in order to select the most appropriate service at runtime. This chapter
has been published in the Service Computing Conference’08 proceedings [72]. Other similar selection
approaches have been published in the Conference on Advanced Information Systems’08 proceedings [74]
and in the International Conference on Autonomic Computing’08 proceedings [75].

Chapter 5 proposes a service composition method based on the QoS users’ expectations and providers’
capabilities. Satisfying a user’s requirements often requires the composition of a set of distinct services.
A key challenge in this respect is to compare competing services, then select those that will deliver the
most desirable feasible levels of Quality of Service. This chapter proposes an approach to the computation
of individual services’ aggregate QoS ratings when multiple QoS criteria are given, and a reinforcement
learning algorithm which uses these ratings in order to find the selection of services that maximizes the
overall QoS level delivered to the users. The RL approach is capable of handling variations in the pool
of available services by exploring selections other than those than historical data shows appropriate, and
guarantees optimal exploitation for a given exploration level.

Chapter 6 proposes a user profiling method relying on the formulation of QoS users’ expectations. A
service provider’s reputation is a function of the feedback, given after every past transaction by the users
of the service. A reliable reputation score reflects the differences between the quality levels advertised by
the provider, and those delivered in past transactions. Obtaining a reliable reputation score is difficult.
Since users may have interest in strategically manipulating feedback in order to influence a provider’s
reputation, efforts have been invested in designing incentive mechanisms to motivate honest feedback. We
argue in this Chapter that dishonesty is not the only cause of bias in feedbacks and ensuing reputation
scores. Consequently, even if the feedback is honest, the resulting reputation score need not be reliable.
To obtain a reliable reputation score from honest feedback, it is necessary to account for the bias arising

43

from each user’s outlook (i.e., tendency to provide overly optimistic or pessimistic feedbacks), sensitivity
to deception (tendency to react positively or negatively with weak or strong importance to differences
between the quality level expected and delivered), and sensitivity to brand image (tendency to react
positively or negatively with weak or strong importance to the image of a provider). These three form
together the feedback profile specific to a user. We propose a probabilistic model able to compute the
feedback profile of each user. This chapter has been submitted to Decision Support Systems.

44

Chapter 4

QoS based Service Selection

This Chapter has been published in Service Computing Conference proceedings [72]. This Chapter
outlines one of the quality-driven management methods proposed in Part II. The Chapter 4 presents an
answer to one fundamental service management issue: which service to select when a requester is faced
to multiple functionally equivalent web services? We propose a quality-driven selection of web services
as quality information enables to discriminate such services through their non-functional properties. The
selection method proposed here relies on quality specifications made by requesters and providers with
the quality model (QVDP) proposed in Chapter 3. This method also relies on advanced concepts such
as priorities and preferences highlighted in the QVDP model.

4.1 Introduction

Engineering and managing the operation of increasingly complex information systems is a key challenge
in computing. It is now widely acknowledged that degrees of automation needed in response cannot be
achieved without coordinated, open, distributed, interoperable, and modular systems capable of dynamic
adaptation to changing operating conditions. Among the various approaches to building such cooperative
information systems, service-orientation stands out in terms of its reliance on the World Wide Web
infrastructure, availability of standards for describing and enabling interaction between services, attention
to interoperability, and uptake in industry.

Services are self-describing components that support rapid, low-cost composition of distributed ap-
plications [162]. Service providers advertise their services by way of service descriptions (which indicate
a service’s interfaces, capabilities, behaviors, and quality), and provide technical and business support.
Different providers can advertise competing services. Competing services provide the same functionality,
but at different levels of quality. Services are used by service requesters.

Quality of Service (QoS) is a combination of several characteristics of a service, such as availability,
security, response time or throughput [143; 159]. Many providers may compete to offer the same services.
Consequently, it is necessary to discriminate between competing services. To do so, services can be
compared over QoS criteria, to which their respective providers can commit. This implies that quality
requirements of services need to be accurately defined by service requesters if they are to be accounted
for in the service selection process. Quality requirements are defined using QoS models; A QoS model
includes a set of concepts and relationships found to be useful in the definition of quality requirements.
It is by instantiating the QoS model that quality requirements are made explicit [41]. The QoS model is
used in an service-oriented system (SoS) to make explicit the various QoS dimensions and characteristics
that can be used to specify QoS considerations in service requests and measure them at runtime on each
service. Any such model is therefore used (i) by service requesters to specify the expected quality levels of
service delivery; (ii) by service providers to advertise quality levels that theirs services achieve; and (iii)
by service selectors when selecting among alternative services those that are the most efficient. Given a
QoS model, a service requester may specify that several QoS dimensions that need to be optimized.

The service selector then manages the selection process, and is in charge of assigning available services

45

4. QOS BASED SERVICE SELECTION

to service requests based on the matching between the requested and offered QoS. To take into consid-
eration multiple quality properties, Multi-Criteria Decision Making (MCDM) is usually used, whereby
each QoS property is seen as a criterion [69; 134; 229]. If the said quality properties involve tradeoffs,
they cannot be optimized and additional information is needed in a service request. Namely, we expect
the stakeholders to indicate the priority over the said QoS dimensions so that an order of importance is
established, and subsequently used to guide optimization. Preferences over values of quality properties
are also useful to discriminate services as they reflect user expectations. Although there is a clear need
for priorities and preferences, limited effort has been invested in dealing with these considerations during
service selection.

Contributions. We propose a selection framework, which includes a QoS model and a selection mech-
anism to enable the assignment of the ’best’ available service to each service request. The users’ quality
requirements are specified by instantiating our QoS model, in which preferences and priorities are ac-
counted for. Once quality requirements are given, the selection mechanism proceeds along the following
steps: (1) The selector rejects services that do not fulfill user expectations about values of QoS proper-
ties. (2) The selector organizes QoS properties into positive and negative hierarchies that make explicit
the contribution to more generic quality properties (e.g., responsiveness). (3) The selector links weights
to QoS properties that reflect their relative importance. (4) Pairwise comparisons of values of quality
properties are made by the service selector. (5) The result of pairwise comparisons is combined to the
weights of criteria to determine the score of positive and negative hierarchies. Cost/benefit analysis is
then performed on each service to establish their ranking and determine the most suitable service to the
user request.

Organization. Section 4.2 gives an overview of the method used by the service selector and introduces
the case study used throughout this chapter. Section 4.3 discusses the details of our QoS model and
illustrates its use through an example drawn from the case study. Section 4.4 details the steps of the
selection algorithm and illustrates them via the case study. Section 4.5 justifies the different steps of our
selection mechanisms. Section 4.6 discusses the related work and Section 4.7 concludes this chapter.

4.2 Preliminaries

4.2.1 Overview of the service selection approach

Our selection approach consists of two main steps: the first is the specification of quality requirements,
along with the preferences and priorities thereon. The second step amounts to use these quality require-
ments in the service selection algorithm. User specifications and their transformation into concepts used
by the service selector will be outlined in Section 4.2. The service selection algorithm of the service
selector is presented here, in Algorithm 1 and will be detailed in Section 4.4.

Lines 2-6 of the Algorithm 1 refer to the limitation of accepted services to those that respect constraints
on QoS values, this limitation is detailed in Subsection 4.4.1. Lines 7-19 of the Algorithm 1 concern the
separation of quality requirements into two sets: those to maximize and those to minimize. Then, each
set of QoS properties that undeline quality requirements is organized in a hierarchical tree, to highlight
links between QoS considered. The benefits of such hierarchies is explained in Subsection 4.4.2. Lines
20-27 indicate how priorities are assigned to QoS characteristics and/or dimensions. In Subsection 4.4.3,
we explain the Analytics Hierarchy Process (AHP), used to assign weights to QoS characteristics and/or
dimentions. These weights reflect priorities. Lines 28-35 formalize the Promethee method applied to
compare services on the basis of preferences. They also define how scores are given to all services on both
hierarchy trees, more details are given in Subsection 4.4.4. Finally, lines 36-38 present the attribution of
a the final score with the benefits/costs analysis. More details are given in Subsection 4.4.5.

46

4.2 Preliminaries

Algorithm 1 Selection Algorithm

1: i: the requested service transaction, l: the client of the transaction i, s, s′, s1, s2, ..., sn: available
services satisfying functional requirements of the requested service, k ∈ K: a provider with K the set
of providers offering the service s

2: ACl: Set of QoS Characteristic or QoS Dimension requested by l
3: for all s do
4: for all AClj do
5: if APkij¬ satisfies AClj then
6: reject s
7: for all AClj do
8: if ACmodlj = maximize then
9: put AClj in positive criteria set set+

10: else if ACmodlj = minimize then
11: put AClj in negative criteria set set−

12: for both sets set+ and set− do
13: for all AClj in set+ or in set− do
14: AClj is a node
15: for all ACljsub−parent relationship do
16: add an edge from AClj to its parent node
17: add a super-node n to the top of the tree t
18: for all top level node do
19: add an edge to the node n
20: for both trees t; positive tree: tree+ and negative tree: tree− do
21: starting from the top node to the down levels
22: for all level of t do
23: for all set of sibling nodes do
24: for all node n do
25: retrieve rules ACpriorruleslj and strength AC

priorstrength
lj priorities specifications of AClj

26: make AHP pairwise comparison with ACpriorruleslj and AC
priorstrength
lj specifications to fix the

relative weights of priorities AC’priorlj of sibling nodes
27: final weights ACpriorlj ← AC’priorlj × AC’priorlj with ACpriorlp the weight of the parent node p
28: for both tree+ and tree− do
29: for all couple s1, s2 do
30: for all AClj do
31: Fq[dq(s1, s2)] ← Promethee pairwise comparisons between s1 and s2 on AClj with the type F

and parameters specified in ACl
32: fix aggregated preference indexes: π(s1, s2) ←

∑n
j=1 Fj [dj(s1, s2)]ACpriorlp and π(s2, s1) ←∑n

j=1 Fj [dj(s2, s1)]ACpriorlp

33: for all s do
34: determine outranking flows of s: φ+(s)← 1

n−1

∑
s′ π(s, s′)and φ−(s)← 1

n−1

∑
s′ π(s′, s) with s′

6= s
35: determine the complete outranking flow of s: φ(s)← φ+(s)− φ−(s)
36: for all s do
37: calculate the final score of s: rs ← φ(s)pos/φ(s)neg
38: sort s1, s2, ..., sn with their final scores and determine the best one

47

4. QOS BASED SERVICE SELECTION

4.2.2 Case study

In this section, we propose a case study subsequently used throughout the chapter. This case study is
described in Subsection 3.2.2.

Figure 4.1: Vegetation indexes

We are interested in the remainder in services that provide the Fraction of Absorbed Photosyntheti-
cally Active Radiation (FAPAR) index (i.e.: the vegetation index) for the world map at a given period of
time provided by the MERIS/MGVI service introduced in Subsection 3.2.2. A vegetation index measures
the amount of vegetation on the Earth’s surface. Figure 4.1 illustrates an example of the visualization
of the vegetation indexes obtained for February 2008. The only required input of this service is the
time range on which the mean vegetation indexes will be calculated. With the ESA program on Earth
Observation and the access to data and computing resources given to researchers, multiple such services
emanating from different providers or with different QoS levels are available.

4.3 Conceptual Foundations

We introduce in this section concepts used by the service user to specify their its requirements. We
describe modeling constructs enabling the service user to specify its preferences and priorities about QoS.
We suggest an illustrative example derived from our case study.

We suggest a QoS model that enables the user to express accurately its needs about quality properties
of its required service. To account for various aspects of user expectations, this model must include
advanced concepts such as priorities over quality characteristics or preferences on offered values.

Our model is based on the UML QoS Profile proposed by the OMG [157] and is shown in Figure 4.2.
The original UML QoS Framework metamodel, introduced by the Object Management Group [157],

Figure 4.2: UML metaclasses to user modeling

QoS Characteristic

*Groupes

Template Parent

Derivations Sub*

*

*

1

-unit

QoS Dimension

Type
0..1

Typed
*

DimensionOf
1

Quantifier
1..*

QoS Dimension Slot

Value Evaluate
1*

QoS Value

Evaluates

Slot *

1 0..1
ReferencedValue

QoS Context

Context

-Allowed Values
-Logical Operators

QoS Constraint

Context

Supports *

1..*

ValidValues
Evaluates

*
0..1

QoS Priority Condition

-rules
-strength

QoS Priority

QoS Charact Priority QoS Dim Priority

Subject to

Subject to

Subject to

Constrains

0..1

0..1

0..1

1..n

*

*

ordinates

ordinates

QoS Preference Condition

-direction
-type
-parameters

QoS Preference
Constrains 1..n

Subject to0..1

Ordinates *

Ordered by1..n

Compose Composed by* *

48

4.4 Selection Framework

Figure 4.3: User specifications

<< QoS Constraint: >> Execution Time
Execution Time < 6 hours/day of period

<< QoS Characteristic: >> Latency

<< QoS Priority: >>
Execution Time É Network Time
Strength: 6

<< QoS Preference: >> Execution Time
Direction: minimize
Type: 2
Parameters: l = 20

<< QoS Value: >> QoS Latency

<< QoS Context >>

ContextEvaluates

<< QoS Dimension: >> Execution Time
Unit: min

<< QoS Dimension: >> Network Time
Unit: ms

Type Type

Subject to

Ordered by

Subject to Subject to

includes modeling constructs for the description of QoS considerations. In that metamodel, a QoS Char-
acteristic describes some abstract quality consideration, whereas a QoS Dimension describes measures
that quantify QoS Characteristics. QoS Constraints restrict values of QoS Characteristics to those that
are desired, and this across modeling elements identified during requirements engineering and architec-
tural design. In comparison with the original OMG metamodel, we make some additional assumptions:

• In the OMG standard, QoS Characteristics are quantified by means of one or several QoS Dimen-
sions. We assume that the value of a QoS Dimension can similarly be calculated with quantitative
measures of other QoS Dimensions. This assumption is expressed in the metamodel in Figure 4.2
through the Compose-Composed by relationship of the QoS Dimension metaclass.

• We allow the user to express its priorities over QoS Characteristics and over QoS Dimensions
by means of, respectively, QoS Charact Priority and QoS Dim Priority metaclasses whose are
specializations of the QoS Priority metaclass. Its attribute rules concerns QoS Characteristics or
QoS Dimensions involved in the priority and the direction of the priority while the attribute strength
indicates the relative importance of the priority. QoS Priority Condition indicates conditions that
need to hold in order for the priority to become applicable.

• To enable the user to express its preferences over values of QoS Characteristics and QoS Dimen-
sions, we add a specific metaclass: QoS Preference. Preferences over values are defined with some
attributes: direction states if the value has to be minimized or maximized; type indicates the type
that the user favors for defining the preference and; parameters is used to define parameters needed
for the type used.

Suppose a service requester that wishes retrieve the vegetation indexes for a given period. Multiple
services are available to process such a vegetation map with different QoS properties. This user want
to optimize the following QoS Characteristics: availability, cost, feedback, latency, reliability, reputation
and security. Some of these quality considerations are not directly quantifiable, and are measured with
help of QoS Dimensions. All these informations are specified by the service requester with the help of
our proposed QoS model. The set of QoS characteristics and QoS dimensions expected by the useer l
is defined inACl. Parts of the complete specification of the user are illustrated in Figure 4.3. The user
specification limits accepted services to those that have an execution time inferior to 6 hour by day of the
selected period. This delay may appear important but the quantity of data to process is huge and require
long time of duration. The execution time is favored to the network time in the priority specification
indeed, the execution time is considered as the bottleneck of the execution process.

4.4 Selection Framework

The service selection process uses all specified information in combination with MCDM techniques in order
to establish a complete ranking of available services. This process involves the following steps: (1) apply
hard constraints on services, to restrict the set of services upon whose MCDM calculation will be made.
This step is explained in Subsection 4.4.1. (2) establish the hierarchy of QoS properties with information
related to QoS Characteristics and QoS Dimensions decomposition, each property being considered as a

49

4. QOS BASED SERVICE SELECTION

criterion of the MCDM model. Moreover, two distinct hierarchies are built. The first focuses on criteria
to maximize, called benefits. The second concerns criteria to minimize, called costs. Subsection 4.4.2
presents this step in details. (3) fix the priorities of QoS properties by applying the Analytic Hierarchy
Process (AHP) on both hierarchies, as explained in Subsection 4.4.3. (4) make pairwise comparisons on
each criterion of available alternatives. This step is done with the Promethee process, which gives us the
opportunity to make pairwise comparisons with few information given on criteria. The utilization of the
Promethee method is described in Subsection 4.4.4. (5) combine intra criterion information with weights
fixed on criteria on both hierarchies. Then for each alternative, the ratio benefits/costs is computed
by service selector and a complete ranking is made on available alternatives. The application of the
benefits/costs ratio is detailed in Subsection 4.4.5. We give illustrative examples derived from our case
study for all steps of the selection framework.

4.4.1 Fixing hard constraints

Hard constraints on quality properties (i.e., QoS Characteristics or QoS Dimensions) are defined by the
user to restrict the set of accepted services. AClj defines the quality level required by a client l for a
quality property j. These are specified with the QoS Constraint metaclass and fix thresholds to values of
a QoS Dimension. While the service selector choose the best available service to fulfill the user request,
services that do not fulfill thresholds values for the different QoS Dimensions taken into account are
considered irrelevant. The process is described in lines 2-6 in the Algorithm 1. APkij specifies the quality
level advertised for the quality property j by the provider k for the transaction i. Services for whose APkij
does not satisfy AClj are rejected. Constraints allow us to decrease the number of alternative services to
consider when applying MCDM - all services that do not satisfy the constraints are not considered for
comparison. The complete specification made by requester about the service providing the vegetation
indexes is transmitted to the service selector that will process all steps of the selection. The selector starts
by rejecting services that do not fulfill hard constraints. For example, in specification given in Figure 4.3,
the selector restrains available services to those that have an execution time inferior to 6 hours by day of
the selected period.

4.4.2 Hierarchies of QoS Characteristics and QoS Dimensions

Decomposition of QoS Characteristics into QoS Dimensions and QoS Dimensions into others QoS Di-
mensions may be used by the service selector to build a complete hierarchy of QoS properties. This
information is expressed with help of the relations Type - Typed between the QoS Characteristic and
the QoS Dimension metaclasses and Compose - Composed by defined over the QoS Dimension metaclass.
The hierarchy established by the service selector allows us to link weights to QoS properties at different
levels. This way, their relative importance is aggregated in accordance with the QoS properties that these
quantify. To account for measurement of QoS Characteristics by QoS Dimensions and quantification of
QoS Dimensions, we classify them into two separate hierarchies. The first is dedicated to benefits, that is,
all quality properties that have to be maximized: availability, reliability, reputation, etc. The second is
designed for costs, involving quality properties to minimize: execution time, failures, cost, etc. Modality
(maximize or minimize) of QoS properties are defined with the attribute direction of the QoS Value class.
The modality of the quality property j is then expressed in ACmodlj These two hierarchies are linked to the
same global optimization goal. This top-down organization clearly indicates the contributions of lower
levels of quality properties to upper ones. The final hierarchy takes the form of a tree. The process used
to get this tree is detailed in lines 7-19 of the Algorithm 1. The second step of the selector is to establish
benefits and costs hierarchies with the information provided by the service requester. The hierarchy
corresponding to user requirements about the vegetation indexes service is illustrated in Figure 4.4.

4.4.3 Priorities as between criteria weights

Information about priorities is used to link weights to QoS Characteristics and QoS Dimensions, in
order to express their respective relative importance. These weights are defined using QoS Priorities

50

4.4 Selection Framework

Figure 4.4: Benefits and costs hierarchies

Benefits

Availability ReliabilityFeedback Security

Trust Reputation Encryption Authentication

Costs

CostLatency

Execution time Network time

Goal

0.4444 0.22220.2222 0.1111

0.0741 0.1481 0.0741 0.0370

0.6667 0.3333

0.5714 0.0952

specifications given by the service user and are linked to the corresponding QoS properties. Once the
hierarchy is established, the relative importance of each QoS property has to be fixed with a weight
reflecting its contribution to the main optimization goal. These weights must be fixed independently for
benefits criteria and for costs criteria in order to consider separately positive and negative QoS properties.
To fix weights on such hierarchies, we use the Analytic Hierarchy Process (AHP) [177]. The Analytic
Hierarchy Process fixes weights to criteria with the help of comparison matrices provided for each level
of criteria. For a same level, each criterion is compared with other criteria of its level on a scale fixed
between 1/9 and 9. Each matrix is build with QoS Priority specifications: rules express direction of
pairwise comparisons of criteria and strength fixes the value chosen by the user on the scale for the
comparison. Rules of priorities between quality properties of the client l are expressed in ACpriorruleslj

and strength of priorities between quality properties of the client l are expressed in AC
priorstrength
lj . Next,

weights of QoS properties are obtained with the computation of the right eigenvector of the matrix.
The eigenvector is computed by raising the pairwise matrix to powers that are successively squared
each time. The rows sums are then calculated and normalized. The computation is stopped when the
difference between these sums in two consecutive calculations is smaller than a prescribed value. The
service selector adopts a top-down approach, the weights of each level being multiplied by the weight of
the quality property of its upper level to determine its relative importance on the whole hierarchy. This
process is performed on both sides of the tree, for positive and negative quality properties. Priorities
processing relates to lines 20-27 of the Algorithm 1. The third step of service selection is to fix weights
for each level of criteria with the AHP method. With the information provided by QoS Priority instance
in Figure 4.3, the service selector is able to build a comparison matrix for dimensions quantifying the
latency (i.e.: execution time and network time). This matrix is

(
1 6

1/6 1

)
. This step refers to the line

26 of the Algorithm 1. The selector computes its eigenvector to obtain weights for these sibling nodes:
0.14286 for Network Time and 0.85714 for Execution Time. These weights are multiplied by weights of
upper levels to determine weights of the whole hierarchy as explained by line 27 of the Algorithm 1. The
final weights for Network Time and Execution Time are respectively 0.0952 and 0.5714. Final weights
of the qualityproperty j for the client l is defined in ACpriorlj . Final weights for the whole hierarchy are
illustrated in Figure 4.4.

4.4.4 Preferences as intra criterion comparison

Preferences information specified by the user on QoS Values is used by the service selector to compute
the intra criterion comparison structure. We use this information to determine what values are preferred
for a given QoS Characteristic or QoS Dimension. The priorities of quality properties have been fixed
with weights reflecting their relative importance in Subsection 4.4.3. Preferences on values allow us
to discriminate services on a given criterion. To quantify these preferences, we rely on a specific class
of MCDM methods: outranking methods [55] and more specifically the Promethee method [25]. The
Promethee method performs pairwise comparisons of alternatives by considering the deviation between
the evaluations on multiple criteria. The more significant the deviation, the higher the preference. We
interpret the higher preference as higher priority herein.

51

4. QOS BASED SERVICE SELECTION

Table 4.1: Available services that meet QoS constraints

Service Exec. time Net. time Cost Av. Trust Reput. Rel. Encrypt. Authent.
1 279 24 16 99 61 86 88 9 8
2 344 11 19 77 90 90 94 6 9
3 331 27 10 88 78 97 98 9 9
4 303 19 18 85 97 85 92 8 9
5 331 13 3 97 79 87 75 9 8
6 306 23 20 93 77 88 82 8 9
7 255 18 5 84 94 88 98 9 9
8 246 15 5 71 81 94 98 8 10
9 255 23 18 95 68 89 82 7 10
10 285 21 15 83 87 88 97 7 99

The result of the pairwise comparison for a criterion to maximize is given by:

Pj(a, b) = Fj [dj(a, b)]∀a, b ∈ A (4.1)

where
dj(a, b) = gj(a)− gj(b) (4.2)

and for which
0 ≤ Pj(a, b) ≤ 1 (4.3)

Where:

• Pj(a, b) is the preference of the observed quality of some service (choice a) over the observed quality
of another service (choice b) over the QoS property j;

• gj(a) is the score of the service a over the dimension j;

• dj(a, b) is the deviation between the choice a and choice b over the QoS property j;

• Fj is the function giving the intra criterion information associated to the QoS property j.

Depending on the inherent characteristics of a given QoS Characteristic or QoS Dimension, the selector
must apply one of six types of functions for intra criterion deviation specified with the QoS Preference
class with the attribute type. These types are outlined in details in [25; 55], each type necessitates some
particular parameters also specified by the user with the QoS Preference class: type 1 is referred to as
immediate preference; type 2 introduces an indifference threshold; type 3 increases continuously up to
this indifference threshold; type 4 comprises an indifference and a preference thresholds; type 5 increases
continuously between indifference and preference thresholds and; type 6 follows a Gaussian law with a
fixed standard deviation.

We give in Table 4.1 the performance of available services able to perform the vegetation indexes
based on MERIS data. With these data, we can illustrate the line 31 of the Algorithm 1.

dexec. time(2, 3) = 13

dexec. time(2, 4) = 41

Fexec. time[dexec. time(2, 3)] = 0

Fexec. time[dexec. time(2, 4)] = 1

The execution time is defined in Figure 4.3 with a preference of the second type with an indifference
threshold of 20 min. The preference of the service 2 over the service 3 for the execution time is 0 because
the time difference is only 13 min. However, the preference of the service 2 over the service 4 is 1 because
the execution time is 31 min which is longer than 20 min.

52

4.4 Selection Framework

In order to establish the respective importance of alternatives, we need to define aggregated preference
indexes and outranking flows.

The aggregated preference indexes are used to express the degree to which the service a preferred to the
service b over all considered QoS Characteristics and Dimensions (written π(a, b)) and inversely, to what
degree is the choice b preferred to the choice a over all considered QoS Characteristics and Dimensions
(π(b, a)). Most of time, a will be of higher priority to b for some QoS properties and b will be of higher
priority to a for others. Therefore, π(a, b) and π(b, a) are usually positive.

π(a, b) and π(b, a) are defined by:{
π(a, b) =

∑k
j=1 Pj(a, b)wj

π(b, a) =
∑k
j=1 Pj(b, a)wj

(4.4)

where wj is the weight associated to the QoS Characteristic or QoS Dimension j derived with the
AHP method and k is the number of distinct QoS properties.

For services providing the vegetation indexes, for the benefits hierarchy, the aggregated preference
indexes over services 2 and 3 are the following: π(2, 3) = 0, 074074 and π(3, 2) = 0, 888889 meaning that
the service 2 is less preferred to the service 3 than the service 3 is preferred to the service 2. These values
have been obtained by multiplying values obtained from comparisons by weights derived from AHP as
explained in Subsection 4.4.3. This step refers to the line 32 of the Algorithm 1.

The outranking flows determine how each choice a is facing the n − 1 other possible choices in A,
the set of all possible alternatives. The positive outranking flow (φ+(a)) expresses how an alternative
a is outranking all the others, the higher its value, the better the alternative. The negative outranking
(φ−(a)) expresses how an alternative a is outranked by n − 1 other alternatives. The lower its value is,
the better is the alternative. Outranking flows are evaluated for QoS properties on each side of the tree,
respectively for benefits and costs hierarchies.

φ+(a) and φ−(a) are defined by: {
φ+(a) = 1

n−1

∑
x∈A π(a, x)

φ−(a) = 1
n−1

∑
x∈A π(x, a)

(4.5)

This step is presented in line 34 of the Algorithm 1. Values calculated for second service delivering
vegetation indexes for the benefits hierarchy are respectively: φ+(2) = 0, 25308 and φ−(2) = 0, 58162.
These values mean that, for the benefits QoS, other services are comparatively better than the service 2.

Once these outranking flows have been determined, several ways of ranking are available. PROMETHEE
I proposes a partial ranking of alternatives authorizing equalities over alternatives while PROMETHEE
II provides a complete ranking of alternatives. In our framework proposal, complete ranking offers more
information than partial one, so we choose to use PROMETHEE II. The complete outranking flow of
PROMETHEE II is defined by:

φ(a) = φ+(a)− φ−(a) (4.6)

The complete outranking flow refers to the line 35 of the Algorithm 1. For the benefits hierarchy, the
complete outranking flow of the second service performing the vegetation indexes is: φ(2) = −0, 32854.

4.4.5 Benefits/costs analysis

Outranking flows on both hierarchies define the relative performance of services on positive properties
(benefits) and negative properties (costs). Benefits should be maximized while costs have to be mini-
mized. In order to aggregate both considerations into a single measure of performance, the AHP MCDM
method proposes to compute the benefits/costs ratio [55]. For each alternative, the benefits/costs ratio is
calculated and this score is linked to each available service as a relative measure of its performance. This
process refers to lines 36-38 of the Algorithm 1. In the last step, the selector computes the outranking
flows for both hierarchies. The selector then computes the benefits/costs ratio of each alternative as
suggested by some AHP variations. The best service is the one with the highest final score.

53

4. QOS BASED SERVICE SELECTION

Table 4.2: Final score of available services

service final score
1 -3.99
2 -0.52
3 0.77
4 -0.51
5 1.55
6 -0.04
7 -0.14
8 0.16
9 -0.09
10 1.42

Table 4.2 presents the score of the relative performance of each service able to perform the vegetation
indexes with the data provided by the MERIS instrument. These scores have been computed with
the benefits/costs ratio explained in line 37 of the Algorithm 1. The service selector determines that the
service whose fits the best the user requirements is the service 5. This service has the highest performance
score has defined in the line 38 of the Algorithm 1.

4.5 Discussion of our Framework

4.5.1 Between criteria weighting

To fix weights to each quality properties, we use the classical AHP procedure proposed by Saaty [177].
However, numerous other methods have more recently appeared. They differ by the information that
the user needs to provide, the calculation process or more specific properties. We overview here some
methods that depend neither on the range of the scale nor the encoding to express the evaluation on this
scale. Simos introduces a method in [194] that is reviewed later by Figueira in [56] which relies on an
order relation over the considered criteria. The strength of the difference between two successive criteria
is introduced by inserting ’blank’ criteria. Bana E Costa introduces MACBETH in [8], a procedure
that proposes a simple questioning procedure to drive the interactive quantification of values through
pairwise verbal judgments of difference of attractiveness between valuable elements. Saaty’s method is
more appropriate to QoS priorities because the AHP method is restricted to application fields that have
’zero’ as a natural limit, MACBETH authorizes concepts with a contrary opposite, the repulsiveness. The
AHP solves the integration of repulsiveness more intuitively, by introducing benefits and costs hierarchies.
Attractive quality properties are parts of the benefits hierarchy while repulsive quality properties are
parts of the costs hierarchy. Moreover, AHP associates one real number with each QoS property while
MACBETH associates an interval of R+

0 with each quality property that is not fixed a priori. In the field
of QoS priorities, this interval is not easily interpreted and the association of one real number to each
property is favored. Mousseau [145] introduces an elicitation technique for importance parameters that
defines an interval on which priorities will be fixed, this method observes within criterion information to
fix weights. Goldstein [63], Hokkanen [77] and Roy [176] also introduce similar methods to fix priorities.
All these methods provide weights that can be used in our selection framework but the AHP method
has an advantage over these methods. With AHP, the user expresses relative importance of criteria
with pairwise comparisons on these criteria. This technique allows to express preference that are not
necessarily transitive or even consistent [178].

4.5.2 Intra criterion comparison

To determine preferences related to Intra criterion information, several methods exist. The AHP method [177]
can be used to express this information but relies on pairwise comparisons and involves cnn−1

2 compar-
isons provided by the service user with c the total number of quality properties and n the total number

54

4.6 Related Work

of alternatives. If we use this technique to determine the performance of alternatives in the context of
service selection, the service user has to specify an huge quantity of information.

Ratings are favored to pairwise comparisons because adding new alternatives has no effect on the rank
of existing alternatives. To fix such ratings, several methods are available: Simple Additive Weighting
(SAW) introduced by Hwang in [81], Simple Multi Attribute Rating Technique (SMART) proposed by
Edwards in [215], outranking methods [55] or Multi-Attribute Utility Theory (MAUT) introduced by
Keeney [108]. Outranking methods are of particular relevance when small differences of evaluations are
not significant in terms of preference [55]. In the context of web services quality, such preferences may
appear, for example: indifference threshold for the Network Time when the difference is lower than 5 ms.
Different outranking methods are available: ELECTRE I, ELECTRE Is, ELECTRE III, Promethee and
etc. In our selection approach, we choose to use Promethee [25]. The particularity of Promethee is its
structure that is based on pairwise comparisons as the AHP method. However, these comparisons are
autonomously computed and only require that the decision maker specifies the type of preference and its
optional parameters. Pairwise comparisons are then easily transformed into ratings.

4.5.3 Hierarchy

The hierarchy organization of the AHP breaks down a problem into its smallest parts and then calls for
only simple pairwise comparison judgments to develop priorities in each hierarchy [178]. Other MCDM
techniques as the SAW [81], the SMART [215] or MACBETH [8] only permit a single level of criteria.
Hierarchies utilization in the context of web services selection allows to consider both QoS Characteristics
decomposition into QoS Dimensions and division of QoS Dimensions into other QoS Dimensions. The
decomposition of quality properties calls for structuring the hierarchy to capture the basic elements of
the problem. User priorities are then defined for concepts at different levels and really correspond to its
expectations. Indeed, when comparing elements at each level, a decision maker has just to compare them
with respect to the contribution of the lower-level elements to their parent element on the tree.

4.5.4 Benefits/costs analysis

The basic concept of benefits/costs analysis comes from economics. It is used in investigating alternative
courses of action and to quantify all positive and negative aspects into a common currency such as dollars.
Their ratio or difference can be calculated to determine whether the benefits outweigh the costs. When
only one project among several options is to be taken, then the project with the highest benefits/costs
ratio would be the most appropriate choice. When using AHP with benefits/costs analysis, the same
approach is taken except that AHP priorities rather than dollars are used as the common currency of
comparison [209]. Costs include economic costs and various intangibles, a benefits/costs analysis is used
when the two are so close in value that both can be considered [55]. The benefits/costs ratio is not the
only proposal to account for both benefits and costs hierarchies, Wedley et al. [214] overview different
possibilities. However, in our selection approach, the benefits/costs ratio is the most easily interpretable,
reflecting the overall quality in respect to the price.

4.6 Related Work

In [118], Lai et al. give a weight to the modules of software by utilizing the AHP. The priorities are
based on the access frequencies of the modules. Jung and Choi report in [96] the results of a case study
where the AHP benefits/costs analysis was employed to support the selection of a multi-media system in
a group decision environment. However, none of these approaches refer to web services and their quality
properties.

Shaikh and Mehandjiev [191] propose a negotiation of attributes in e-business process compositions
involving contracts between the client organization and the organizations which are offering such process
components. Bids are evaluated and selected for the whole composition with the help of the AHP and
involve many attributes of importance to the negotiators, for example: price, quality and flexibility. AHP

55

4. QOS BASED SERVICE SELECTION

is used in this context because of its ability to deal with the mix of quantitative and qualitative attributes
and its general compatibility with the synthesis of decision making. AHP is used through a hierarchy of
attributes to fix their overall weights in the composition process.

Tong and Zhang [203] present a fuzzy MCDM algorithm for web services selection based on QoS.
This approach selects the service with the highest degree of membership belonging to the positive ideal
solution. Negative and positive criteria are considered together and then need to be scaled. Performances
are measured with weighted Euclidean distance to the positive and negative ideal solution.

Liu et al. propose in [124] a QoS computation for dynamic web service selection. Quality properties
vectors are put in a matrix and are then normalized. The normalization allows for an uniform measure-
ment of services qualities independent of units and provide an uniform index to represent service qualities
for each provider. This normalization allows the authors to consider both positive and negative criteria.
The approach also defines how to compute Intra criterion information for each quality property.

Naumann [153] also uses a MCDM technique to select the source of information based on quality
properties. To rank possible execution plans, the SAW method [81] is applied. The user establishes a
weighting of between criteria information and within criterion performance is given by the SAW scaling.
This scaling is different for positive and negative criteria.

Our selection framework has several advantages over the approaches mentioned above. The model
allow the users to easily express their expectations about priorities and preferences that need to be
accounted for during the selection process. We also organize attributes in both separate hierarchies
dedicated to benefits and costs to make appear their respective contributions to the optimization goal.
We define clearly how to compute weights of quality properties and derive the quality of each service
on each quality attribute with the Promethee method. The quality of each service is this way quickly
measured and does not require that the user specifies significant quantities of information.

The Appendix A provides more information about service selection methods.

4.7 Conclusions

We propose a framework for service selection in this chapter. The first part of the framework is an
extension of the UML QoS Framework, enabling the service requester/user to express priorities beytween
QoS criteria and preferences over the values of the QoS criteria. The second part of the framework is a
procedure that uses these rich specifications of QoS requirements for service selection. The constraints
defined by the user on QoS criteria are used to reject available services that do not fulfill some requirements
about their values. The preferences about values stated by the user are used to organize QoS criteria into
positive and negative sets. The priorities specifications account in the weighting of the different criteria,
realized with the AHP method. The pairwise comparisons of values of quality criteria are based on the
preference type defined in the preference specification. Finally, a benefits-costs analysis is performed on
each service alternative to determine the service that best fits the user’s requirements.

Advantages of our approach are the matching between specifications made by the service user and
information required by the service selector. As all the necessary elements are determined by the ser-
vice requester, the service selector’s task can be automated in a straightforward way along the lines of
Algorithm 1. All steps of this algorithm are supported by different multi-criteria methods enabling to
consider the user’s preferences and priorities about QoS properties during service selection.

56

Chapter 5

QoS based Service Composition

This Chapter tackles an essential issue of services management. It proposes a quality driven composition
method enabling to determine the best service composition available according to quality user expecta-
tions. A service composition assembles services to fulfill complex tasks involving multiple operations. The
composition method is the extension of the selection problem presented in Chapter 4 to the simultaneous
choice of multiple services providing different functionalities. As for the selection method proposed in
Chapter 4, the composition method discriminates possible compositions upon basis of quality informa-
tion. The presented method relies on quality information specified with the quality model defined in
Chapter 3.

5.1 Introduction

Problem. A key benefit of service-oriented computing is the modularity of the services [162]. Inter-
operable services can be combined into service compositions, so that they can satisfy together those
expectations of the users, which the services cannot individually satisfy. One important question in re-
lation to service composition is how do we know which services should participate in a composition? In
other words, given a pool of services, which can contain competing services that offer same functionality
at different quality-of-service (QoS) levels, which of these services should be selected so that user’s quality
requirements are satisfied to the most desirable and feasible extent? The answer lies in the procedure
applied to identify the appropriate selection of services, which will subsequently be composed. An as-
sociate difficult issue of interest is how to revise selections as new services become available, and those
used in previously identified selections become unavailable. We shall refer to this second issue as the
exploration-exploitation tradeoff: exploitation consists of relying on observed historical performance of
services, while exploration consists replacing services with new ones.
Contributions. This chapter focuses on the problem of selecting services when there are potentially
many QoS criteria describing the services, and the pool of services varies. In response, we propose a
two-step service selection approach. (1) A method is applied to aggregate QoS level over many criteria
so as to obtain a single rating of a service. (2) The computed ratings of the candidate services are
input to a reinforcement learning (RL) algorithm, which finds the selection of services that maximizes
the overall QoS level delivered to the user. The RL approach is capable of handling variations in the
pool of available services by exploring selections other than those that historical data shows appropriate,
i.e., the algorithm handles the exploration-exploitation tradeoff. Interestingly enough, the introduced
RL algorithm guarantees (asymptotically) optimal exploitation for a given exploration level. Our first
experiments reported here illustrate that, for a given level of exploration, our algorithm is more efficient
than comparable approaches. The contributions of this chapter are the QoS aggregation and the RL
algorithm, so that no commitments are made on, e.g., how composition proceeds once a selection is
identified, how interoperability is ensured, and so on. This ensures that our results are generic. Said
choices are left to the designer.
Organization. We start by presenting the overall abstract model of service selection, in which we define

57

5. QOS BASED SERVICE COMPOSITION

our approach (§5.2). We then explain how to compute individual services’ aggregate QoS ratings when
multiple QoS criteria are defined (§5.3). The RL selection approach is then proposed (§5.4). Comments
on the results of first experiments are then given (§5.5). We close the chapter with the discussion of
related work (§5.6) and a summary of conclusions(§5.7).

5.2 Service Selection Model

The purpose of this section is to introduce the formalism and assumptions that we rely on in the remaining
of the chapter to represent the pool of services together with the process, for which the services need
to be selected. The satisfaction of a user’s requirement typically requires the coordinated execution
of several tasks, that is, the execution of a process. An example of process involving the execution
of several tasks could be a travel planner aggregating multiple component services for flight booking,
travel insurance, accommodation booking, car rental, and itinerary planning [229]. Formalisms such as,
e.g., petri-nets [49] or statecharts [70] are common representations of the process that must be executed
to satisfy a requirement. Given a process description and a pool of services, the service composition
problem aims at determining which of the services from the pool should execute which tasks. Notice that
we cannot apply our approach directly to a statechart or a petri-net. Indeed, in this work, we depict a
process via a directed acyclic hypergraph (DAH).

The translation of a statechart into a DAH must keep the expressiveness of the composition process.
The translations rules that we apply enable us to ensure the expressiveness initially offered by statecharts
while petri-nets involve more elaborated translation rules. Indeed, statecharts allow the definition of
complex processes involving loops, alternatives and concurrency. The DAH offers such advanced concepts
with the help of adaptations described in proposed translation rules. The translation rules are inspired
from Achbany et al. [1], see this work for more details:

1. The composition process is depicted in a statechart with sequence of states [st1, st2, ..., stm], such
that st1 is the initial state, stm the final state, and for every state sti : (1 < i < m).

2. To allow concurrency, sets of concurrent transitions with a common origin state in a statechart
must be labeled with an AND label.

3. If the statechart contains cycles, it must be unfolded into an acyclic statechart. Various techniques
allow to unfold cyclic processes into acyclic ones [112; 160]. This rule enables to handle loops in
the statechart.

4. DAH has a node for each state of the statechart.

5. DAH has an edge for each transition of the statechart. The origin node of the transition is the
node corresponding to the origin state of the transition while the destination node is the node
corresponding to the destination state of the transition.

6. Whenever there is an AND label on a node, the edge between the relevant nodes in the DAH are
labeled with the tuple of states that must be executed concurrently, e.g., [st1, ..., stn]. This rule
enables us to consider the concurrency expressed in statecharts 1.

Thus, a node in our DAH represents a state of the statechart. A link between two nodes depicts the
execution of the task that drives the process between the given states, whereby the execution is performed
by a single specific service from the pool. If there are m links from one node to the other, this means that
there are m different services that can execute the same task: these services are therefore competing, and
will need to be compared in terms of QoS properties (e.g., response time, availability, and so on).

Once translation rules have been applied, we can use the DAH to run the composition algorithm.
The set of tasks that can be executed to complete the process is defined by < t1, t2, ..., tn > where n is
the total number of tasks in the process. E.g., t1 is the task defining the flight booking and t2 is the

1The RL algorithm proposed in Section 5.4 must be extended to allow concurrency with the support of edge labels.

58

5.2 Service Selection Model

APm,i,p,OPm,i,p

...

...

...

...
...

...

...
...

...
...

...

...
...

...

...

...

tf2,t
nf
2

tf3,t
nf
3

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...
...

...

...

...
...

...

...
...

......

...

OP0

T2

T1

T3

TnTi

...

...

tfi,t
nf
i

...

APk1,2,1,OPk1,2,1

APkl,2,i,OPkl,2,i

APkl+1,3,1,OPkl+1,3,j

...

OP0

...

...

...
...

...

...

Figure 5.1: Directed Acyclic Hypergraph representation of the service composition

task defining the car rental. While the process is executed, all tasks do not need to be executed, because
multiple combinations of tasks are available to fulfill the composition. Each task ti is associated to a set
of functional constraints (tfi :< tf1

i , t
f2
i , ..., t

fn
i > where n is the number of functional constraints of the

task ti) and a set non-functional constraints (tnfi :< tnf1
i , tnf2

i , ..., tnfmi > where m is the number of non
functional constraints of the task ti) about the functionality to provide. E.g., tf1

1 states that the task
has to provide the number of available seats and tnf1

1 states that the result has to be executed within 8
seconds.

A given task ti of the process can be realized by different services. si1 , si2 , ..., sin are n services that
can execute the task ti. Each of these competing services can meet the functional requirements tfi of
the task, and meet the threshold nonfunctional requirements, i.e., QoS criteria, tnfi . These services may
be offered by different providers, or the same provider may offer same services at different QoS levels.
Although all these services meet the threshold QoS levels for a given task, it is likely that some meet
values that are more desirable than the threshold values defined in tnfi . E.g., the service s11 is able to
execute the task within 5 seconds. We reasonably assume that the QoS surplus of which a service is
capable is different among services. The user will then be interested in maximizing this surplus.

The user’s QoS surplus is computed according to her QoS requirements, which are given by her pri-
orities over QoS properties (e.g., response time is more important than availability) and her preferences
over values of these properties (e.g., low response time is preferred to slower response time). The set
of all QoS properties is defined by a QoS ontology. The user l – a human or another system – sup-
plies the nonfunctional requirements by giving values for all QoS properties, that is, supplies the tuple
<ACl1,ACl2,...,ACln > where n is the total number of quality properties. This tuple is discussed in detail
below (§5.3.1).

QoS properties of a service are given in two distinct sets: the QoS levels advertised by the providers,
and the QoS levels actually observed in past executions. The set of QoS levels advertised by the provider
k of the service α fulfilling the task i is given by <APkiα1,APkiα2,...,APkiαn > where n is the number of
QoS properties. E.g., AP1111 states that the service s11 advertises an delay of 4 seconds for the execution
time quality property. The set of QoS levels previously observed when the service α was fulfilling the
task i is given by tuple <OPkiα1,OPkiα2,...,OPkiαn >, where n is again the number of QoS properties. E.g.,
OP1111 refers to an observed execution time of 5 seconds.

Figure 5.1 illustrates the representation of a process in the described framework. Each task is asso-
ciated to its functional (tf) and nonfunctional requirements (tnf). Each service edge is associated to its
advertised (AP) and observed (OP) QoS levels. There are links between two nodes only if the predecessor
task and the successor task belong to successive tasks of the process.

Figure 5.1 illustrates a process involving several tasks. t1 is a fictional task standing for the beginning
of the process and tn is a fictional task standing for the end of the composition. Edges at destination to
tn have no QoS capabilities advertised and all are associated to the same neutral value (OP0). Remark
finally that the DAH is not frozen over time. As the pool of services varies, the hypergraph obtains new

59

5. QOS BASED SERVICE COMPOSITION

links, while others may be removed. New services can enter on the composition, old ones can disappear
and, their QoS properties can change, since, e.g., the nonfunctional properties advertised and actually
observed of a service can vary over time.

Service composition is the responsibility of the service selector, denoted Selector below. This com-
ponent is assigned to a process. Selector receives the DAH and acts as an interface between the user of
the process and the providers of the services that can be involved in the process. In selecting services,
the Selector will favor services with more desirable QoS levels. The Selector also ensures an appropriate
tradeoff between the exploration of possible paths through the DAH and the exploitation of results of
past traversals. At each execution (equivalently, traversal), Selector evaluates the services used in the
process according to their observed QoS levels. While a service is being executed, Selector observes the
delivered QoS value (OP) for each of the QoS properties in the set <ACl1,ACl2,...,ACln > of the client l’s
QoS requirements. These values are aggregated with the service evaluation process defined below (§5.3)
in order to obtain a global rating of the service performance. The better the global rating of the service,
the higher its probability of being selected in future executions of the process.

Remark that the observed QoS value is obtained only after the service executes. The Selector con-
sequently uses past observations in selecting services for the next execution of the process. To select
services that will enter in the composition, Selector maintains a database of QoS levels offered in the
past, for each service, each execution, and each QoS parameter.

At this point, we have a framework with DAH as the description of all possible allocations of services
to tasks in the process, the QoS parameters, the concepts of required, advertised, and observed QoS
levels, and the Selector component. We thus move to the problem of how to compute the aggregate QoS
of each service in the next section.

5.3 Service Evaluation

The aggregate QoS rating of a service is computed using three inputs:

1. User’s QoS requirements. (AC) Given a set of QoS properties, the input required by the Selector
from the user are the user’s preferences over the values of these properties, and the user’s priorities
over the properties [103]:

(a) Preferences are used by the user l to define its expectations about values of quality properties.
These expectations associate a modality (i.e., maximize or minimize) to a QoS property j

(ACmodlj), and give a maximal (for quality properties to maximize) or minimal (for quality
properties to minimize) value to each quality property j (ACoptlj). E.g., the user wishes to
minimize the execution time with a 2 seconds minimal value.

(b) Priorities determine the relative importance that the user l gives to QoS properties. Each QoS
property j is given a weight (ACpriorlj) defining its importance relative to other QoS properties.
E.g., the user gives more importance to the execution time than to the availability of the
service.

2. Advertised QoS values for each service. If a service has not yet been executed, Selector has no
information about past executions. To evaluate the quality of the service it can only use QoS
information advertised by the provider of the service: i.e., the set of advertised QoS values AP.

3. Observed QoS values for each service. After a service executes, Selector can update the rating of
the service from the observed QoS values OP.

We first discuss the notions of preference (§5.3.1) and priority (§5.3.2) used here. We then explain
how to compute the QoS rating of a service (§5.3.3).

5.3.1 QoS preferences

A user’s preferences are given in two tuples, ACmod and ACopt:

60

5.3 Service Evaluation

• ACmod contains a modality for each QoS property. A modality is either maximize (e.g., availability),
which is denoted 1 in the tuple, or minimize (e.g., execution time, cost), denoted 0 in the tuple.

• ACopt gives the threshold value for each QoS property. The threshold value is the user’s worst
acceptable value for the QoS property.

5.3.2 QoS priorities

The tuple ACprior carries a user’s priorities over QoS properties. The priorities of quality properties are
expressed by weights reflecting the importance that the user gives to each of them. The weights are
derived from the order relationship given by the customer on quality properties. E.g., the customer gives
more importance to the cost than to the execution time, the weight for the cost QoS property will be more
important than the weight of the execution time QoS property. These weights are relative weights, i.e.,
these reflect the relative importance of each quality property in comparison with other quality properties.

To determine such relative weights, we rely on Multi-Criteria Decision Making (MCDM) methods [55].
Among existing methods [78; 145; 177; 194], we use the Analytic Hierarchy Process [177]. This method
is well suited to priorities definition because it lets us fix weights to different criteria with the help of a
comparison matrix of QoS properties. The user defines in this matrix the importance and the direction
of the comparison for each pair of quality properties. Each quality property is compared with other
criteria with an importance on a scale fixed between 1/9 and 9. The direction defines if a QoS property
is more or less important than another. For a pairwise comparison x between QoS properties A and B :
AxB, A is more important than B if x > 1 and A is less important than B if x < 1. E.g., the user
fixes the pairwise comparison between the execution time and the availability to 5. This means that the
execution time is five times more important than the availability according for the user. Similarly, the
pairwise comparison between the availability and the execution time is 1/5, meaning that the availability
is five time less important than the execution time QoS property. The weights of the QoS properties
are obtained with the computation of the right eigenvector of the matrix. The eigenvector is computed
by raising the pairwise matrix to powers that are successively squared each time. The rows sums are
then calculated and normalized. The computation stops when the difference between the sums in two
consecutive computations is smaller than a prescribed value. The values get are associated to QoS
properties. For each QoS property j, ACpriorlj has one weight.

5.3.3 Computation of the QoS rating

The rating for a transaction is a function of (i) the advertised QoS level (AP) or the observed QoS level
(OP) by the provider of the service s; (ii) the preferences on values of C: their modalities ACmod and their
optimal values ACopt, and; (iii) the priorities of C on quality properties: ACprior.

To compute the rating of a service, we use an MCDM method, namely the Simple Additive Weighting
(SAW) [81]. This method is based on the weight average; we multiply for each QoS property its relative
score according to user’s preferences (ACopt and ACmod) by their respective weights defined in ACprior.
Next, these products are summed for all QoS properties. The formula we apply to compute rs according
to the user l, the rating of a service s is as follows:

rs =

n∑
i=1

(
ACmod

lj AC
prior
lj

XPkiαj

AC
opt
lj

+ (1− ACmod
lj)ACprior

lj

AC
opt
lj − XPkiαj

AC
opt
lj

)

Above, k is the provider of the service α fulfilling the task i, n is the number of QoS properties and
XPkiαj is the advertised QoS level of the property i (APkiαj) or the actually observed QoS level of the
same property (OPkiαj), in case Selector has information about the past executions of s. When QoS
properties have to be maximized (ACmodlj =1), then the QoS level is computed with XPkiαj

AC
opt
lj

. When quality

properties have to be minimized (ACmodlj = 0 ⇒ (1 − ACmodlj) = 1), then the Qos level is computed with
AC
opt
lj −XPkiαj
AC
opt
lj

.

61

5. QOS BASED SERVICE COMPOSITION

The service evaluation process provides a rating rs ∈ [−1, 1] for a given service s with −1 the worst
value and 1 the best value. This rating is used to compute the cost of an edge on the composition. The
aim is to minimize the total cost of the composition, so that the cost of an edge is an inverse function of
the rating, i.e., a service with a good rating will have a low cost. The cost of edges is fixed between 1
and 2, so the cost cs of an edge representing the service s ∈ [1, 2] The transformation function between
rs and cs is cs = 1 + ((1− rs)/2).

5.4 RL-Based Composition

5.4.1 Baseline

To solve the composition problem, we use an analogy to the shortest path problem. The aim of the
shortest path problem is to find a path between two nodes such that the sum of the costs of edges on
the path is minimized. In our service composition approach, we instantiate the edge cost by an inverse
function of the QoS rating of the service associated to this edge. The cost of an edge is then proportional
to the overall quality of the service, i.e., if the service has a good rating, the service has a higher probability
to be selected for a future composition than when it has a lower rating. The cost is set on edges and
reflects the QoS level of services represented on their successor nodes.

To solve this shortest path problem, we use a Reinforcement Learning [200] (RL) approach; further
details are given in Subsection 5.4.2. RL is concerned with how an agent ought to take actions in an
environment to maximize its long-term reward. Here, RL is used to select services to execute while
maximizing the client’s QoS surplus of service compositions.

To find best solutions, the RL approach continuously updates the parameters of QoS performance
observed after executing the process. Moreover, once the optimal solution is found, compositions continue
to be explored, so that we take into account changes in the pool of available services and/or the QoS levels
that the services provide. The approach ensures that either past optimal compositions will be returned,
or other compositions will be explored to determine if improvements can be made to historically optimal
compositions.

To adapt RL to the services composition problem, we make the following assumptions:

• Before the process has been executed for the first time, the cost of each edge is set according to the
QoS level advertised by the provider of the service. However, once the process is executed, the cost
of the edges are updated with the QoS level observed in these executions. The user initially knows
the QoS advertised by the different providers. With executions, the different possible services are
executed and the user estimates the realistic as opposed to advertised QoS values for the services.
These values are updated after each execution to take into account the QoS levels to expect from
the services.

• Advertised and observed QoS values can change over time. At each execution, these values are
memorized and the cost of the edge is computed, and used in subsequent composition choices. This
continual updating can therefore accommodate the variations in the pool of the services and their
advertised and observed QoS levels.

5.4.2 Reinforcement learning based on randomized shortest paths

We introduce here a reinforcement learning framework that ensures (asymptotic) optimal, continual,
exploration in a static environment based on randomized shortest paths (RSP, see [179]). The obtained
policy (i.e., composition) is optimal in that it minimizes the expected cost to reach the goal node for
a given exploration level. As noted above, continual exploration is particularly important in services
composition as the pool of services can change, along with the services’ advertised and observed QoS
levels.

Let us assume we are given a weighted directed graph with costs ckk > 0 associated to each arc. ckk′ is
either a function of QoS advertised f(APkiαj) or actually observed f(OPkiαj) for the service α represented

62

5.4 RL-Based Composition

with the edge kk′ as described in Subsection 5.3. For nodes l, l′ not connected by an arc, an infinite cost
is assumed, cll′ = ∞ so that no jump through this arc is possible. Service compositions are initiated in
the network by agents sent from some initial node (assumed to be node of he initial task t1); their main
objective being to reach some goal, destination node (node of the task tn where n is the total number of
nodes) with minimal expected cost.

The RSP framework developed in [179], and following [2], tells us that the optimal policy minimizing
the total expected cost for reaching the goal node while maintaining a constant exploration through
the graph can easily be computed from an intermediary matrix, W, containing as elements wkk′ =
exp(−θckk′) for k 6= n and wnk′ = 0, where θ regulates the exploration. By policy, we mean the
assignment, in each node k, of a probability distribution pkk′ of jumping to a neighboring node k′.
This policy therefore specifies how an agent walks through the graph. The exploration of the graph
is quantified by the total expected entropy encountered by an agent during a trajectory or episode,
H = −

∑
k nk

∑
k′ pkk′ log(pkk′) where nk is the expected number of passages through node k during

his trajectory (or episode) from the starting node to the destination node. The total expected cost
accumulated over an infinite horizon is minimized, when starting from the initial (or source) node k0,
and following policy π, vπ(k0) = Eπ

{∑∞
t=0 cstst+1 |s0 = k0

}
[179]. Since the total expected entropy is

a monotonic decreasing function of the parameter θ, it is easier to control θ instead of the entropy H.
When θ →∞, the policy converges to the deterministic shortest-path policy while when θ → 0, the agent
performs a blind random walk with a uniform distribution of jumping to each neighboring node (and
thus not taking costs into account).

It can be shown that the optimal policy, denoted by popt
kk′ , is provided by (see [179] for details)

popt
kk′ =

wkk′zk′n
n∑
l′=1

wkl′zl′n

, with k 6= n (5.1)

where the zkn values are
znn = 1
zkn =

∑
k′∈S(k)

wkk′zk′n (5.2)

and S(k) is the set of successor nodes of node k. Equation (5.1) provides the optimal policy corresponding
to a given level of exploration θ. It corresponds to the probability distribution of jumping to a neighboring
node k′ in each node k 6= n. When following this policy, each path ℘r from the initial node to the destina-
tion node, i.e., each service composition, has a probability of P(℘r) = exp(−θC(℘r))/

∑
r exp(−θC(℘r))

of being chosen, where ℘r is the path number r and C(℘r) is the total cost associated to that path [179].
Thus, highly desirable service compositions have a high likelihood while undesirable service compositions
are associated to a low likelihood.

Let us now recast this procedure into a reinforcement learning algorithm where the agent observes
dynamically the costs and updates his policy while exploring. It suffices to transform Equation (5.2):

zkn =
∑

k′∈S(k)

wkk′zk′n (5.3)

=
∑

k′∈S(k)

popt
kk′

(
wkk′

popt
kk′

zk′n

)
(5.4)

= E

[
wkk′

popt
kk′

zk′n

]
(5.5)

Reinforcement learning aims is to directly estimate the expectation from the observation of the imme-
diate cost and the value of zk′n in the next node k′ [200]. There is a large range of potential techniques
for doing that, depending on the problem at hand (see for example [27; 197]). One could simply use ex-
ponential smoothing or, alternatively, rely on a stochastic approximation scheme by letting α(t) decrease

63

5. QOS BASED SERVICE COMPOSITION

Algorithm 2 Computation of the optimal policy while fixing the exploration of the network: a simple
reinforcement learning algorithm.

Require:
• Node 0 is the initial node while node n is the goal node.
• θ > 0: the parameter controlling the degree of exploration.
Initialize ĉkk′ = f(saQoSkk′) if arc (k, k′) exists; ĉkk′ =∞ otherwise
Compute ŵkk′ = exp(−θĉkk′)
Initialize ẑkn = 1
t← 0 { t is the episode counter}
repeat
k ← 0 { start an episode at initial node 0}
repeat

Choose next node k′ according to probability p̂opt
kk′ =

ŵkk′ ẑk′n
n∑
l′=1

ŵkl′ ẑl′n

Follow the arc (k, k′) and observe the current cost, ĉkk′ ← ckk′ = f(soQoSkk′)
Compute ŵkk′ = exp(−θĉkk′)

Update ẑkn ← ẑkn + α(t)

[
ŵkk′

p̂opt
kk′

ẑk′n − ẑkn

]
until the goal node n is reached, k′ = n { episode number t is over}
t← t+ 1

until convergence of the policy
return The policy (transition-probabilities) matrix containing the elements p̂opt

kk′

over time t,

ẑkn ← ẑkn + α(t)

[
ŵkk′

p̂opt
kk′

ẑk′n − ẑkn

]
(5.6)

which converges for a suitable decreasing policy of α(t) ∈]0, 1[[197]. The hats in Equation (5.6) denote
estimated values. This leads to the reinforcement learning scheme detailed in Algorithm 2.

Computational complexity

The computational complexity of this algorithm is similar to the complexity of the SARSA reinforcement
learning algorithm [200], and is difficult to quantify exactly for various reasons [104], among others,
because of its stochastic nature.

5.5 Experimental Results

5.5.1 Comparison to classical competing methods

This subsection details the first experiments with Algorithm 2 presented. The experiments are based on
the process given in Figure 5.1. For all services s and QoS properties j, APkiαj and OPkiαj were randomly
assigned with APkiαj ≥ OPkiαj , reflecting that providers usually overestimate their performances. The
rating of a service s, rs, is initialized with saQoS when the service s has not yet been executed and
computed with soQoS after the execution of the service. rs then belongs to the interval [−1, 1]. It has
been further assumed than cs = 1+ 1−rs

2 and that, the cost associated to the edge representing the service
s, cs belongs to [1, 2].

The aim of our experiments is to show that for a given degree of exploration, our approach provides
the most efficient solution. We therefore compare our approach to two similar standard methods of
exploration: ε-greedy and Bolztmann [200]. The most efficient solution is the one that maximizes the
QoS surplus offered to the client of the process. As the QoS surplus is an inverse function of the cost

64

5.5 Experimental Results

0,47

1,05

1,65

2,25

3,11

0,53

1,08

1,74

2,42

3,29

1,89

2,73

3,98

5,50

7,45

0

1

2

3

4

5

6

7

8

4 5 6 7 8

C
o

st
 d

if
fe

re
n

ce
 w

it
h

 o
p

ti
m

al

so
lu

ti
o

n

Entropy level

RL Bolztmann e-greedy

Figure 5.2: Comparison to similar methods

assigned to edges associated to services, the most efficient solution is the one that minimizes the cost of
the composition.

Figure 5.2 illustrates the results of our experiments. For five given levels of entropy, we compute
the main cost of composition executions and compare it to the cost of the optimal solution based on
Algorithm 2. The Figure 5.2 shows that the difference between the optimal cost and the mean cost
provided by the different methods is the smallest for our RL approach.

The result are based on 20,000 process executions for the following entropy levels: H = 4, 5, 6, 7, and
8. The whole procedure was launched 20 times (runs) and average results are computed on these 20 runs.
The QoS level offered (OP) of all services of the process was modified after 10,000 executions to reflect
changes that can occur in the services behavior. We show that for all entropy levels, our method has
the smallest cost difference and is then the most efficient. We clearly observe that our method provides
much better results than the ε-greedy (e-greedy) method and our results are slightly better than those
provided by the Bolztmann method (Bolztmann).

However, the proposed composition method is not easily generalized to the stochastic shortest path
problem with a stochastic action-path transition.

5.5.2 Entropy impact to variations of quality level

The second experiments involving the RL algorithm illustrate the effect of the entropy on the service
composition problem. These experiments underline the adaptation abilities of the RL algorithm while
the QoS offered by providers is changing over time (dynamic environment). The adaptation abilities are
observed at different levels of entropy, depending on the θ parameter. The experiments are based on the
process provided in Figure 5.1.

We initially define a shortest path on the process in which costs cs of services s belonging to the
shortest path are set to 3. All other services s of the process have costs (cs) set to 6 (Configuration A).
The whole simulation includes 20000 runs of the service composition. To simulate the adaptation of the
RL algorithm, we modify the quality levels offered after 5000 runs. To modify the quality levels offered,
we set the costs (cs) of services s that were previously set to 6 to their new value: 1 (Configuration B).
The best path identified for the firsts 5000 runs becomes the worst with all other paths outperforming
its capabilities. We observe the process adaptation for different levels of entropy (i.e.: different values of
the θ parameter). The Figures 5.3, 5.4, 5.5, 5.6, 5.7 and, 5.8 illustrate respectively the evolution of the
average cost of the service executions with θ = 0.5, 1, 1.5, 2, 2.5, 3.

We can observe that when the entropy is high (low θ value), the service composition is adapted quickly.
With a small entropy (high θ value), the composition needs more time to be tuned. However, the average

65

5. QOS BASED SERVICE COMPOSITION

cost is depending also depending on the entropy. The average cost can be smaller with a high θ value
(e.g.: θ = 2 in Figure 5.6) than with a low θ value (e.g.: θ = 1 in Figure 5.4).

We made additional experiments to illustrate the RL algorithm behavior in a highly dynamic en-
vironment. Rather than modifying the quality levels after 5000 executions, we alternate quality levels
(Configuration A and Configuration B) after each set of 2500 service compositions. Initially, the quality
levels are defined with Configuration A. After 2500 executions, these are defined with Configuration B. Af-
ter 5000 executions, the quality levels are again defined with the Configuration A. The configurations are
continuously modified until the end of the 20000 executions. These adaptations to the dynamic environ-
ment are observed for different levels of entropy. The Figures 5.9, 5.10, 5.11, 5.12, 5.13 and, 5.14 illustrate
respectively the evolution of the average cost of the service executions with θ = 0.5, 1, 1.5, 2, 2.5, 3.

We can conclude that the RL algorithm adapts quickly with a low θ value. However, a low θ value
implies a continual exploration of the process and the utilization of suboptimal services. The entropy level
must be adapted according to the dynamic degree of the environment. A stable environment requires
mainly exploitation of results while a very dynamic environment requires exploration of available services
compositions. Finally, some values of θ provide better average costs than others (e.g.: θ = 1.5 in
Figure 5.11). The θ parameter could be adapted to the composition process in a further step of the
algorithm.

5.6 Related Work

QoS-based resolution of service composition has been considered in other work [69; 91; 123; 161; 227; 229;
231]. Although these proposals rely on QoS, most them give a static definition of QoS. QoS properties
accounted in the selection or composition are most of the time already determined and do not reflect
choices of the user. Zhang et al. [231] minimizes the throughput and the response time while Jaeger et
al. [91] aggregates a set of QoS properties (execution price, availability, reliability, duration and reputa-
tion). Our approach gives more freedom to the user and leaves open the QoS ontology, so that the user
can decide which QoS properties will be accounted during composition.

Most QoS based composition methods relies on an aggregate of QoS properties. The aggregation
process is, however, not always well defined. We expressed user’s requirements via priorities between
quality properties and preferences over the values of quality properties. Preferences have already been
addressed in other approaches with a direction attribute to indicate if a property has to be minimized or
maximized [91; 123; 153; 229]. However, our definition of the optimal value summarizes how to evaluate
the performance of a service from the user requirements. The priority expectations is defined in some
proposals with means of a weight attribute associated to quality properties. However, there are no clear
instructions about how the weighting is made [30; 69]. We thereby fill the gap between the requirements
of the client and the weighting of QoS properties.

Most existing QoS composition approaches aim at summing QoS values of services entering in the
composition rather than computing their individual performance [91; 227; 229; 231]. Our proposal focus
on the individual evaluation of each service candidate to the whole composition. Our approach also has
the interesting property of being able to accommodate changes in the pool of services and the variations
of their advertised and observed QoS levels. Observe that we do not need to compute all possible paths
when a new service enters to determine its performance. In contrast, many composition methods propose
solutions for a fixed composition schema, without the possibility of adding and removing candidate
services [15; 30; 114].

Ko et al. [114] suggest a QoS-oriented web service composition planning architecture. This architec-
ture maintains expert-made composition schemes in a service category and assists a user to choose the
schema to use. Chen and Zhang [37] propose an ant colony algorithm to schedule large-scale workflows
with various QoS parameters. This algorithm enables users to specify their QoS preferences as well as
define the minimum QoS thresholds. The objective of their algorithm is to find a solution that meets all
QoS constraints and optimizes the user-preferred QoS parameter. Kormaz and Krunz [117] formulate an
algorithm to find a feasible route that satisfies end-to-end QoS requirements of a request while efficiently

66

5.7 Conclusions

using resources. They propose a randomized heuristic search to find a feasible path. All these proposed
approaches to the service composition and/or selection issue involve QoS calculation to define the effi-
ciency of a composition. However, most of these solutions are static, i.e., each time a service changes its
quality possibilities, the approach must be executed again. Our approach enables a continual exploration
of the dynamic environment of service compositions. In the context of an evolving environment, we
provide more interesting results.

In comparison to our previous work [101], this approach gives better results. Here, the entropy is
assigned globally rather than at each node. The global spread of entropy allows us to assign automatically
the entropy at each node to provide better results for a given exploration rate. More details on this aspect
can be found in [179].

The Appendix B provides more information about service composition methods.

5.7 Conclusions

This chapter focused on the problem of service composition in a particular, but realistic setting. The
setting has the following characteristics:

1. potentially many QoS properties describe services’ QoS levels;

2. the pool of available services can change over time;

3. the QoS levels advertised by the service providers can change over time;

4. the QoS levels actually observed after the execution of services can change over time;

We proposed a two-step service composition approach applicable to settings having the characteristics
cited above. The first step amounts to aggregate QoS level over many criteria so as to obtain a single
rating of a service. The second step consists of using the computed ratings of the candidate services as the
input to a reinforcement learning (RL) algorithm, which finds the composition of services that maximizes
the overall QoS level delivered to the user. The algorithm continually updates the QoS ratings to reflect
changes of the kinds 2–4 above. Our first experiments reported here illustrate that, for a given level of
exploration, our algorithm is more efficient than comparable approaches. Our proposal is generic, in the
sense that we make as little commitments as feasible: e.g., we do not commit to a QoS ontology, how
composition proceeds once a composition is identified, how interoperability is ensured, and so on. This
ensures that our results are generic. Said choices are left to the designer.

67

5. QOS BASED SERVICE COMPOSITION

40 60 80 100 120 140 160 180 200
8

10

12

14

16

18

20

22

24

(# Runs)/100

A
v
e

ra
g

e
 C

o
s
t

Figure 5.3: Evolution of the average cost with θ = 0.5

40 60 80 100 120 140 160 180 200
8

10

12

14

16

18

20

22

24

(# Runs)/100

A
v
e

ra
g

e
 C

o
s
t

Figure 5.4: Evolution of the average cost with θ = 1

40 60 80 100 120 140 160 180 200
8

10

12

14

16

18

20

22

24

(# Runs)/100

A
v
e

ra
g

e
 C

o
s
t

Figure 5.5: Evolution of the average cost with θ = 1.5

40 60 80 100 120 140 160 180 200
8

10

12

14

16

18

20

22

24

(# Runs)/100

A
v
e

ra
g

e
 C

o
s
t

Figure 5.6: Evolution of the average cost with θ = 2

40 60 80 100 120 140 160 180 200
8

10

12

14

16

18

20

22

24

(# Runs)/100

A
v
e

ra
g

e
 C

o
s
t

Figure 5.7: Evolution of the average cost with θ = 2.5

40 60 80 100 120 140 160 180 200
8

10

12

14

16

18

20

22

24

(# Runs)/100

A
v
e

ra
g

e
 C

o
s
t

Figure 5.8: Evolution of the average cost with θ = 3

68

5.7 Conclusions

0 20 40 60 80 100 120 140 160 180 200
8

10

12

14

16

18

20

22

24

26

28

(# Runs)/100

A
v
e

ra
g

e
 C

o
s
t

Figure 5.9: Evolution of the average cost with θ = 0.5

0 20 40 60 80 100 120 140 160 180 200
8

10

12

14

16

18

20

22

24

26

28

(# Runs)/100

A
v
e

ra
g

e
 C

o
s
t

Figure 5.10: Evolution of the average cost with θ = 1

0 20 40 60 80 100 120 140 160 180 200
8

10

12

14

16

18

20

22

24

26

28

(# Runs)/100

A
v
e

ra
g

e
 C

o
s
t

Figure 5.11: Evolution of the average cost with θ = 1.5

0 20 40 60 80 100 120 140 160 180 200
8

10

12

14

16

18

20

22

24

26

28

(# Runs)/100

A
v
e

ra
g

e
 C

o
s
t

Figure 5.12: Evolution of the average cost with θ = 2

0 20 40 60 80 100 120 140 160 180 200
8

10

12

14

16

18

20

22

24

26

28

(# Runs)/100

A
v
e

ra
g

e
 C

o
s
t

Figure 5.13: Evolution of the average cost with θ = 2.5

0 20 40 60 80 100 120 140 160 180 200
8

10

12

14

16

18

20

22

24

26

28

(# Runs)/100

A
v
e

ra
g

e
 C

o
s
t

Figure 5.14: Evolution of the average cost with θ = 3

69

5. QOS BASED SERVICE COMPOSITION

70

Chapter 6

User Profiling

This Chapter outlines a method enabling to define user profiles of services requesters. This method relies
on quality information specified with the QVDP model proposed in Chapter 3. To increase the efficiency
of services management, this method proposes to automatize the service selection with results of past
transactions. The Chapter 4 outlined a selection method relying on quality specification of stakeholders.
The method proposed in this Chapter relies on quality information but also on other criteria as the brand
image effect or the possible optimism/pessimism of services requesters. We propose to define user profiles
according to such criteria and results of past transactions. The definition of user profiles is useful to
predict the satisfaction of a user regarding a service transaction. The satisfaction prediction will then be
used to select and predict services executions that meet requester’s expectations.

6.1 Introduction

Reputation has a critical role in any system where service providers and service users meet to effect
transactions. Just as a price of a service is supposed to signal the value that the market participants see
in a having the service delivered, the reputation (score) of a service provider is supposed to signal the
extent, to which service user can trust the providers’ announcement of the quality of service that it will
deliver in a transaction.

A price of a service can be unreliable, in the sense that it departs from the price that would have been
set through the match between the demand and supply of that service in a given market. An unreliable
price will affect the relationship between demand and supply, making the market, broadly speaking,
inefficient. Since reputation is a signal similar to a price, in that it affects the choice of buying one service
from one provider or another, the reliability of a reputation score is critical for the efficient operation of
a market.

To pursue the analogy between prices and reputation scores, a reputation score can be “fixed”, in
the same way that a price can be “fixed” on a market. An important aspect, in which prices and
reputations differ however, is that fixing the former is against the law, as the theory of anti-trust legislation
illustrates. In absence of legislation, research surveyed further down (§6.5) focused on the design of
incentive mechanisms intended to motivate the provision of honest feedback, as opposed of that which is
strategically manipulated to suit the aims of particular market participants.

A service provider’s reputation is a function of the feedback, given after every past transaction by
the users of this provider’s service. It is reasonable to expect a reliable reputation score to reflect the
differences between the quality levels advertised by the provider, and those delivered in transactions.
The motivation for the work presented in this chapter comes from the observation that even if it is
possible to compute honest feedbacks, the resulting reputation score can be unreliable. This is due to
interpersonal differences in human users of the services, and the simple observation that quality is a
subjective experience. Two honest users can still provide different feedbacks, even if the service provider
advertised and delivered the same quality levels to both of them.

71

6. USER PROFILING

Updated

f CP OP

After the transaction

AC C

P1 AP1

Before the transaction

P

Pn

AP

APn

M

M

...
...

...
...

... ...

Figure 6.1: Symbols representing the actors and information involved before and after a transaction.

Our response to the potential unreliability of honest reputation scores is to identify sources of bias
other than dishonesty, and explain how to compute them. In the rest of the introduction, we outline
more precisely the context and some terminology that spans this chapter (§6.1.1), then state the problem
(§6.1.2), and outline our contributions (§6.1.3).

6.1.1 Context

In this chapter, we are interested in a system, in which many providers and clients participate. Clients
provide requirements, and providers deliver services, which satisfy these requirements. Since more than
one provider may be able to deliver the same service, a third kind of participants are mediators, which
choose among competing providers on the behalf of clients. A transaction involves a client, a mediator,
and a set of providers. The steps of the transaction are: (1) the client provides requirements; (2) the
mediator chooses among the providers the one to deliver the service according to the requirements; (3)
the client observes the output of the service; (4) the client provides feedback. We assume that a client
observes at no cost the reputation of the various providers.

We consider that in a transaction, the provider P fulfills some request of a client C (in other words,
P delivers a service to C). Prior to the transaction, each P advertises its tuple AP of quality levels that it
can deliver when performing a request. E.g., a value in the tuple may indicate that P achieves a response
time of X milliseconds. Values advertised via AP need not be honest: P may state values that differ from
its actual abilities. Also prior to the transaction, each C announces a tuple AC of quality requirements. In
order for the transaction to take place, for a given C, an agent M compares alternative Ps that can satisfy
AC, and selects one P on the basis of its AP and its reputation score RP, as illustrated in Figure 6.1.

After the transaction takes place, C observes a tuple OP of delivered quality values. C leaves feedback,
which is a unique feedback value f. M updates the reputation score for the relevant provider, whereby a
reputation score of P is an aggregate RP (henceforth denoted only R) of feedbacks of past transactions.

R is important because it is an input to the decision procedure used in selecting among competing
providers. It is therefore essential to ensure that the reputation score is reliable. A reliable reputation
score reflects true past differences between the announced AP and observed OP levels of quality of provider
agents in each transaction. R is a function of AP and OP from past transactions. Ideally, R will only
depend on AP and OP.

In reality R depends, however, on more than AP and OP from past transactions. Since R affects
the probability for a provider agent to be selected for future transactions, strategic manipulation of
feedbacks is bound to happen in order to manipulate Rs in favor or against particular Ps. In such a
case, R depends on additional parameters, themselves determined by C’s considerations that may have
nothing to do with P’s AP and OP. This makes Rs unreliable, for they may be manipulated to induce
to error in selecting Ps for future transactions. In response, attention has been placed on the design of
incentive mechanisms that motivate honest feedback. E.g., Jurca and Faltings [98] describe an incentive
mechanism that supports the equilibrium where truthful feedback is obtained in an electronic market.
Dellarocas [42] proposes a set of mechanisms intended to significantly reduce and ideally eliminate the

72

6.1 Introduction

negative effects of fraudulent behavior, such as when conspiring buyers intentionally give unfair scores to
sellers, or when sellers discriminate on the quality of service they provide to buyers.

6.1.2 Problem

Effectively, reputation scores never reflect the aggregation of honest feedbacks. In other words, even if we
manage to ensure that feedback is honest via incentive mechanisms or otherwise, we cannot ensure that
the human users who provide feedback via Cs are homogeneous. The main source of the problem is that
quality is a subjective experience: two human users may give different honest feedback for exactly the
same true difference between AP and OP. This is an uncontroversial claim, well established in management
science (for surveys, see [165; 175]) and noted in software engineering (e.g., [113]). In our terminology, an
honest R varies across human users, for whom Cs are proxies. With this in mind, the pressing question is:
How to account for human users’ interpersonal differences in order to determine the origin of unreliable
R?

6.1.3 Contributions

In response to the problem, we propose to observe the reliability of reputation scores by accounting for
differences in human users’ feedback profiles. To this aim, we describe a method for computing users’
feedback profiles. The method computes feedback profiles by comparing, at each transaction and for each
C, “true” feedback f̄ with the feedback f given by C after the transaction, whereby f is elicited from C.

True feedback f̄ is an estimate of the feedback that abstracts from the user’s feedback profile. True
feedback f̄ is a function of (i) C’s preferences on values of quality properties (e.g., lower values of response
time are preferred to higher ones), (ii) C’s priorities (equivalently, importance) over quality properties (e.g.,
availability is more important than response time), (iii) AP, which gives the values of quality properties
advertised before the transaction (i.e., quality levels proposed by P), (iv) OP, which gives the values
of quality properties observed after the transaction (i.e., quality levels delivered by P). We reasonably
assume that feedback reflects a user’s perception of quality, which leads us to compute f̄ according to
the established conceptualization of perceived quality in management science. According to the standard
definition from Parasuraman et al. ([166]: p.46), “the quality that a client perceives in a service is a
function of the magnitude and direction of the gap between expected service and perceived service.”
True feedback f̄ therefore amounts to an unbiased quantification of the gap between user’s expressed
expectations – i.e., AC, preferences, and priorities –, expected values of quality properties before the
transaction – i.e., AP –, and observed values of quality properties after the transaction – i.e., OP.

Assuming that users’ feedback is honest, a feedback profile of the user is the source of difference
between f̄ and f. On the basis of differences between f̄ and f for a given user, our profiling method
computes the feedback profile for that user. A feedback profile characterizes a user on three orthogo-
nal dimensions, called outlook, sensitivity to deception and sensitivity to brand image, as illustrated in
Figure 6.2. Outlook describes a user’s degree of optimism or pessimism in feedbacks. Outlook reflects
the fact that some users consistently give more favorable or defavorable feedback. We then have two
kinds of sensitivity. The sensitivity to deception characterizes a user’s degree of deception when delivered
quality varies from expected quality. Deception occurs while the quality level delivered is lower than the
quality level expected by the user. Users can be slightly or strongly sensitive to deception and can be
averse if the user has an aversion effect to the deception. Deception sensitive users will react negatively
to deception (i.e., they will decrease their feedbacks) while deception averse ones will positively react
(i.e., they will increase their feedbacks) when the observed level of quality is lower than the quality level
advertised by the provider. In other words, for the same deception related to the same gap between
quality expected and delivered, users will react differently. The sensitivity to brand image characterizes
the effect of provider’s brand image on the user. Users will react differently to provider’s image, their
feedbacks can be sensitive to the image of the provider but also adverse if the user has an aversion to
image of providers. Users that are brand image sensitive will improve their feedbacks for providers with
a notorious brand image while users averse to brand image will decrease their feedbacks for such users.

73

6. USER PROFILING

 Brand image

sensitive

Optimistic

Pessimistic

Deception

averse

Brand image

averse

Deception

sensitive
f
-

Figure 6.2: Dimensions of feedback profiles.

Figure 6.2 illustrates the three dimensions of feedback profiles. The figure points out that any feedback
has a position in relation to the true feedback. It is by computing the displacement of the feedback
from the true feedback over transactions that we estimate a feedback profile. In case a user’s feedback
profile changes over transactions, our profiling method continually adjusts the computed feedback profile
to account for any changes in outlook and sensitivities.
Organization. Our profiling method is used by the mediator M, which selects one among many competing
Ps on behalf of an agent C. The method proceeds in two steps at each transaction. The first step (§6.2)
occurs before the transaction: M transforms user’s expectations (i.e., AC, preferences, and priorities) so
that they can be used after the transaction to compute the true feedback f̄. The second step (§6.3) takes
place after the transaction: M computes the true feedback and obtains the user’s feedback f, then updates
the estimate of the user’s feedback profile (i.e., the estimate of the user’s outlook and sensitivity). After
we explain the two steps, we report the results of our experiments in computing feedback profiles (§6.4).
We discuss related work (§6.5) and summarize conclusions (§6.6).

6.2 Computing True Feedback

The true feedback f̄ of a transaction i occurring between a client l and a provider k is defined by xkli. xkli
is derived from user l expectations (i.e., ACl: l’s hard constraints, preferences, and priorities) and from
the gap observed between the expected quality values (APki) advertised by the provider k at transaction
i, and the observed quality values (OPki) delivered by the provider k at that same transaction i. ACl has
three components:

• Hard constraints in ACl express the quality requirements of the service user. These requirements
act as constraints during the selection of the provider k. For each quality property requirement in
ACl, the quality proposed in APki by provider k must meet the level required.

• Preferences in ACl are used by the client l to define its expectations about values of quality properties.
These expectations associate a modality (i.e., maximize or minimize) and a maximal (for quality
properties to maximize) or minimal (for quality properties to minimize) value to each quality
property defined in ACl.

• Priorities in ACl determine the relative importance of quality properties according to client l. Each
quality property of ACl is related to a weight defining its impact in comparison to other quality
properties.

74

6.2 Computing True Feedback

6.2.1 Preparing preferences

The preferences of a client l about quality properties defined in ACl are defined via two tuples: ACmodl

and ACoptl .
ACmodl contains the modality of the different quality properties of ACl. The client l will desire to

maximize some quality properties (e.g., availability, security) and to minimize others (e.g., execution
time, cost). The maximization or the minimization is the modality associated to each quality property.
For each quality property in ACl , ACmodl has a related value in {−1, 1}. This value expresses the modality
of the quality property, i.e., −1 if the property is to be minimized and 1 if the property is to be maximized.

ACoptl contains the optimal values for each quality property defined in ACl according to the client l.
The client l has a reference optimal value for each quality property. Quality properties are expressed on
defined scales and the optimal value is the maximal value on the scale. E.g., on a percentage scale, this
value is 100. While the modality of a quality property is minimize, the optimal value of client l is its
maximal reference. E.g., client l expects a maximal execution time of 20 sec. For each quality property
in ACl , ACoptl has a related optimal value.

6.2.2 Preparing priorities

The priorities of a client l about quality properties defined in ACl are defined in a tuple: ACpriorl .
The priorities of quality properties in ACl are expressed by weights reflecting the importance that the

client l gives to each of them. The weights are derived from the order relationship given by l on quality
properties of ACl. E.g.; the client l gives more importance to the cost than to the execution time, the
weight of the cost will be more important than the weight of the execution time. These weights are
relative weights, i.e., these reflect the relative importance of each quality property in comparison with
other quality properties of ACl.

To determine these weights, we rely on Multi-Criteria Decision Making (MCDM) methods [55]. Among
existing methods [56; 78; 145; 177; 194], we use the Analytic Hierarchy Process [177]. This method is
well suited to priorities definition because it enables to fix weights to different criteria with the help of
a comparison matrix of quality properties. The client l defines in this matrix the importance and the
direction of the comparison for each pair of quality properties in ACl. Each quality property is compared
with other criteria with an importance on a scale fixed between 1/9 and 9. The direction defines if a
quality property is more or less important than another. For a pairwise comparison x between quality
properties A and B : AxB, A is more important than B if x > 1 and A is less important than B if x < 1.
E.g.; the client l fixes the pairwise comparison between the cost and the execution time to 5. It means
that the cost is five times more important than the execution time according to client l. Similarly, the
pairwise comparison between the execution time and the cost is 1/5, meaning that the execution time is
five time less important than the cost for the client l. The weights of the quality properties are obtained
with the computation of the right eigenvector of the matrix. The eigenvector is computed by raising the
pairwise matrix to powers that are successively squared each time. The rows sums are then calculated
and normalized. The computation is stopped when the difference between these sums in two consecutive
calculation is smaller than a prescribed value. The values get are associated to quality properties of ACl.
For each quality property in ACl, AC

prior
l has a related weight.

6.2.3 Feedback evaluation

Eliciting preferences and priorities allows the client l to perform an evaluation of the quality level received
according to its expectations. The true feedback xkli of client l for a transaction i is a function of (i)
the expected quality level initially advertised by the provider k for transaction i: APki; (ii) the observed
quality level offered by k during transaction i: OPki; (iii) the preferences on values of the client l: their
modalities ACmodl and their optimal values ACoptl , and; (iv) the priorities of the client l on quality properties
defined in ACl : ACpriorl .

To compute the true feedback xkli, we use a MCDM method, the Simple Additive Weighting (SAW) [81].
This method is based on the weight average; we multiply for each quality property of ACl the difference

75

6. USER PROFILING

between expected quality levels (APki) and observed quality levels (OPki) by their respective weights de-
fined in ACpriorl . Next, these products are summed for all quality properties defined in ACl. However, the
difference between quality levels of APki and OPki is computed according to client l preferences.

The formula allowing to compute the true feedback xkli is given here:

xkli =
n∑
j=1

ACmodlj ACpriorlj

|OPkij − APkij |
ACoptlj

Where n is the total number of quality properties defined in ACl. When quality properties have to
be maximized (ACmodlj =1), the gap between the quality level expected and observed is computed with
OPkij−APkij . When quality properties have to be minimized (ACmodlj = −1 ⇒ |ACmodlj − 1| = 1), the gap
between the quality level expected and observed is computed with APkij−OPkij . (OPkij − APkij)/AC

opt
lj

quantifies the direction and the magnitude of the gap between the observed quality level and the advertised
quality level, whereby that gap is compared to the optimal desired level of quality for the given quality
property. OPkij − APkij is proportional to client l’s perceived quality, as perceived quality is usually
conceptualized in marketing. We interpret (OPkij − APkij)/AC

opt
lj as follows:

1. (OPkij − APkij)/AC
opt
lj ∈ [0, 1] is the provider’s overperformance, as the proportion of the optimal

quality level delivered by the provider above the announced quality level;

2. (OPkij − APkij)/AC
opt
lj = 0 the provider delivered as promised;

3. (OPkij − APkij)/AC
opt
lj ∈ [−1, 0] is the provider’s underperformance, as the proportion of the optimal

quality level delivered by the provider below the announced quality level.

6.3 Computing a Feedback Profile

6.3.1 Description of the basic model

The feedback (f) given by a user to a provider after a transaction is not the true feedback(f̄). The true
feedback is determined by the user’s actual feedback, characterized by the feedback profile.

The feedback profile of a client is defined over multiple transactions occurring with different providers.
Assume we have a set of np providers k and nc clients l. Each provider k has a latent brand image, qk,
that is hidden to the external world. We define the brand image score associated to provider k as the
estimate of qk based on empirical data. The total number of transactions is denoted by N . Therefore,
each provider k is characterized by one single feature, his brand image qk.

On the other hand, the client l who asks for the transaction i rates it based on the inspection of
its quality xkli. Indeed, each time the provider k realizes a transaction i, its quality in accordance to
user l expectations (ACl): xkli is observed. This quantity provides a measure of the difference between
the observed quality of the service and the promised quality. Here, we assume that the client l can be
characterized by four different features: (i) his sensitivity with respect to the brand image of the provider,
aql , (ii) his sensitivity with respect to the deception related to the quality of the provided service, axl ,
(iii) his bias, bl, and (iv) his stability in providing constant ratings for a fixed observed quality, σl. The
Definition 8 details the components of the feedback profile.

Definition 8. Feedback Profile. The feedback profile of a user l is a tuple

Fl = (ACprefl , ACpriorl , axl , a
q
l , bl)

where:

• ACprefl is an n-tuple of pairs (ACoptl , ACmodl), with

– ACoptlj is the optimal quality level desired by the client l for the quality property (i.e., criterion)
j; and

76

6.3 Computing a Feedback Profile

– ACmodlj is the modality for the value of the quality property j that indicates if the value of that
quality property should be minimized or maximized;

• ACpriorl is an n-tuple of the client l’s priority (i.e., importance) weights ACpriorlj given for each of the
n quality properties;

• axl is an estimate of the client l’s sensitivity to the deception induced by the gap between the
expected and delivered levels of quality properties;

• aql is an estimate of the client l’s sensitivity to brand image; and

• bl is the client’s outlook, i.e., tendency to be systematically more or less strongly optimistic or
pessimistic in feedbacks.

We will assume that the client’s outlook (bl), sensitivity to the deception (axl) and, sensitivity to
the brand image (aql) are independent. We further assume that there is no interaction between these
parameters of the client profile. We understand the outlook to be a constant, which is positive if optimism
prevails, and negative otherwise. That constant is added to an outlook-free feedback level. The idea is
that the bias introduced by outlook is completely independent from the client’s expectations, the behavior
of the provider, and the brand image of the provider.

A generative model of ratings, taking the form of a linear regression model for each client, and
accounting for all these features is assumed. More precisely, the uncensored rating, ykli is the feedback f

given by a client l after a transaction i with the provider k is assumed to be given by

ykli = aql qk + axl xkli + bl + εkli (6.1)

where the random variable εkl is normal centered and εkli is a realization of this random variable ap-
pearing in transaction number i, εkl ∼ N(0, σl). Above, xkli integrates the information about the client’s
preferences (ACprefl) and priorities (ACpriorl). εkli makes the feedback vary randomly around the feedback
level obtained by accounting for the client’s feedback profile, and the difference between the expected and
advertised quality levels. Notice that the ratings ykli are not observed; more realistically, only a censored
version of the rating is directly observed – see next section.

Finally, since, as for a one-way analysis of variance, the qk are only defined up to an additive constant,
we constrain the qk parameters to sum to zero,

∑nx
k=1 qk = 0 and unit variance [26]. The qk are therefore

standardized.

6.3.2 Accounting for truncation

Ratings are often expressed on a limited scale. The proposed model therefore assumes that the ratings
ykli are truncated in order to obtain a final rating zkli in the interval [−c,+c]. We assume, without lack
of generality, that the ratings are normalized in the interval [−1,+1], and thus 0 ≤ c ≤ 1. In other words,
only the truncated ratings zkli are observed while the ykli are unobserved. Therefore,

zkli = trunc(ykli, c) (6.2)

where trunc is the truncation operator defined as

trunc(y, c) = δ(y ≥ 0) min(y, c) + δ(y < 0) max(y, c) (6.3)

The function δ(y ≥ 0) is equal to 1 if the condition y ≥ 0 is true and 0 otherwise. Thus, the truncation
operator saturates the variable y by constraining its range in the interval [−c,+c].

This model thus considers that we directly observe the truncated ratings for the N transactions,
{zkli}, as well as the quality level according to client l quality expectations, {xkli}. The objective is
to estimate (i) the quality of the providers based on these ratings, and (ii) the different biases of the
clients/raters.

77

6. USER PROFILING

6.3.3 The complete likelihood function of the model

We now consider the problem of estimating the different parameters of the model, namely Θ = {qk, aql , axl , bl, σl}.
For this purpose, the set of observed values is considered as incomplete and a Expectation-Maximization
algorithm will be used, as proposed in [57]. The complete set of variables is {ykli, zkli}, k = 1 . . . np,
l = 1 . . . nc, i = 1 . . . N , and since only the {zkli}, k = 1 . . . np, l = 1 . . . nc, i = 1 . . . N are observed, all
the other variables, {ykli}, k = 1 . . . np, l = 1 . . . nc, i = 1 . . . N , are considered as unobserved. Assuming
independence between the observations and exact knowledge of the xkli, the likelihood for the complete
(observed and unobserved) data is

L(Θ) =
np∏
k=1

nc∏
l=1

∏
i∈(k,l)

P(ykli, zkli|xkli) (6.4)

=
np∏
k=1

nc∏
l=1

∏
i∈(k,l)

P(zkli|xkli, ykli)P(ykli|xkli) (6.5)

=
np∏
k=1

nc∏
l=1

∏
i∈(k,l)

P(ykli|xkli) (6.6)

where Θ is the vector containing all the parameters of the model, Θ = {qk, aql , a
x
l , bl, σl}, and (k, l)

denotes the set of transactions involving provider k and client l, with nkl being the total number of trans-
actions ∈ (k, l). Thus, in the previous equation, the product on i is taken on the set of nkl transactions
belonging to (k, l). The last equality is due to the fact that the value of zkli is known exactly if we know
the value of ykli. Taking the logarithm of both sides and denoting the log-likelihood by l = log L provides

l(Θ) =
np∑
k=1

nc∑
l=1

∑
i∈(k,l)

log(P(ykli|xkli)) (6.7)

= −1
2

np∑
k=1

nc∑
l=1

∑
i∈(k,l)

{[
ykli − (aql qk + axl xkli + bl)

σl

]2

+ log(σ2
l) + log(2π)

}
(6.8)

This complete log-likelihood function serves as basis for the parameters estimation algorithm.

6.3.4 Estimating the parameters

In this section, we develop an expectation-maximization (EM) based algorithm (the so-called “one-step-
late” algorithm ([66]; see also [141])) for the estimation of both the parameters of the model and the
unobserved variables. As already stated, we assume that we observe only the rating zkli and the quality
level according to client l quality expectations, xkli, for each transaction. Notice that the estimates of
the parameters of interest are denoted by a hat.

A few notations are needed before stating the reestimation formulas. The standard normal distribution
and the standard normal cumulative distribution function are denoted by

ϕ(x) =
1√
2π
e−

1
2x

2
and φ(x) =

1√
2π

x∫
−∞

e−
1
2u

2
du (6.9)

Let us now turn to the design of the reestimation algorithm.

The expectation step

The expectation step of the EM algorithm aims to compute the expectation of the log-likelihood function
(6.8) given the observed variables and the current estimate of the parameters, that is, E[l|xkli, zkli, Θ̂].

78

6.3 Computing a Feedback Profile

In order to compute these expectations, we make use of a well-known decomposition related to the
bias-variance decomposition; see [6] for a similar computation for estimating the parameters of a tobit
model with the EM algorithm:

E
[
(αy + β)2

]
= (αE[y] + β)2 + α2E

[
(y − E[y])2

]︸ ︷︷ ︸
V[y]

(6.10)

= (αE[y] + β)2 + α2V[y] (6.11)

where V[y] is the variance of the random variable y. The first term consists in replacing the random
variable y by its expectation E[y]. This amounts, when computing the expectation of the likelihood in
Equation (6.8), to simply replace the unobserved values of ykli by their conditional expectations. The
second term involves the variance of the random variable, V[y].

Let us first deal with the estimate of the unobserved variable, denoted as ŷkli = E[ykli|xkli, zkli, Θ̂].
It can easily be shown (from the standard theory of the tobit model [66; 67]; see [57] for details) that the
estimate of the unobserved variable ykli for transaction i depends on the three possible truncation cases:
zkli = −c, −c < zkli < +c and zkli = +c:

First case: zkli = −c:

ŷkli = (âql q̂k + âxl x̂kli + b̂l) + σ̂yl λ(γ̂kli) (6.12)

with

γ̂kli =

−c− (âql q̂k + âxl x̂kli + b̂l)
σ̂yl

λ(γ̂kli) = −ϕ(γ̂kli)
φ(γ̂kli)

(6.13)

Second case: −c < zkli < +c:
ŷkli = zkli (6.14)

Third case: zkli = +c:

ŷkli = (âql q̂k + âxl x̂kli + b̂l) + σ̂yl λ(γ̂kli) (6.15)

with

γ̂kli =

c− (âql q̂k + âxl x̂kli + b̂l)
σ̂yl

λ(γ̂kli) =
ϕ(γ̂kli)

1− φ(γ̂kli)

(6.16)

Second, the variance term in (6.11) will simply be neglected. Indeed, it has been observed in [57] that
this term (i) adds considerable complexity to the updating rules, and (ii) does not improve significantly
the performances of the model. However, the interested reader could easily adapt the EM algorithm
from [57] in oder to compute the exact expectation. Consequently, the expected log-likelihood is simply
approximated by

E[l|xkli, zkli, Θ̂] u −1
2

np∑
k=1

nc∑
l=1

∑
i∈(k,l)

{[
ŷkli − (aql qk + axl xkli + bl)

σl

]2

+ log(σ2
l) + log(2π)

}
(6.17)

that is, the log-likelihood where we substituted ykli by ŷkli.

The maximization step

For the parameters associated to the providers, when maximizing Equation (6.17) (M-step) by computing
the partial derivatives with respect to the different parameters and setting the result equal to zero, we

79

6. USER PROFILING

easily obtain, for the provider-related parameters,

qk =

∑nc
l=1

∑
i∈(k,l) (aql (ŷkli − axl xkli − bl)) /σ2

l∑nc
l=1

(
nkla

q2
l

)
/σ2

l

(6.18)

For the parameters associated to the clients,

aql =

∑np
k=1

∑
i∈(k,l) qk (ŷkli − axl xkli − bl)∑np

k=1 nklq
2
k

(6.19)

axl =

∑np
k=1

∑
i∈(k,l) xkli (ŷkli − aql qk − bl)∑np
k=1

∑
i∈(k,l) x

2
kli

(6.20)

bl =
1
n•l

np∑
k=1

∑
i∈(k,l)

(ŷkli − aql qk − a
x
l xkli) (6.21)

σ2
l =

1
n•l

np∑
k=1

∑
i∈(k,l)

(ŷkli − aql qk − a
x
l xkli − bl)

2 (6.22)

The one-step-late EM-based algorithm [66; 141] aims to replace the parameters in the right-hand side
of the equations by their current estimate. This leads to the following updating rules

q̂k ←

∑nc
l=1

∑
i∈(k,l)

(
âql

(
ŷkli − âxl xkli − b̂l

))
/σ̂2

l∑nc
l=1

(
nklâ

q2
l

)
/σ̂2

l

(6.23)

âql ←

∑np
k=1

∑
i∈(k,l) q̂k

(
ŷkli − âxl xkli − b̂l

)
∑np
k=1 nklq̂

2
k

(6.24)

âxl ←

∑np
k=1

∑
i∈(k,l) xkli

(
ŷkli − âql q̂k − b̂l

)
∑np
k=1

∑
i∈(k,l) x

2
kli

(6.25)

b̂l ←
1
n•l

np∑
k=1

∑
i∈(k,l)

(ŷkli − âql q̂k − â
x
l xkli) (6.26)

σ̂2
l ← 1

n•l

np∑
k=1

∑
i∈(k,l)

(
ŷkli − âql q̂k − â

x
l xkli − b̂l

)2

(6.27)

The updating rules (6.23)-(6.27) are iterated together with the equations providing the expected rat-
ings ŷkli (Equations (6.12)-(6.14)) until convergence. Initially, the parameters are set to q̂k = meanli(zkli),
âql = 0, âxl = 1, b̂l = 0 and σ̂l = 0.1.

6.4 Experiments

The experimental section answers the following three research questions:

1. Is the Feedback Profile model able to estimate the parameters of the client profile in an accurate
way?

2. Do the suggested model compare favorably in terms of residuals with respect to similar models
(Simple Average, Brockhoff [26] and Iterative Refinement [121])?

3. What are the applications of the Feedback Profile model and does the model compete with similar
methods in these applications?

In order to investigate these questions, we performed the experiments described in this section.

80

6.4 Experiments

6.4.1 Experimental setup

The first experiments simulate a simple provider-client interaction model. Remember that transaction is
the execution of a requested service by a provider for a client. The realization of a transaction leads the
client to give a rating (i.e., feedback) to the provider. In accordance with previous notations, a provider
k is characterized by his brand image qk. A client l is characterized by his sensitivity to the image of the
provider aql , his sensitivity to the deception induced by the gap between expected and delivered quality
level as defined according to its expectations axl and his outlook bl and his stability in providing constant
ratings for a fixed level of quality σl. A transaction i occurring between a provider k and a client l has a
quality level in accordance to l’s expectations defined by xkli and a rating of ykli. nk is the total number
of providers, nl is the total number of clients. In the following experiments, parameters will be randomly
generated in the following intervals according to a uniform distribution:

aql ∈ [0, 1]
axl ∈ [0, 1]
bl ∈ [−0.5, 0.5]
qk ∈ [−1, 1]
xkli ∈ [−1, 1]

6.4.2 Predictability of a Feedback Profile

We outline here the accuracy with which the Feedback Profile model estimates feedback profiles. We
generate clients and providers, and the ratings for transactions. We then attempt to determine clients
and providers profiles with these ratings and compare them to the generated profiles.

6.4.2.1 Estimation of clients’ and providers’ parameters

In this first, preliminary experiment, we illustrate the estimation power of our Feedback Profile model.
We first generate clients and providers profile parameters and try to estimate them with our model. We
then compare the estimation results with generated values.

Parameters are generated with values given in Subsection 6.4.1. Once the parameters are generated,
the ratings given by the client l to the provider k for the transaction i (ykli) are computed according to
the Equations (6.1) and (6.2) of the model. xkli and zkli values are put in our Feedback Profile model that
allows to estimate the providers and the clients profiles. For this experiment, the data set contains 100
providers and 100 clients and a maximum of 100 transactions for each couple of provider-client. The model
updates the parameters associated to the providers and the clients at each iteration until convergence.
Figures 6.3, 6.4, 6.5 and 6.6 respectively represent the results get for the parameters qk, aql ,a

x
l , and bl. For

each parameter, we illustrate the value initially generated and the result of its estimation. Figures 6.3,
6.4, 6.5 and 6.6 highlight the accuracy of the Feedback Profile model as predicted parameters are close
from their initial values. The continuous line is the baseline (generated parameter = estimated parameter)
and marks are the results of the experiment. The closeness of our results with the baseline outlines that
parameters are estimated in an accurate way.

6.4.2.2 Predictability of clients profiles

This second experiment outlines the prediction of client profiles. To this aim, we generate clusters of
client profiles and observe how the model can estimate them. We initially generate four different clusters
of client profiles with the following characteristics:

1. Brand image sensitive clients with aql ∼ N(0.6, 0.1), axl ∼ N(0.05, 0.1), bl ∼ N(0.1, 0.1);

2. Deception sensitive clients with aql ∼ N(0.05, 0.1), axl ∼ N(0.6, 0.1), bl ∼ N(0.1, 0.1);

3. Optimistic clients with aql ∼ N(0.1, 0.1), axl ∼ N(0.1, 0.1), bl ∼ N(0.7, 0.1);

81

6. USER PROFILING

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 6.3: Comparison between the real
(generated, x-axis) and the predicted (esti-
mated, y-axis) value of qk .

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 6.4: Comparison between the real
(generated, x-axis) and the predicted (esti-
mated, y-axis) value of aq

l .

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 6.5: Comparison between the real
(generated, x-axis) and the predicted (esti-
mated, y-axis) value of ax

l .

-0.4 -0.2 0 0.2 0.4 0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 6.6: Comparison between the real
(generated, x-axis) and the predicted (esti-
mated, y-axis) value of bl .

4. Pessimistic clients with aql ∼ N(0.1, 0.1), axl ∼ N(0.1, 0.1), bl ∼ N(−0.5, 0.1).

The parameters qk and xkli are generated ∈ [−1, 1]. Figure 6.7 illustrates the generated clusters (left)
and Figure 6.8 illustrates the predicted clusters (right). In Figure 6.7 and 6.8: the brand image sensitive
clients are tagged with ’•’; the deception sensitive clients are tagged with ’◦’; the optimistic clients are
tagged with ’∗’; and, the pessimistic clients are tagged with ’x’.

We clearly observe that predicted clusters are close from those generated.

6.4.3 Studies of the residuals

Experiments below illustrate the residuals obtained with the Feedback Profile method in comparison with
residuals obtained with similar methods.

6.4.3.1 Ratings estimation residuals

In this experiment, we study the ratings residuals induced by the estimation of the parameters. The
ratings residual is the result of:

∑
k,l,i |ykli − ŷkli| where ẑkli = trunc(ŷkli) = âql q̂k + âxl xkli + b̂l. We

compare the results of the Feedback Profile with those get with the method introduced by Brockhoff
in [26]. The Brockhoff method estimates ratings with the following formula: ẑkli = alqk + bl (the model

82

6.4 Experiments

-0.5

0

0.5

1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

Figure 6.7: Real (generated) clusters of client
profiles.

-0.5

0

0.5

1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

Figure 6.8: Predicted (estimated) clusters of
client profiles.

does not account for truncation). The estimation of parameters of the Brockhoff model [26] is given by:

q̂k ←

∑nc
l=1

∑
i∈(k,l)

(
âql

(
ẑkli − b̂l

))
/σ̂2

l∑nc
l=1

(
nklâ

q2
l

)
/σ̂2

l

(6.28)

âql ←

∑np
k=1

∑
i∈(k,l) q̂k

(
ẑkli − b̂l

)
∑np
k=1 nklq̂

2
k

(6.29)

b̂l ←
1
n•l

np∑
k=1

∑
i∈(k,l)

(ẑkli − âql q̂k) (6.30)

σ̂2
l ← 1

n•l

np∑
k=1

∑
i∈(k,l)

(
ẑkli − âql q̂k − b̂l

)2

(6.31)

As before, the generated data set contains 100 providers and 100 clients and a maximum of 100 transac-
tions for each provider-client pair. Parameters are generated with values given in Subsection 6.4.1.

The results obtained for 100 runs of both methods are illustrated in Table 6.1. Table 6.1 shows the
average ratings residual for the Feedback Profile and the Brockhoff methods. These results highlight
that the Feedback Profile method outperforms the Brockhoff method as the average ratings residual is
smaller.

Feedback Profile Brockhoff
Average ratings residual 0.0436 0.1352

Table 6.1: Comparison between average residuals get with the Feedback Profile model and the Brockhoff
model.

6.4.3.2 Residuals for brand image estimation

This experiment estimates the residuals of the parameter qk (i.e., the brand image of the provider k)
obtained via the Feedback Profile method and other comparable methods. The brand image residual is
the result of:

∑
k |qk − q̂k|.

Once more, the data set contains 100 providers and 100 clients and a maximum of 100 transactions
for each couple of provider-client. Parameters are generated with values given in Subsection 6.4.1.

We compare our results with those of comparable methods: the Iterative Refinement model (IR) [121]
; the Brockhoff model [26]; and a Simple Additive (SA) method.

83

6. USER PROFILING

The estimation of parameters for the IR model [121] is provided by:

q̂k ←
∑nc
l=1

∑
i∈(k,l) ẑkli∑

i∈(k,l) nklŵl
(6.32)

V̂l ←
∑np
k=1

∑
i∈(k,l) (ẑkli − q̂k)2

n•l
(6.33)

ŵl ←
1

V̂ βl
(6.34)

The estimation of qk for the SA method is given by:

q̂k ← 1
np

nc∑
l=1

∑
i∈(k,l)

ẑkli (6.35)

Table 6.2 respectively represent the results on 100 runs get for our Feedback Profile model, the IR model,
the Brockhoff model, and the SA model. Figures 6.9, 6.10, 6.11 and 6.12 illustrate the qk parameters

Feedback Profile IR Brockhoff SA
Average brand images residual 0.0135 0.0286 0.0321 0.1301

Table 6.2: Comparison between average brand images residual get with the Feedback Profile model, the
Brockhoff model, the IR model and the SA method.

initially generated and the q̂k estimated by, respectively, our Feedback Profile model, the IR model, the
Brockhoff model and the SA model. Results of Table 6.2 and Figures 6.9, 6.10, 6.11 and 6.12 outline that
the Feedback Profile model produces smaller brand image residuals than similar methods.

6.4.4 Applications

We present here some applications of our Feedback Profile model. We use the model to detect the
collusion that can exist between particular clients and providers. We also apply the model to real data
about movie ratings and predict ratings (i.e., users’ feedbacks).

6.4.4.1 Collusion detection

The collusion between providers and clients acts towards manipulating client perceptions by posting
ratings that praise the provider products [44]. Similarly, some clients can systematically decrease the
ratings given to a particular client to lower its overall score. The Feedback Profile model allows to detect
such collusion that can occur between providers and clients. In order to detect collusion, we introduce a
new parameter: ckl which is the collusion level occurring between a provider k and a client l. We outline
the collusion with the Feedback Profile model and with the Brockhoff model. For this experiment, the
data set contains 100 providers and 100 clients and a maximum of 100 transactions for each couple of
provider-client. Parameters are generated with values given in Subsection 6.4.1.

For simulating collusion, we add a systematic cheating between the 40th provider and the 3rd client:
the ratings given to the 40th provider by the 3rd client are systematically increased by 1: ŷ40,3,i ←
ŷ40,3,i + 1.

Once parameters of the models have been estimated, the collusion of all couples of provider-client are
computed. The collusion formula of the Feedback Profile model is given by

ckl =

∑
i∈(k,l)(ŷkli − â

q
l q̂k − âxl xkli − b̂l)
nkl

(6.36)

The collusion formula of the Brockhoff model is given by

ckl =

∑
i∈(k,l)(ẑkli − â

q
l q̂k − b̂l)

nkl
(6.37)

84

6.4 Experiments

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Figure 6.9: Comparison between the real
(generated, x-axis) and the predicted (esti-
mated, y-axis) value of qk for the Feedback Pro-
file model.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Figure 6.10: Comparison between the real
(generated, x-axis) and the predicted (esti-
mated, y-axis) value of qk for the IR model.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Figure 6.11: Comparison between the real
(generated, x-axis) and the predicted (esti-
mated, y-axis) value of qk for the Brockhoff
model.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Figure 6.12: Comparison between the real
(generated, x-axis) and the predicted (esti-
mated, y-axis) value of qk for the SA method.

Figures 6.13 and6.14 illustrate the collusion value for all providers for the client 3. In both figures,
the collusion is significant for the 40th provider.

The Feedback Profile model allows a more accurate detection of collusion than the Brockhoff model.
The collusion values are restricted in the interval [-0.2,0.2] in the Feedback Profile model and in the
interval [-0.8,-0.2] in the Brockhoff model. The collusion between provider 40 and user 3 is detected with
a 1.1 value in the Feedback Profile model and a 0.6 value for the Brockhoff model. The Feedback Profile
model better detects collusions with small values than the Brockhoff model because the collusion values
dissipate more in the Brockhoff model .

Figures 6.15 an 6.16 illustrate the collusion detection if the ratings given to the 40th provider by the
3rd client are increased only by 0.3. The Feedback Profile model locates easily the collusion while the
Brockhoff model is unable to detect the collusion, i.e., c3,40 is not more significant than the collusion
between other couples of provider-client. These results outline that our model is more appropriate in this
case than the Brockhoff model.

85

6. USER PROFILING

0 20 40 60 80 100
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 6.13: Collusion corresponding to a rat-
ing bias of 1.0 detected with the Feedback Pro-
file model.

0 20 40 60 80 100
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 6.14: Collusion corresponding to a
rating bias of 1.0 detected with the Brockhoff
model.

0 20 40 60 80 100
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 6.15: Collusion corresponding to a rat-
ing bias of 0.3 detected with the Feedback Pro-
file model.

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 6.16: Collusion corresponding to a
rating bias of 0.3 detected with the Brockhoff
model.

6.4.4.2 Rating prediction from real data

MovieLens dataset. The Feedback Profile model can also be used to predict the ratings (i.e., feedback)
that the clients will give to providers after a transaction. We can therefore predict the utility of a certain
item for a particular user based on the user’s previous likings and the opinions of other like-minded
users [183].

We made experiments on the MovieLens dataset1 to predict movie ratings with our Feedback Profile
model. We use the dataset with 100.000 ratings over 943 users and 1682 movies. A rating is a value
taken from the set {1, 2, 3, 4, 5}. To add the quality level information (xkli), we define the quality of a
movie simply as the mean of the ratings for this movie.

To adapt the dataset to our Feedback Profile model, we consider here that the movies are the providers
and the users are the clients. There is at most one transaction between a client and a provider, i.e., each
user rates a movie at most once.

We compare the Feedback Profile (FP) model with other comparable methods: the Feedback Profile
model without quality information (FP\x); the Brockhoff model [26] (B); some average methods, and;
some nearest neighbors methods. The average methods are: a simple average method where a rating

1http://www.grouplens.org

86

6.4 Experiments

estimation is given by the mean of all existing ratings on the dataset (Average); an average by provider
method where a rating estimation for a provider is given by the mean of all existing ratings for this
provider (Av. P), and; an average by client where a rating estimation of a client is given by the mean of
all existing ratings given by this client (Av. C). The nearest neighbors methods are based on a weighted
sum of movie similarity computation [183]. The similarity computation is performed with three different
methods: the Pearson correlation similarity (Corr.); the adjusted cosine similarity (Adj. Cos.), and; the
cosine based similarity (Cos) [183].

We test these different methods on the dataset with a ten-fold cross validation: for 10 different runs,
we take a training set of 90% to adjust parameters and we generate the 10% remaining ratings and
compare them to the test set. For each method, we then observe its Mean Absolute Error (MAE). The
MAE is a measure of the deviation of predictions from their true user-specified values [183]. The results
are given in the first column of Table 6.3.

MAE for the prediction
methods without trun-
cation

MAE for the prediction
methods with truncation

Feedback Profile (FP) 0.7212 0.6824
Feedback Profile without x (FP\x) 0.7310 0.6908
Brockhoff (B) 0.7302 0.6900
Average (Average) 0.9448 0.8942
Average by provider (Av. P) 0.8154 0,7842
Average by client (Av. C) 0.8346 0.8018
Pearson correlation (Corr.) 0.8162 0.7864
Adjusted Cosine (Adj. Cos.) 0.7526 0.7256
Cosine (Cos) 0.8124 0.7868

Table 6.3: Performances of the different models on the MovieLens dataset, without and with truncation.

0,65

0,7

0,75

0,8

0,85

0,9

0,95

1

FP FP\x B Average Av. P Av. C Corr. Adj. Cos. Cos.

M

A

E

Performance of different prediction
methods

Performance of different prediction
methods with truncation

Figure 6.17: Performances of the different models, on the MovieLens dataset, without (gray bar) and with
(black bar) truncation.

To reduce the MAE, we truncate the predicted rating to the nearest allowable integer value. Indeed,
ratings are specified by users in the set {1, 2, 3, 4, 5}. Predicted ratings are in interval [1, 5]. To reduce
the error induced by continual values in predicted ratings, we map them to their nearest integer in
the set {1, 2, 3, 4, 5}. E.g., a predicted rating of 3.8 will be truncated to 4. The Table 6.3 shows the
results of this truncation on the different methods. Experimental results are illustrated in Figure 6.17.
It can be observed that the Feedback Profile method (FP) shows better performances than all the other
investigated methods (FP\x, B, Average, Av. P, Av. C, Cos, Adj. Cos., Corr) with and without
truncation. Figure 6.17 outlines that the truncation of predicted ratings improves results for all tested
methods.

Students dataset. We also use the Feedback Profile model to predict the ratings given by professors
to students about the achievement of their courses. For this purpose, the grades of 99 students (second-

87

6. USER PROFILING

year bachelor students at the University of Louvain) were collected for their 12 courses. A rating is the
value given by a professor to a student within the interval [0, 20]. In this experiment, the students are
the providers and the professors are the clients. There is at most one transaction between a client and
a provider, each professor rates a student once. To add quality level information (xkli), we define the
quality of a student as the mean of the ratings for this student.

We compare the Feedback Profile (FP) model with the same methods than for the MovieLens dataset.
We test these different methods on the dataset with a ten-fold cross validation. The MAE results without
and with truncation are given in Table 6.4. The truncation is made by mapping predicted ratings to
their nearest integer value in the interval [0, 20].

MAE for the prediction
methods without trun-
cation

MAE for the prediction
methods with truncation

Feedback Profile (FP) 2.035 2.015
Feedback Profile without x (FP\x) 1.901 1.906
Brockhoff (B) 2.029 2.020
Average (Average) 2.612 2.667
Average by provider (Av. P) 2.239 2.206
Average by client (Av. C) 2.397 2.408
Pearson correlation (Corr.) 2.304 2.300
Adjusted Cosine (Adj. Cos.) 1.988 1.971
Cosine (Cos) 2.401 2.406

Table 6.4: Performances of the different models on the students dataset, without and with truncation.

It can be observed that, for the students dataset, the Feedback Profile (FP) model shows better
performance than most other investigated methods (B, Average, Av. P, Av. C, Cos, Corr) and is
competitive with results provided by remaining methods (FP\x,Adj. Cos.).

6.4.5 Discussion of the results

With the MovieLens dataset used for the prediction, we conclude that adding information about quality
improves the predictability of ratings. Moreover, the Feedback Profile model is the only one tested
which allows us to define a client profile through different parameters: its outlook (bl), its sensitivity to
deception (axl) and its sensitivity to brand image (aql). We are thus able to specify the profiles of users
of the dataset. Figures 6.18, 6.19, 6.20 and 6.21 illustrate such profiles with the MovieLens dataset. The
first figure (top left - Figure 6.18) shows the profiles through all 3 dimensions: bl, a

x
l , a

q
l . The second

figure (top right - Figure 6.19) illustrates the clients’ profiles through dimensions axl and bl. The third
figure (down left - Figure 6.20) outlines the user profile through dimensions aql and bl. The last figure
(down right - Figure 6.21) represents the dimensions axl and aql .

We can notice on these figures that some users adopt an unusual behavior (outliers) with parameter
values far from most users. We looked at their ratings and concluded that such these act weirdly. Indeed,
some of them give good ratings to movies with a low rating average and some others rate good movies
with bad scores. The Feedback Profile model is thus able to detect users with a strange behavior.

To evaluate the efficiency of the Feedback Profile model for the prediction of movie ratings, we choose
to set xkli to the mean of ratings for each movie. Notice that features related to movies (such as actors,
producers, etc.), could be used as well. This is left to further work.

Figures 6.22, 6.23 and 6.24 illustrate Feedback Profiles get with the students dataset. The first figure
(top left - Figure 6.22) illustrate the professors’ sensitivities to students’ brand image. The second figure
(top right - Figure 6.23) illustrates the professors’ sensitivities to deception. The last figure (down right
- Figure 6.20) represents the professors’ outlook.

Similarly to the MovieLens dataset, we choose to set xkli to the mean or ratings for each student.
However, other features related to students quality level could be used as well.

88

6.5 Related Work

-2

-1

0

1

2

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

Figure 6.18: Users profiles represented in di-
mensions bl, a

x
l and aq

l .

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 6.19: Users profiles represented in di-
mensions ax

l and bl.

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 6.20: Users profiles represented in di-
mensions aq

l and bl.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 6.21: Users profiles represented in di-
mensions ax

l and aq
l .

6.5 Related Work

As Dellarocas [42] observes, mechanisms for computing reputation have emerged as an important means
for risk management in online communities where parties can change partners from one transaction
to the next. When MAS involve self-interested agents, there are incentives for client agents to provide
dishonest (also, unfair) feedback if this contributes to the realization of their personal goals. This amounts
to intentional, strategic manipulation of feedbacks, which leads to unreliable reputation scores. The
response of choice is to design reputation mechanisms that motivate the provision of honest feedback.
Such mechanisms can control who participates in the MAS, the kind of feedback information solicited from
participants, how is such information aggregated, and how it is presented to the clients [43]. In settings
involving moral hazard clients face the risk of providers reneging on advertised quality levels. Dellarocas
[43] studied reputation mechanisms for such cases. Dellarocas and Wood [45] study reporting bias, which
distorts the distribution of public feedback relative to the underlying distribution of private (hidden)
feedback, where it is critical to understand how to interpret the decision of a party not to post feedback.
Poston [171] outlines the potential sources of such biases. Biases sources are classified into different types
according to their characteristics. Biases can be involved by error measurement; by personal preferences
(unintentional bias) or by; intentional feedback, (manipulated feedback). To motivate honest feedback,
Jurca and Faltings [98] suggest a mechanism, which elicits feedback from the client only when the provider
claims good service; before asking for feedback from the client, the mechanism allows the provider to

89

6. USER PROFILING

0 2 4 6 8 10 12
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 6.22: Professors’ sensitivities to stu-
dents’ brand image.

0 2 4 6 8 10 12
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Figure 6.23: Professors’ sensitivities to decep-
tion.

0 2 4 6 8 10 12
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Figure 6.24: Professors’ outlook.

acknowledge failure and reimburse the client. If the provider claims good service and the client disagrees,
both are sanctioned: the provider suffers from a negative report, while the client pays a small fine.

Our profiling method complements incentive-based reputation mechanisms. Such mechanisms improve
the honesty of the user’s feedback f, allowing us to blame the remaining difference between f and f̄

not on intentional manipulation, but mainly on the user’s feedback profile. In absence of an incentive
mechanism that favors the provision of honest fs, our profiling method will of course still estimate (and
pick up changes in) feedback profiles. What changes compared to the honest fs is the interpretation
of the feedback profile. Part of the estimated outlook and both sensitivities will in fact be due to the
intentional strategic manipulation. Our profiling method is able to distinguish the part of the difference
between f and f̄ arising from strategic manipulation from the part of that difference, which arises from
unintentional outlook and sensitivity characteristics. The feedback profile model allows to detect the
strategic manipulation that can occur while feedbacks are given. Ratings manipulations are observed by
the feedback profile model with the collusion that can exist between some providers and clients.

In contrast to the incentive-based approach, Yu and Singh [224; 225] elicit reputation information
by traversing the social network involving the provider’s neighbors. They understand the difference
between true feedback and observed feedback as evidence for deception. They deal with deception by
reducing the effect of deceptive witnesses on the aggregate reputation of a provider. Our approach is more
cautious, in the sense that the feedback profile we estimate is not intended to discredit feedbacks, but
to adjust them for the effect of outlook and sensitivities. To capture the trustworthiness of a provider,
Park et al. [167] uses two vectors to define how optimistic a peer is. The first is the sensitiveness of
the client to the trust vector and the second is its sensitiveness to the penalty vector. The ratio over
both vectors defines the optimism of the client to trust and penalty values. This ratio concept is similar

90

6.6 Conclusions

to our outlook value, according to the rater of the service, providers will be systematically optimist or
pessimist. However, our approach takes into account other attributes of the client profile: sensitivities to
deception and to brand image. We allow a more precise conceptualization of the client behavior effect in
a rating. In dealing with inaccurate feedback Teacy et al. [201] assume that the providers of opinion act
consistently. We do not make this assumption, as our method continually adjusts the computed feedback
profile. In more general terms, two additional observations are important. Firstly, our approach takes a
clear position with regards to incentive-based reputation mechanisms intended to favor feedback honesty.
This is not the case with non-incentive based approaches, so that it is unclear how they fit within MAS
that implement incentive-based reputation mechanisms for honest feedback. Secondly, our method more
thoroughly studies the divergence between (honest) observed feedback and reliable feedback than those
from Yu and Singh [224; 225], and Teacy et al. [201]. More precisely, we explain this difference via
three parameters – outlook, sensitivity to deception and sensitivity to brand image – that have intuitive
interpretations. By doing so, we illustrate that additional insight can be gained about user’s feedback,
and be used to inform the research and practice of reputation mechanism design.

6.6 Conclusions

Reputation scores influence cooperation, because they help to build trust among agents. It is essential
that reputation scores be reliable, i.e., be computed only on the basis of true past differences between
a provider’s advertised quality levels before the transaction and the delivered (i.e., observed) quality
levels after the transaction. In other words, reliable reputation scores aggregate client’s feedback, which
reflects only this difference at each transaction. In reality feedback, and therefore the reputation score
of a provider agent, depends on more than the gap between advertised and delivered quality levels. In
response, incentive-based reputation mechanisms have been suggested to improve the honesty of feed-
backs, so as to avoid strategic manipulation of reputation scores. We argued in this chapter that honest
feedback does not equate to “true” feedback because honesty does not change the fact that feedback
is based on a subjective experience of the gap between the expected and delivered quality levels. We
suggested that the departure of observed honest feedback from true feedback is due to the user’s feedback
profile. A feedback profile characterizes a user on three orthogonal dimensions: outlook; sensitivity to
deception, and; sensitivity to brand image. Outlook describes a user’s degree of optimism or pessimism
in feedbacks. Sensitivity to deception characterizes a user’s effect of the gap between the expected and
the delivered quality level. Sensitivity to brand image defines how the user reacts to the image of the
provider. We proposed a two-step method for computing users’ feedback profiles and tracking their
change over transactions. In the first step, user’s announced preferences and priorities are processed to
allow true feedback to be computed. In the second step, true feedback is computed, user’s feedback is
elicited, and the estimate of the user’s feedback profile is updated. We reported the results of experiments
on hypothetical data to illustrate the performance of our method in approximating users’ true feedback
profiles. These experiments highlight the ability of the model to accurately estimate feedback profiles.
We also presented how the feedback profile model can be used for collusion detection and the prediction
of ratings from a real dataset. Results illustrate that the feedback profile model is more efficient than
similar methods for these applications.

91

6. USER PROFILING

92

Part III

SLA Management

93

Outline of Part III

The third Part of this thesis presents contributions related to the management of Service Level Agree-
ments. Part II has presented models related to the web service management issue. This part tackles
a specific issue of web services management: the management of SLAs. SLAs are critical to the man-
agement of web services as they define contracts between stakeholders of the services executions. Such
contracts ensure the achievement of services from both functional and non functional considerations.
More specifically, SLAs define the quality level to be achieved during the service execution. To manage
SLAs, it is then essential to monitor quality information to ensure the conformance between the contract
defined and the quality level provided. The models proposed in this Part propose to improve the services
management through the enhancement of SLAs management. The proposed models are detailed here:

Chapter 7 proposes a normative management of service level agreements defined between web services.
Service Level Agreements (SLAs) are used in Service-Oriented Computing to define the obligations of
the parties involved in a transaction. SLAs define these obligations, including for instance the expected
service levels to be delivered by the provider, and the payment expected from the client. The obligations
of the parties must be made explicit prior to the transaction, and a mechanism should be available to
supervise the interaction, in order to ensure that the obligations are met. We propose in this Chapter
an architecture to that aim. More precisely, we outline a norm-oriented multiagent system (NoMAS)
architecture that is combined with the service-oriented architecture in order to support the definition,
management, and control of SLAs between the service clients and service providers.

Chapter 8 proposes to use context to manage SLA during service executions. Service Level Agreements
(SLAs) are used in Service-Oriented Computing to define the obligations of the parties involved in a
transaction. SLAs define the service users’ Quality of Service (QoS) requirements that the service provider
should satisfy. Requirements defined once may not be satisfiable when the context of the web services
changes (e.g., when requirements or resource availability changes). Changes in the context can make
SLAs obsolete, making SLA revision necessary. We propose a method to autonomously monitor the
services’ context, and adapt SLAs to avoid obsolescence thereof. This chapter has been published in the
International Conference on Service oriented Computing’08 proceedings [73].

95

96

Chapter 7

Normative Management of Service
Level Agreements

This Chapter proposes to manage Service Level Agreements defined between requesters and providers
with normative agents. Normative agents offer usual advantages of multi-agent systems and benefit from a
norm-oriented reasoning. The SLA control is a critical activity of service management, it enables to define
execution requirements and to control the conformance of the execution to these requirements. SLAs allow
to manage web services from quality information as they specify the quality level that should be met during
the service fulfillment. SLA management requires beforehand quality specifications made with a quality
model as the one proposed in Chapter 3 to insure the compatibility between user’s requirements and
provider’s capabilities. Moreover, the SLA management is complementary to quality-driven management
activities proposed in Chapters 4, 5 and 6.

7.1 Introduction

We focus in this paper on the critical task of ensuring that the contractual obligations of the parties –
the service providers and the service clients – involved in a transaction are respected by these parties
within a service-oriented system. Their obligations are typically outlined in a service-level agreement
(SLA). An SLA is a contract between the said parties, which specifies the quality-of-service (QoS) levels
that should be met [109]. QoS is a combination of several quality properties, e.g., availability, reliability,
cost, response time [143]. A provider can propose the same service at different quality QoS levels. When
a service client requests the execution of a given functionality, it advertises its QoS expectations. The
service selected for the service execution will be the one that best satisfy client expectations about QoS
properties. Prior to the transaction, the client and the provider enter into a contract by signing an SLA,
and thereby specify quality levels to be observed during the service execution [109]. SLAs are used in
the QoS management context in order to know what clients requirements to meet, how to manage clients
expectations, how to regulate resources and to control costs [180].

The use of SLAs in managing the transaction between a provider and a client requires appropriate
conceptual foundations and associated computational mechanisms. SLAs require an architecture if they
are to enable the interactions between stakeholders. This architecture must support a specification
language used by the stakeholders to communicate their expectations and capabilities. Similarly, a
specification language to define the elements of the SLA is needed. Beside the architecture, the SLA
management needs an incentive mechanism. To stimulate the correct behavior of stakeholders, these
must have mutual obligations. E.g., the provider has the obligation to meet a given QoS level and the
client has the obligation to pay according to that quality level. However, the client pays for the service
after its execution by the provider. It follows that the client’s payment can be adapted to the QoS level
delivered by the provider. Finally, stakeholders can behave in an opportunistic manner, i.e., the client can
underevaluate the QoS level perceived and the provider can exaggerate the QoS level offered. To prevent

97

7. NORMATIVE MANAGEMENT OF SERVICE LEVEL AGREEMENTS

such situations, the architecture must introduce a third-party controller to monitor the SLA execution.
The architecture must support the adaptation and supervision of SLA during the service execution.

This architecture needs to be responsive, flexible and autonomic. Norm-oriented Multi-Agent Systems
(NoMAS) provide these characteristics. Normative agents refer to agents conforming to norms. The core
idea of this paper is to adapt the analogy of norms and agents to the issue of SLA and stakeholders. An
SLA will be described as a set of norms to be fulfilled by the different agents of the system. The stake-
holders of the service execution will be represented by normative agents complying to norms that restrict
their behavior. The architecture supports a language enabling the communication between stakeholders.
This language allows to express norms to be followed by the normative agents of the MAS. The elements
constitutive of the SLA are defined by obligations norms regulating the stakeholders.

Contributions. We propose an architecture based on normative agents in order to: (i) enable the
communication between stakeholders involved in the SLA with a common language; (ii) define SLAs
that meet provider capabilities and client requirements; (iii) manage the service execution and check
the conformance of the quality level expected and observed; (iv) ensure the execution of the mutual
obligations according to the SLA contract. We propose to achieve the SLA compliance through two
particular mechanisms: mutual obligations, which motivate the fulfillment of respective obligations of
the involved stakeholders; and a supervised interaction with a third-party controller, which monitors and
evaluates the SLA execution and penalizes the agents that does not fulfill their obligations.

Organization. Section 7.2 presents the conceptual foundations of the approach. Section 7.3 outlines
the management architecture and the management of SLA. Section 7.4 proposes an evaluation of the
proposed approach. Section 7.5 summarizes the related work and the Section 7.6 concludes this paper.

7.2 Case Study and Conceptual Foundations

This Section covers the conceptual foundations or our SLA management approach. We first describe
the case study used to illustrate the approach proposed in this paper. We briefly introduce the Service
Level Agreement concept. We also outline the mutual obligations and the supervised interaction used
throughout the approach.

7.2.1 Case Study

We refer in this paper to a case study coming from the European Space Agency (ESA) program on Earth
observation. This program allows researchers to access and use the infrastructure operated and the data
collected by the agency1. The data and infrastructure of the ESA are accessed through web services. In
order to facilitate the discussion and delimit our example, we focus on one part of the overall system.
The MERIS/MGVI service is a service able to use the MERIS instrument data provided by the Envisat
satellite of the ESA to compute the vegetation indexes for a given period of time and region of the
world. A vegetation index measures the amount of vegetation on the Earth’s surface. The data on the
vegetation index can be obtained for any time range and it is possible to delimit the region of the world
that is of interest. This service is subject to one particular QoS characteristic: the latency is initially
situated between 4 and 6 hours by day of the selected period. E.g.: if the time range selected is from
October 24th 2009 to October 26th 2009, the execution time needed to compute the vegetation index is
set between 12 to 18 hours. The length of the selected period impacts then strongly the time needed to
fulfill the request. The SLA specification between stakeholders of this service must clearly constrain the
execution time prior to all remaining QoS properties. The different concepts presented in this paper will
be illustrated with the MERIS/MGVI service and, specially about the execution time of this service.

1http://gpod.eo.esa.int

98

7.2 Case Study and Conceptual Foundations

7.2.2 Service Level Agreement

A Service Level Agreement is a contract between the service provider and the service client specifying
mutually agreed obligations of the provision of a service [31; 222]. The SLA concerns the non-functional
properties of the service [109], i.e., quality properties. When clients can choose among a set of functionally
equivalent web services, Quality of Service (QoS) considerations become the key criteria for service
selection. As a consequence, SLA about nonfunctional properties must be defined and managed between
service clients and providers [109].

The specification of QoS obligations of a SLA starts from a set of Service Level Objective (SLOs) [180].
A Service Level Objective is a guarantee of a particular state of the SLA parameters in a given time
period [84]. All quality properties advertised by the provider are associated to an SLO as illustrated
in Example 6. Each SLO has a functional part that refers to the QoS concerned and a guarantee part
(italicized in Example 6) applied on the functional part. With SLOs, the SLA covers all quality properties
defined in the QoS request of the service client.

Example 6. The provider of the MERIS/MGVI service shall execute the service within 5 hours by day of
the selected period.

Example 6 is the SLO stating the maximum execution time of the agreement defined between the
provider and the client. As referred in Section 7.2, the execution time of the MERIS/MGVI service is
very important and needs to be clearly defined in the SLA. The SLA definition is communicated between
the different stakeholders of the service execution. To assure the interoperability of SLA definitions, their
specifications need to be written in a language common to providers and clients. The Web Service Level
Agreement (WSLA) language [84] is one of the main standard specifying SLAs. The Example 2 illustrates
how the SLO agreement of the Example 6 is specified with WLSA.
Example 2.

<ServiceLevelObjective name=’’exectime’’>
<Obliged>provider</Obliged>
<Validity>
<Start>2009-10-25T08:00:00.000-05:00</Start>
<End>2009-10-30T08:00:00.000-05:00</End>

</Validity>
<Expression>
<Predicate xsi:type=’’wsla:Less’’>
<SLAParameter>ExecutionTime</SLAParameter>
<Value>ExecutionTimeThreshold</Value>

</Predicate>
</Expression>
<EvaluationEvent>NewValue</EvaluationEvent>

<ServiceLevelObjective>

The ExecutionTimeThreshold used in Example 1 is a constant that assigns a name to a simple value
that can be referred in other definitions [84]. This threshold corresponds to the maximal execution time
expected by the client, i.e., 5 hours by day of the selected period to compute.

7.2.3 Mutual Obligations

Delivering the service at the quality level specified in the SLA is an obligation for the service provider.
However, the service client has an obligation to provide all the information needed for the service execution
(i.e.: inputs needed for web service execution), but also to pay for the service execution. Interactions
between the provider and the client involve mutual obligations [125]. Such bilateral obligations motivate
the SLA conformance. Indeed, breaches to some obligations of one party can compromise the fulfillment
of obligations of the other party. Both parts have interest in achieving their obligations to meet the
contract. Goodin [64] outlines the possible structures of mutual obligations. The SLA of web services
can be defined as mutually conditional obligations. With mutual conditional obligations, each party is

99

7. NORMATIVE MANAGEMENT OF SERVICE LEVEL AGREEMENTS

obliged to discharge his obligations if and only if the other party discharges his obligations. E.g., if the
service provided does not meet the contracted execution time, the client has not to pay the amount
initially set. The SLA defines mutual obligations compelling the respective behavior of stakeholders.

The service execution is made of bilateral obligations, i.e., unilateral obligations from the provider
about the service level execution and unilateral obligations of the client about payment or rating [107; 144].
We consider in the remainder of this paper that the client obligation is only about payment. However,
other contractual obligations can be used as feedback rating as requests frequency.

The execution of obligations occurs sequentially: obligations of one of the stakeholders are executed
before the obligations of the other. E.g., the provider’s obligations are executed before the client’s and
the level of payment can consequently be adapted to the degree, to which the provider conforms to
the obligations. Adaptations of the client obligations according to the observed quality level must be
specified in the initial SLA. In the classification of mutual obligations [64], SLA contracts are diachronic
mutual obligations, because one party is supposed to discharge its obligations before the other party does
the same. The consequence is that initial contract must specifies the expected penalties if the defined
quality level is not met [107]. The SLA contract implies that the penalty is initially accepted by the
provider. Clearly, the efficiency of the relationship existing between the client and the provider improves
if specifications of penalties for cases of contract breaches are present.

7.2.4 Supervised Interaction

Stakeholders of the service execution must achieve their respective obligations to conform to the initial
SLA. If they are not supervised, they can adopt an opportunistic behavior, i.e., not fulfill their obligations
or fulfilling them at a level lower than expected. E.g., the service client can reduce the payment even
if the quality level provided meets is expectation. To prevent such situations, we propose to monitor
the service execution with a third-party. This third-party will act as a controlling authority and allows
to ensure the correct execution of the SLA. It is a witness of the service execution and stimulates the
conformance to SLA for both involved parts. The third-party allows deterrence-based trust, i.e., you
trust the other party because there is a very strict rule normative or legal system of rules, and the agent
is punished for any violation of rules [35]. The third-party is the controller that controls the compliance
of both parts to rules defined in the SLA, it measures the efficiency of the stakeholders transactions and
computes their respective reputations [146]. An analogy of the third-party controller is the ebay online
auction website 1. The evaluation system of ebay prevents the opportunistic behavior of the stakeholders
of the transaction.

This authority has an additional role in managing the SLA. Namely, it is in charge of collecting and
computing metrics. It collects and stores metrics defined in the SLA and computes them to compare
observed and expected results. Such metrics are used to establish the trust value of stakeholders involved
in transactions. The measurement of quality values is allowed by existing metrics such as those discussed
in [38]. If an SLA is breached, the third-party controller sends notifications to the involved stakeholders.
The third-party is independent of the parties involved in the actual transaction, given that its aim is to
prevent opportunistic behavior.

7.3 The Architecture and the Process for SLA Management

To solve the issues of SLA definition and its management during the service execution, we propose to use a
normative MAS. Our proposed system will allow the SLA management and stimulates the SLA compliance
through the respect of mutual obligations and the supervision of an authority. We first introduce our
agent architecture that monitors the SLA through the service stakeholders in Subsection 7.3.1. We then
explain how SLAs are managed with this architecture through the definition of norms associated to the
stakeholders in Subsection 7.3.2.

1http://www.ebay.com

100

7.3 The Architecture and the Process for SLA Management

7.3.1 SLA management architecture

We chose to use a normative multi-agent system to monitor the execution of SLA. A normative multiagent
system (MAS) involves normative mechanisms, which allow agents to adopt norms and specify how agents
can modify these norms [19]. Norms can increase the efficiency of agent reasoning while their explicit
representation supports reasoning about a wide range of behaviour types in a single framework [50].
Agent norms describe the obligations, permissions and prohibitions of a norm addressee to pursue certain
activities, either to achieve a state of affairs or to perform an action [115]. The behaviour of an agent
is monitored by its norms defining its permissions and obligations. Such a normative system allows
deterrence based trust, the agent is punished for any violation of rules of the normative system [35].

The stakeholders of the service execution and the third-party controller are managed by normative
agents. Norms condition the behavior of agents, the SLA is defined by obligations and prohibitions
restraining the set of possible actions. We manage SLAs with normative agents coordinated within a
suitable architecture. Three kinds of normative agents step in this architecture: the provider agents, the
client agents, and the cluster agents. These are illustrated in Figure 7.1.

A cluster agent (AClus) is dedicated to each existing cluster of web services. A cluster of web services
gathers functionally equivalent web services by providing several web services inside a unique wrapper.
This wrapper is used by service clients as a standard web service. Services in a same cluster can be offered
by different providers. The cluster selects the service that best satisfies the QoS expectations of the client
in the cluster with an appropriate selection method [74]. This method relies on QoS advertisements of
the provider and QoS expectations of the service client. These advertisements and expectations can have
be made with WSLA [84] or another common appropriate language.

A service provider agent (AP) is dedicated to each existing provider in the service cluster. A provider
can offer several services in the cluster, i.e., the same functionality at different quality levels. This is
illustrated in Figure 7.1 with the provider 1 and 3 each offering services with the same functionality and
different quality characteristics. Providers can also offer services into different clusters, as they provide
different functionalities. Provider agents advertise their QoS possibilities to the cluster agent.

A client agent (ACli) is assigned to each client requesting a service. The service request includes
particular QoS expectations of the service client about the service execution.

Once the SLA has been negotiated [222] between stakeholders of the service execution it can be defined
with an appropriate language. The cluster agent is responsible of the stakeholders conformance to the
SLA defined. The cluster agent is also in charge of the collection and evaluation of metrics of the service
execution. It collects information about QoS observed at each service transaction. It is able to compute
statistical data on the service and able to determine if the service execution met the defined SLA. It is
the third-party controller of the service execution, it controls the SLA compliance of the provider and the
client agent. Agents of the SLA architecture are normative agents, conforming to norms derived from
the SLA initially defined between the client and the provider. This architecture can be easily supported
by existing normative MAS frameworks [50; 115]. In the remainder, we focus on how normative agents
can support the management of SLA. The normative MAS infrastructure and communication is out of
scope of this paper.

In the context of our case study, an agent is dedicated to each provider able to propose a service
functionally equivalent to the MERIS/MGVI service introduced in the case study. A client agent is
dedicated to the requester of the MERIS/MGVI service. A cluster agent is responsible for the supervision
of interactions occurring between the client agent and the providers offering the functionality.

7.3.2 SLA Management Process

The management of SLAs with the proposed architecture covers several steps: (1) the definition of
the SLA between the client and the provider; (2) the control of provider obligations, i.e., the service
execution; (3) the penalties to apply to the provider if the SLA is not met, and; (4) the control of
the client obligations, i.e., payment or evaluation. To fulfill these steps, the agents of the architecture
introduced in Subsection 7.3.1 will take on different roles.

101

7. NORMATIVE MANAGEMENT OF SERVICE LEVEL AGREEMENTS

Service client

Cluster of services
AClus

AP1

AP4

AP2

AP3

ACli

Service

Agent

Figure 7.1: SLA management architecture

7.3.2.1 Step 1: Definition of the SLA.

The SLA is defined between the service client and the service provider from WSLA specification advertised
by the provider. The WSLA specification is extended to include the mutual obligations of stakeholders.
The defined SLA must cover expectations about the quality level of the service execution but also the
penalties associated to breaches of SLA. These penalties are defined according to the importance of quality
properties involved and according to the importance of breaches. Moreover, initial SLA specifications
can also be enriched with complex rules, dependent rules or normative rules [168]. Such extensions allow
the definition of enriched contracts, e.g., graduated rules are rules sets which specify graduated range for
certain parameters so that it can be evaluated whether the measured values exceed, meet or fall below the
defined service levels. To define these extended SLAs and include mutual obligations of service providers
and clients, usual languages as WSLA [109] or WSOL [205] need to be enriched. To this aim, we choose
to express the different SLOs of the initial SLA with obligation norms associated to involved agents of
the architecture to benefit from the information added by more complex rules. To express SLO with
normative obligations, we refer to the work of Kollingbaum [115; 116] about supervised interaction. Each
SLO of the SLA contracted between the provider and the client is expressed with the NoA language [115]
interpretable by all agents of the architecture. Moreover, complex conditions and penalties associated
to SLO failures are also expressed with this language in further steps. The Example 3 illustrates the
conversion of the SLO specified with WSLA in Example 2 into an obligation norm of the service provider
agent specified with the NoA language.
Example 3.

obligation(
ServiceProvider,
achieve ServiceExecutionUnderTimeThreshold (ServiceProvider, Service,
ExecutionTimeThreshold),

ServiceExecuted (ServiceProvider, Service) and
ExecutionTime (Service) <= ExecutionTimeThreshold

ServiceExecutionUnderTimeThreshold (ServiceProvider, Service,
ExecutionTimeThreshold))

This obligation states that the provider must achieve the execution of the MERIS/ MGVI service un-
der the time limit (ServiceExecutionUnderTimeThreshold) specified in the initial WSLA specification
(ExecutionTimeThreshold). The normative agents of the architecture monitor the execution of services
through their norms. However, these agents can make a choice whether to obey the norms in specific
cases. If the service provider is not able to achieve all SLOs of its contract, it can violate some of them to
assure the fulfillment of remaining norms. This situation arises due to unexpected events (i.e.: additional
requests, hardware failures) or because the provider amplified its capabilities to be selected. Among all

102

7.3 The Architecture and the Process for SLA Management

SLOs defined with obligations norms between the client and the provider, some can be met and some
can not.

7.3.2.2 Step 2: Control of provider obligations.

Control is enabled through mechanisms of normative agents. Each agent of the architecture fulfills one
or several roles in the contract management. The SLA contract is then monitored through these different
roles: the addressee commits an obligation defined in the contract; the counter-party is the recipient of
the obligation fulfilled, and; the authority is a witness of the contract. The authority is in charge of the
correct execution of the contract and imposes sanctions in case of defective behavior of the addressee. The
different roles of client, provider and cluster agents are illustrated in Figure 7.2. The provider illustrated
in the service cluster of this example is the provider 1 among those proposed in Figure 7.1.

AP1
addressee

addressee counterparty

counterparty

service
ACli

AClus

control

Service ClientService Cluster

QoS evaluation

control
+

payment, ...

Figure 7.2: Roles fulfilled by normative agents

The interactions between the service provider and the service client (i.e., the service execution and
its payment) are restrained by obligation norms associated to these roles. The SLOs specifying the
expected QoS level of the MERIS/MGVI service appear as norms. The provider agent is the addressee
in these norms, while the client is the counter-party in the transaction. To control the achievement of
this contract, the cluster agent acts as an authority. As stated in Subsection 7.3.1, the cluster agent is
responsible for collecting and computing the metrics in order to control the SLA execution. It is then
able to determine if the service provider meets the SLOs defined through obligation norms. The cluster
agent will impose sanctions when the quality level provided does not meet the level contracted in the
SLA. Such sanctions appear as penalties applied to the provider. As stated before, these penalties are
part of the initial SLA. In the MERIS/MGVI instance, the decreasing of payment is proportional to the
reduction of quality level provided. Sanctions are expressed by obligations norms to be followed by the
cluster agent. When the provider chooses or is forced to breach a norm specifying one of its SLO, the
cluster agent captures it and activates a specific penalty. There can be several norms specifying different
penalties corresponding to the spreading of the breach. The Example 4 illustrates a specification of one
such penalty.
Example 4.

sanction(
ServiceCluster,
perform EvaluationTime (ServiceProvider, Service, ExecutionTimeThreshold,
ExecutionTimeThreshold 2, AmountPenalty),

ServiceExecuted (ServiceProvider, Service) and
ExecutionTime (Service) > ExecutionTimeThreshold and
ExecutionTime (Service) <= ExecutionTimeThreshold2

TimePenalty(ServiceProvider, AmountPenalty))

When one of the SLOs of the MERIS/MGVI service is not met, a sanction is applied by the clus-
ter agent according to the importance of the breach. As stated in Section 7.2, the execution time
is a critical issue for the MERIS/MGVI service, sanctions to apply must penalize all provider weak-
nesses about delays. The Example 4 illustrates one sanction: if the execution time observed is above

103

7. NORMATIVE MANAGEMENT OF SERVICE LEVEL AGREEMENTS

the SLA time limit (ExecutionTimeThreshold) but is under the second time limit of the breach scale
(ExecutionTimeThreshold2), the decreasing of payment (AmountPenalty) applied is proportional to the
observed level on the breach scale. The cluster agent independently estimates the equality of the quality
level provided and the amount to pay. Moreover, according to characteristics of mutual obligations in
SLAs, the user must discharge its obligations only if the provider has discharged its owns obligations.

7.3.2.3 Step 3: Penalties to apply.

When the cluster agent observes that the SLA is not fulfilled by the provider agent, it notifies the service
client through the application of a sanction. The client agent will then reflect this sanction on its own
behavior. The mutual obligations of SLAs are diachronic; the client obligations are adapted to the
provider fulfillment of its owns obligations. In the Example 5, the TimePenalty is a constant defining
the payment reduction of the MERIS/MGVI service initiated by the sanction of the Example 4. There
can be several payment reduction to apply, corresponding to different level of breach or to different QoS
properties involved in the SLA. According to the importance of the breach, the client agent follows the
norm defining the corresponding penalty. The obligation of the Example 5 is the client obligation to pay
for the MERIS/MGVI service execution, i.e., the contractual obligation of the client. However, the initial
payment amount (Amount) is reduced by the penalty (AmountPenalty) induced by the time sanction
illustrated in Example 4. The payment of the service is an obligation norm in which the client agent is
the addressee and the provider agent is the counter-party as illustrated in Figure 7.2.
Example 5.

obligation(
ServiceClient,
achieve ServicePayment (ServiceClient, ServiceProvider,
Amount - AmountPenalty),

ServiceExecutionUnderExecutionTimeThreshold (ServiceProvider, Service,
ExecutionTimeThreshold)) and
TimePenalty(ServiceProvider, AmountPenalty)

achieve ServicePayment (ServiceClient, ServiceProvider,
Amount - AmountPenalty))

7.3.2.4 Step 4: Control of client obligations.

The third-party controller checks the execution of the unilateral obligations of the service provider as
detailed in Step 2. Similarly, the third-party controller must verify the obligations of the service client,
i.e.: its payment to the provider after the service execution. To control the right execution of the payment
obligation illustrated in Example 5, the cluster agent acts as the third-party controller. It is the authority
of the payment transaction as illustrated in Figure 7.2. It must check that the right amount has been
deposited to the provider. If the client fails to pay or deposits a bad amount, the cluster agent must
apply a penalty. The Example 6 illustrates the sanction applied by the cluster agent to the client of the
MERIS/MGVI service when the payment obligation is not met. With such sanctions, the cluster agent
avoids the non payment of the service client. Indeed, if the payment is not made or if it is insufficient,
the client is labeled as a bad payer (PaymentPenalty(ServiceClient)) by the third-party controller.
The cluster agent can then reject future requests of bad payers on its cluster.
Example 6.

sanction(
ServiceCluster,
perform CheckPayment ServiceClient, ServiceProvider, Amount, AmountPenalty),
not ServicePayment (ServiceClient, ServiceProvider, Amount - AmountPenalty)
PaymentPenalty(ServiceClient))

104

7.4 Evaluation

7.4 Evaluation

Supervised interaction and mutual obligations improve services executions from both user and provider
sides. We conduct some experiments in order to evaluate the effect of these mechanisms. These exper-
iments simulate services transactions between users and providers and measure their utility with and
without the utilization of such mechanisms. The utility denotes the abstract quality whereby an object
serves our purposes, and becomes entitled to rank as a commodity [93]. We suppose here that the utility
increasing is constant for each new transaction initiated. Each transaction initiated by a client involves a
cost decreasing of its cumulated utility while each successful transaction increases its cumulated utility.
The ratio over the increasing induced by the success of the transaction and the decreasing due to the cost
of the transaction must be positive. E.g.: in our simulations, the increasing of utility is set to 1 while
the service execution succeeds and the utility decreasing of the service payment is 0.8. The net utility of
a service transaction is then 0.2. We generate 200000 transactions from 10000 different providers to 100
different users. Each service is executed 20 times by each service client. To simulate the opportunistic
behavior of providers, we define 30% of opportunistic providers that do not fulfill their transactions 70%
of time. Without mutual obligations and supervised interaction, the decreasing of client utility involved
by the service payment occurs even while services executions fail.

To simulate the supervised interaction effect, we introduce a simple trust model. The trustworthiness
of each provider is collected by the third-party controller. The third-party controller monitors all services
executions and dismisses providers that fail 10 services executions previously supervised. While services
executions occur without supervised interaction, the clients collect themselves information about past
executions and dismiss providers that failed 3 of their own previous transactions.

To simulate the interest of mutual obligations, we introduce a variable payment model. The service
client can reduce the initial payment while the provider obligations are not met. The utility decreasing
of the service client can be less important when the service execution fails. E.g.: in our simulations, the
utility decreasing involved by the payment is 0.8 when the service execution succeeds and is reduced to
0.2 while the service execution fails. Without mutual obligations, the payment has to be done and the
decreasing of the client utility is fixed to 0.8.

However, the third-party controller offering such monitoring mechanisms has to be payed. We de-
signed two different scenarii to simulate the payment of the third-party controller: a variable and a fixed
remuneration. The variable remuneration implies a decreasing of the client utility at each service execu-
tion. This variable cost must be proportional to benefit of a transaction. E.g.: if the net utility before
the remuneration of the third-party controller is 0.2, the third-party fee of each transaction can be 0.02.
The fixed cost allows clients to benefit from third-party mechanisms after a single payment. It implies an
important decreasing of the client utility. E.g.: in our simulations, we set the initial utility of the client
to -1000 while the third-party controller relies on a fixed cost.

To evaluate benefits form supervised interaction and mutual obligations, we observe the mean cumu-
lated utility of users during 200000 services executions. To highlight the benefits of third-party mech-
anisms, we design 7 models: (1) services executions without supervised interaction (s.i.) and without
mutual obligations (m.u.); (2) services executions without s.i. and with m.u. at a variable cost; (3)
services executions without s.i. and with m.u. at a fixed cost; (4) services executions with s.i. and
without m.u. at a variable cost; (5) services executions with s.i. and without m.u. at a fixed cost; (6)
services executions with s.i. and m.u. at a fixed cost, and; (7) services executions with s.i. and m.u. at a
variable cost. We then measure the difference between the optimal cumulated utility and the cumulated
utility of our different models (i.e., the optimal client utility is get while the service client never pays for
the services executions that fail).

The results of our experiments are highlighted in Figure 7.3. The model nearest to the optimal
client utility is the model (7) that provides both supervised interaction and mutual obligations with an
initial fixed cost. However, this model becomes the best only when the initial cost is balanced by its
profitability (after approximatively 64500 services executions) while at the beginning the most profitable
model is the model (6) that provides both supervised interaction and mutual obligations at a variable
cost. The profitability of each model is dependent from the third-party controller payment scenario but

105

7. NORMATIVE MANAGEMENT OF SERVICE LEVEL AGREEMENTS

0 25000 50000 75000 100000 125000 150000 200000175000
0

1000

2000

3000

4000

5000

6000

7000

transactions

D
if
fe

re
n
c
e
 w

it
h
 u

s
e
r

o
p
ti
m

a
l
u
ti
lit

y

(1) Difference with user optimal utility without supervised interaction

and without mutual obligations

(2) Difference with user optimal utility without supervised interaction

and with mutual obligations at a variable cost

(3) Difference with user optimal utility without supervised interaction

and with mutual obligations at a fixed cost

(4) Difference with user optimal utility with supervised interaction

and without mutual obligations at a variable cost

(5) Difference with user optimal utility with supervised interaction

and without mutual obligations at a fixed cost

(6) Difference with user optimal utility with supervised interaction

and with mutual obligations at a variable cost

(7) Difference with user optimal utility with supervised interaction

and with mutual obligations at a fixed cost

Figure 7.3: Simulation Results

the utilization of third-party mechanisms always improve the client utility. The less profitable model
is the (1) that provides neither supervised interaction neither mutual obligations. Models offering only
mutual obligations ((2) and (3)) improve lightly the client utility while models providing only supervised
interaction ((4) and (5)) ameliorate strongly the client utility. The combination of both mechanisms
(models (6) and (7)) outperforms other models and highlight the interest of normative agents to control
SLA of stakeholders transactions. The experiments conducted here to evaluate the client utility can be
transposed to the provider utility. We can also simulate opportunistic client that do not fulfill their
obligations and evaluate the mean utility of providers.

7.5 Related Work

QoS properties and SLA management need appropriate architectures to be handled during the service
execution. Campbell et al. [29] propose the Quality of Service Architecture (QoS-A) incorporating the
notion of flow, service contract and flow management through QoS properties. Barbosa et al. outline
in [9] different architectural configurations to enable the auditing of SLA and to evaluate their efficien-
cies. The WSLA framework [109] introduces a runtime architecture comprising several SLA monitoring
services. Some services may be outsourced to third parties to increase the objectivity in the evaluation
of the services. The QoS Mission-Action-Resource (Q-MAR) model [83] and the Grid Quality of Service
Management (G-QoSM) framework [3] also propose to distribute the SLA monitoring to the different com-
ponents of the system. Paschke et al. [168] introduce a Rule-Based Service Level Management (RBSLM)
architecture in which SLAs are represented with declarative rules and managed through logical concepts
and rule languages. Although all these architectures allow one to observe when a contract is violated,
most of them do not prevent such violations and do not clearly define corrective actions to take. In our
proposal, the third-party monitors stakeholders behaviors and the mutual obligations of the stakeholders

106

7.6 Conclusions

define penalties to apply while the contract is not fulfilled. The BREIN project 1 offers an architecture
enabling the management of SLAs through their whole lifecycle [28]. The SLA management is enabled
by taking into account the policies of the parties and their respective business goals. The BREIN SLA
management offers preventive monitoring to react to upcoming violations and a prioritization of SLAs.
Our normative management of SLAs adapt contracts at runtime in response to unexpected violations in
order to maximize stakeholders satisfaction.

Agents systems are well fitted to monitor activities requiring negotiation between stakeholders as SLA
management or e-commerce mediation [71; 193]. Other existing SLA architectures relies on multi agent
systems [207]. Yan et al. [222] introduces a MAS architecture supporting the negotiation of services
involved in a composition. In comparison with existing MAS architectures, our proposal is supported by
normative agents. Normative agents allow to constrain the stakeholders behavior with norms defining
the SLA to be achieved. They are particularly relevant to the SLA management issue. Normative agents
are also used by Pitt et al. [169]. They propose a framework for QoS management which combines
events, metrics and parameters with organizational intelligence offered by norm-governed multi-agent
systems. Although their proposal monitors QoS information, they did not tackle the SLA conformance
issue. One of the strongest point of our work is that the agreements between clients and providers are
defined and monitored through norms associated to roles of agents and not to agents or components of
the architecture. These roles allow the architecture to offer more flexibility, e.g., the provider can be
easily substituted when unexpected failures occurs. The Appendix C provides more information about
SLA management.

7.6 Conclusions

We propose in this paper an architecture enabling the management of SLA. This architecture relies
on a MAS and supports a normative definition of SLA. The MAS enables the communication between
stakeholders involved in the SLA. Each party of the SLA is defined with an obligation norm that constrains
stakeholders behaviors. The architecture checks the conformance of the stakeholders to the SLA. To
stimulate the proper execution of the SLA, its execution is driven by mutual obligations and supervised
by a third-party controller. The architecture benefits from the potential autonomy assured by normative
agents. The normative architecture enables the interactions between provider and client and also the
evaluation of the quality level of such interactions.

1http://www.eu-brein.com

107

7. NORMATIVE MANAGEMENT OF SERVICE LEVEL AGREEMENTS

108

Chapter 8

Context driven Adaptation of SLAs

This Chapter has been published in the International Conference on Service oriented Computing’08
proceedings [73]. The Chapter 7 has presented a normative agents architecture enabling the management
of web services level agreements. This architecture gives foundations for the control and monitoring
activities performed by agents to ensure the contract achievement. However, this architecture tracks
inconsistencies but does not prevent the failure of contracts. In this Chapter, we propose a model
enabling to control SLAs upon basis of context information. The model we propose here also allow to
autonomously adapt SLAs contracts to ensure the achievement of the service execution.

8.1 Introduction

Web services are a response to growing needs of responsive and configurable applications on the Internet.
A service is a self-describing and self-contained modular application designed to execute a well-delimited
task, and that can be described, published, located, and invoked over a network [162]. Web services
are supported by technologies such as SOAP, UDDI and WSDL [211] and are accessed via a Uniform
Resource Locator.

Given the growing number of available web services on the Internet, different service providers may of-
fer services that provide the same functionality to the users. Such competing services can be distinguished
by comparison over nonfunctional characteristics, which take the form of Quality of Service (QoS). QoS
is a combination of several qualities or properties of a service, e.g., availability, security, response time
or throughput [143]. When a user requests a service to perform some given task, a service is selected
that fits the user’s QoS requirements. The selected service is the one that meets the most adequately
user’s preferences over quality attributes that go into QoS. Once the service is selected, it is assigned
by the definition of a contract that defines a Service Level Agreement (SLA) between the user and the
provider [127; 148]. SLAs are used to meet user’s requirements, manage user’s expectations, regulate
resources and control costs [180]. In short, SLAs are used to set the QoS level offered by the service
provider to the service user; SLAs result from a negotiation initiated between these parties [106].

However, offered and requested QoS may both vary over time. We say in this chapter that such
variations occur because of changes in the context of services. Given that the term “context” can be
widely understood, a definition local to this chapter is in order: context is any information about the
interaction between users and a web service, for which an SLA is specified.

Changes in the context should be reflected in the SLA governing the interaction. Both the offered and
the requested QoS levels may vary over the course of the interaction. Moreover, there are dependencies
across different context elements that indicate a propagation of variations from one element to multiple
context elements. To keep the SLA unchanged in such conditions is to make the SLA obsolescent.

Contributions. We propose an approach that enables an autonomic adaptation of SLA to respond
to occurring context modifications. We illustrate our approach with a case study based on European
Space Agency (ESA) services used to process information provided by the Envisat satellite. We provide

109

8. CONTEXT DRIVEN ADAPTATION OF SLAS

Figure 8.1: Graphical interface of the EOLI-SA service

conceptual bases necessary for SLA adaptation. We classify context elements into five distinct categories:
user, provider, resource, environment and web service. We also introduce dependencies existing between
elements of context enabling to propagate context modifications. We then present our SLA adaptation
approach. We propose an architecture relying on an SLA manager to drive the autonomic adaptation
based on context elements. Our adaptation uses context modifications and dependencies to enable an au-
tonomic adjustment of existing SLAs to ensure the service conformance to user expectations. Adaptation
involves the following steps:

1. Context modifications are reported to the SLA manager that identifies changes and starts the
adaptation process.

2. Observed context variations are propagated through context dependencies existing over different
elements of context by the SLA manager.

3. Once context variations have been propagated to all context categories, the SLA manager checks
the compatibility between user expectations and provider capabilities.

4. Upon base of the result of the compatibility checking, the SLA manager keep the existing SLA, set
up a new SLA between the user and the same provider or select another service fitting better to
user expectations.

Organization. Section 8.2 introduces the ESA case study used throughout the chapter. Section 8.3
presents the conceptual elements used to drive the SLA autonomic adaptation and illustrate these con-
cepts with the case study. Section 8.4 propose our SLA management architecture and assesses the different
steps of our adaptation process. The case study illustrates the adaptation process. Section 8.5 presents
the related work; Section 8.6 draws conclusions.

8.2 Case Study

The case study proposed here refers to the gpod ESA program described in Subsection 3.2.2. In relation
to MERIS, a large set of web services is made available by the ESA for access to the data the instrument
sends and access to the provided computing resources.

We are interested in the remainder about two specific services. The first provides the vegetation
indexes for a given period of time and region of the world. A vegetation index measures the amount of
vegetation on the Earth’s surface. The graphical interface used by the requester of the service is shown
in Figure 3.1. An illustration of the output provided for the whole world map is given in Figure 4.1.
The data on the vegetation index can be obtained for any time range and it is possible to delimit the
region of the world that is of interest. This service is subject to particular nonfunctional properties: the

110

8.3 Conceptual Foundations

latency is initially situated between 4 and 6 hours by day of the selected period due to the quantity of
data to process. Thus, the service user expects to minimize the execution time. For a service facing
such significant latency, service reliability is another critical QoS aspect. Indeed, in case of failures, all
execution steps must be started over. So, maximizing the reliability reduce risks to have to start over. The
second web service used to illustrate our approach is the EOLI-SA service: this service is used to calculate
metadata on the products to process. For example: when you submit a zone to process the MGVI with
the ’bounding box’ argument, these coordinates need to be transformed into the technical data of the
satellite at the time of the acquisition of the zone to process (start/stop time, orbit, lat/long, azimuth
angle, etc.). The graphical interface of the EOLI-SA service is given in Figure 8.1. This service presents
different nonfunctional characteristics: while it is used by other services as the MERIS MGVI/Regional,
the availability of this EOLI-SA must be maximized in order for these services to execute successfully.

8.3 Conceptual Foundations

This section introduces the concepts used to drive our autonomic SLA adaptation. We present our
notion of context, and subdivide it into categories in Section 8.3.1. Section 8.3.2 introduces the concept
of dependencies over context elements. All the concepts are illustrated through services introduced in
Section 8.2.

8.3.1 Context categories

Unexpected events can modify the current execution context and have an impact on the performance of
the services. These modifications can breach the SLA. To adapt existing SLAs to context modifications,
context elements need to be accurately defined by services providers and users. We classify context
elements into several categories, shown schematically along with potential between-category interactions
in Figure 8.2.

User Provider

Resources

Web
Service

Environment

Figure 8.2: Context categories and between-category interactions

User context: The user context covers the user’s QoS requirements. These requirements are expressed
with help of preferences over QoS values that the service must achieve but also with QoS priorities
specifying which QoS properties will be maximized over others [172]. The user context also carries
information on past executions of services, along with advertised and observed QoS values during these
executions [147]. Changes in user context may eventually induce the definition of new SLAs between the
user and the provider. The user specifies and updates the user context.
Resources context: Web services executions are influenced by the availability of the resources that
concern the network connection between the provider and the user but also the hardware used in executing
the service and/or retrieving its results [148]. It is clear that resource availability has a direct impact on
delivered QoS, thereby affecting the satisfaction of SLA. Both the service user and the service provider
specify the resource context by providing their respective resource-related information. They also update
this information when changes occur.

111

8. CONTEXT DRIVEN ADAPTATION OF SLAS

Table 8.1: Context particularities of MERIS/MGVI and EOLI-SA services

Category MERIS/MGVI Regional EOLI-SA
user context maximize reliability and minimize

execution time
maximize availability

the execution time must be inferior
to 7 hours by day of the selected
period

resources context high performance computing clus-
ter: 120 CPU, 100 terabytes stor-
age capacity, gigabit LAN

high performance computing clus-
ter: 120 CPU, 100 terabytes stor-
age capacity, gigabit LAN

environment context service user is an human service user is another web service
provider context current execution charge of the

computing cluster
current execution charge of the
computing cluster

web service context execution time: 4 and 6 hours by
day of the selected period

execution time: inferior to 1 min

reliability: upper than 95% reliability: upper than 98%
availability: upper than 92% availability: upper than 98%

Environment context: The environment context contains information about where the user is lo-
cated [47] and about its surrounding environment like the current weather or date [172]. This information
also includes about the network, which is not within direct control of service user or provider [95; 148].
The network that is not under the user’s or provider’s responsibility can have an immediate impact on
the service performance. The environment context depends on the user of the service and is specified by
the SLA manager.
Provider context: Provider context covers, among others, information about the provider’s current
execution load, the duration of its current opened sessions and announced intended length of usage by
the application requesting access [95]. All activities performed by the web service and its execution charge
have a direct impact on the service’s QoS. Increasing or decreasing the computation charge may require
changing the SLA. Provider context is specified and updated by the service provider.
Web service context: The Web Service context refers to nonfunctional characteristics of the service. It
provides information about possible ranges of execution time, levels of security, expected best reliability,
and so on [130; 172]. Latency or security are determined by the service’s implementation, while metrics
like mean availability or reliability are obtained from its past executions. Any changes in the web service
context will affect QoS levels, leading to SLA adaptations. The web service context is specified by the
service provider.

Provider, web service and some part of the resource categories are related to elements of the provider
side and define the level of service that can be offered. User, environment and the other part of the
resource categories concern items of the user side and determine the expected level of service. The
modifications of all elements of context categories are performed either by the service provider, or by the
service user, except for the environment context that can be affected by external events.
Context illustration. We illustrate in Table 8.1 the context elements for services from the case study.
Both services are offered by the same provider and are executed on the same computing cluster. Their
provider and resources elements are consequently similar.

The MERIS/MGVI service has an important execution time. To prevent failures and potential restart
of the execution, the user wishes both to minimize the execution time and maximize the reliability of the
web service. Moreover, the user adds a hard constraint on the execution time, stating that it must be
inferior to 7 hours by day of the selected period. This constraint prevents an accumulation of unfulfilled
requests by the MERIS/MGVI service. The EOLI-SA service has a faster execution, its reliability is not
so critical. As it is used by other services to compute data, its availability must be maximized to increase
reliability of these other services.

8.3.2 Context dependencies

Context dependencies refer to relationships that exist between distinct context elements. For example,
QoS properties supported by a service provider can be interrelated [212] e.g.; change in the execution time
can affect reliability. These relationships can also occur over elements in different context categories –
e.g., the execution charge of computing resources (provider context) affects various quality characteristics

112

8.3 Conceptual Foundations

Table 8.2: Examples of Context Dependencies

Common dependencies of MERIS/MGVI and EOLI-SA services
Dep 1 Resources context - Web Service context

Coefficient: parallel
Direction: →
Strength: 10

Dependencies of the MERIS/MGVI service
Dep 2 Execution charge of the computing cluster (provider context) - Execution

time (web service context)
Coefficient: parallel

Direction: →
Strength: 6

Dep 3 Execution charge of the computing cluster (provider context) - Availability
(web service context)

Coefficient: opposite
Direction: →
Strength: 8

Dep 4 User bandwidth (environment context) - Transfer Time (user context)
Coefficient: parallel

Direction: →
Strength: 5

Dependencies of the EOLI-SA service
Dep 5 Availability (web service context) - Reliability (web service context)

Coefficient: parallel
Direction: ↔
Strength: 9

Dep 6 Execution charge of the computing cluster (provider context) - Availability
(web service context)

Coefficient: opposite
Direction: →
Strength: 2

of the service (web service context). To highlight such dependencies between elements allows us to
propagate failures and performance modifications to all context categories related to the initial variation.
Dependencies are defined over context elements with an associated coefficient, direction and strength. The
coefficient attribute specifies that context elements involved in the dependency are parallel or opposite,
meaning that their coefficient is positively or negatively correlated. The direction determines, which
of the two considered context elements induces the value of the other; a dependency can be directed
both ways, meaning that both context elements impact each other. The strength, represented by a value
between 1 and 10, corresponds to the importance of the influence.

While all context dependencies occurring on the same context category are allowed, between-category
dependencies are subject to some restrictions. We specify in Section 8.3.1 that part of the resources
context, the provider context and the web service context are defined by the service provider. The
other part of the resources context, the environment context and the user context are delimited by
the service user. Dependencies can not involve influence of provider context categories to user context
categories and vice versa. Dependencies are also constrained by the attribute direction over different
categories. An improvement of the computing resources (resources category) can induce the service
quality performance (web service context). Nevertheless, the service quality performance (web service
context) has no influence on the computing resources (resources category). The impact direction of
dependencies in context categories is given below:

Resources context
↙ ↘

Provider context Environment context
↓ ↓

Web service context User context

Examples of context dependencies. Context dependencies are specified by the SLA manager to
indicate existing interactions between context elements. Table 8.2 gives examples of context dependencies
for MERIS/MGVI and EOLI-SA services.

Dep 1 states the relationship between the resources used by the service provider and web service
performance. Indeed, the capability of the web service is immediately linked to the resource used to
compute the web service. If the server used to compute MERIS/MGVI is down, all its performance
indicators will be affected. The EOLI-SA service is also subject to that dependency. Dep 2 underlines
the impact of the execution charge of the cluster on the execution time needed to execute the service.

113

8. CONTEXT DRIVEN ADAPTATION OF SLAS

Table 8.3: Examples of SLAs

SLA established for the MERIS/MGVI service
SLO 1: the execution time must be between 5h and 6h by day

of the selected period
SLO 2: the reliability must be superior to 90 %
SLO 3: the availability must be superior to 80%
SLO 4: the network time must be inferior to 1’
SLA established for the EOLI-SA service
SLO 1: the execution time must be inferior to 1’30”
SLO 2: the reliability must be superior to 70%
SLO 3: the availability must be superior to 92%

Increasing the execution charge of the provider decreases resources allocated to the execution of the
service and increases its execution time. Dep 3 states that the increasing of the execution charge of
the cluster will decrease the availability of the service: if the cluster charge is full, the MERIS/MGVI
service that requires an important resources utilization will not be given a high priority. Consequently, its
availability will be reduced. Dep 4 is about the influence of the user’s bandwidth on the user’s network
capacities. If the bandwidth provided by its Internet Service Provider decreases, the service user will
amend its expected total transfer time. The EOLI-SA service is less subject to context variations because
it does not consume that much resources. It is subject to the dependency linking its availability to its
reliability: Dep 5. This dependency is directed both ways meaning that the increasing/decreasing of one
of the quality property affectes the other. It is also subject to the Dep 6 stating that the increasing of the
execution charge of the cluster causes a diminution of the availability. This dependency is the same that
the one observed for the MERIS/MGVI service but its strength is not so prominent because EOLI-SA
does not require a long execution time and is less subject to the provider’s utilization.

8.4 Dynamic SLA Adaptation

We outline here our adaptation process that fits SLA established between service user and provider to
context elements variations. Section 8.4.1 gives a SLA description and presents our SLA management
architecture. Section 8.4.2 details the different steps of our adaptation process.

8.4.1 Managing Service Level Agreements

Contracts between a service provider and a service user are given by SLAs [127]. An SLA covers the
functional side of the service (the provided service corresponds to the requested service in terms of input,
output, pre- and postconditions) and concerns also the nonfunctional properties of the service. When
users can choose among a set of functionally equivalent web services, QoS considerations become the
key criteria for service selection. As a consequence, SLAs must be defined and managed between service
users and providers [31]. The contract about non-functional properties is defined for each QoS property
through a Service Level Objective (SLO) [180]. SLOs are defined over QoS values and appropriate
metrics. Definitions of metrics include the description of their calculation mode and are provided by the
party in charge of measurement and aggregation, i.e.; either the service provider, the service user or a
third tier manager [31; 222]. An SLA is then a contract between the service user and service provider
about a set of SLOs. These SLOs refer to web service and user context elements. Web service context
elements are QoS capabilities of the provider while user context elements are quality requirements of the
service user. A complete definition of a SLA and its component is available in [181]. We work on the
assumption that an initial SLA has already been negotiated between the service user and the service
provider with a negotiation process such as the one specified in [222]. We propose in Table 8.3 examples
of SLAs established between providers and users for both services presented in the case study section.

To manage SLAs and their adaptation, we introduce a third-part service: the SLA manager, in
charge of the mediation between the service user and the service provider. The adaptation process
refers to automatic monitoring, enforcement and optimization of SLAs between the services’s user(s) and
provider. The SLA manager is also responsible of the assignation of services to users. Our management

114

8.4 Dynamic SLA Adaptation

SLA Manager

Web Services
Cluster

Service Provider n

Service Provider 2

Service Provider 1

Service user

Web Service context
Provider context
Resource context

User context
Environment context

Resource context

SLA

SLA

Figure 8.3: SLA Management Architecture

architecture is illustrated in Figure 8.3. We dedicate one SLA manager for each existing cluster of
web services (i.e., services that offer the same functionality). Gathering of functionally equivalent web
services is ensured by means of clusters of web services, that provide several web services inside a unique
wrapper, used by the clients as a standard web service [210]. We suppose than an initial SLA has already
been negotiated between the service user and the service provider chosen with an adequate selection
method [134].

The role of the SLA manager is to continuously check the conformance of the web service to the
SLA established between the user and the provider. This monitoring requires a constant verification
of SLOs compliance between the service user and the service provider. To achieve this verification,
context information about the web service, the provider and the part of the resources information are
given by the provider while information related to the user context, its environment and its resources are
communicated by the service user. The SLA manager records information about all context elements and
builds execution statistics about mean observed latency, reliability or availability. The SLA manager also
monitors context dependencies with help of information provided by the user and the provider. With
such statistics and information about the execution context and dependencies, the SLA manager is able
to check the conformity of SLOs established between the service user and the service provider. If some
SLOs are breached, the SLA manager processes adaptation mechanisms to adjust the SLA, as explained
in Section 8.4.2.

8.4.2 Adapting Service Level Agreements

The SLA manager is designed to respond to eventual SLA breaches or QoS variations through different
mechanisms of adaptation. Adaptation usually refers to the alteration of an application’s behavior or
interface in response to arbitrary context changes [22]. For web services, the adaptation must consider all
context particularities introduced in Section 8.3.1 as well as existing dependencies over context elements
presented in Section 8.3.2. The aim of such adaptation mechanisms, referred as SLA adaptation, is to
adjust the initial SLA to context variations reported to the SLA manager. If the initial web service
provider is no longer able to perform its task to the quality level requested by the user, the SLA manager
proceeds to select a new provider. It establishes a new contract between the service user and a service
provider selected in the cluster of available services.

The SLA manager process this adaptation through four steps:
1. Modification notification. The SLA adaptation process is driven by the observation of a modifica-
tion in at least one context category. Such changes are highlighted by information provided by users and
providers and statistics made by the SLA manager. The adaptation is initiated differently following the
category of the context variation. Provider, web service and some part of the resources context come from
the service provider and their changes will modify the service offered, while the user, the environment
and the other part of the resources context are defined by the service user and will affect the service level
expected.
2. Modification spreading. The second step of the SLA adaptation is the propagation of observed

115

8. CONTEXT DRIVEN ADAPTATION OF SLAS

Figure 8.4: Current tasks of the provider

context variation to elements of the same category and to other relevant context categories. Spreading
the modification is subject to rules presented in Section 8.3.2, which define the direction of the allowed
dependencies. The impact of the context variations is governed by the coefficient, direction and strength
attributes and reflects changes to all elements of the concerned context categories. Context dependencies
allow the SLA manager to propagate the impact of context categories until their influence to related
QoS: all context variations are converted to elements used in the SLA contract (i.e., user and web service
context).
3. Compatibility checking. Once all dependencies have been propagated, the SLA manager is able
to determine the final quality expectations of the user and the web service QoS offered by the service
provider. To ensure their compatibility, the SLA manager checks context elements accounted for in the
SLA – i.e., the user and web service context. If the web service context presents abilities that meet the
expectations of the user context, these are compatible.
4. Adaptation. The last step of the process is the adaptation resulting from compatibility checking.
Three different scenarios are possible. (1) The compatibility is present between web service and user
context and the initial SLA is still applicable. In this instance, the SLA is preserved between stakeholders.
(2) The compatibility is verified between web service and user context but the initial SLA no longer
applies. The SLA initiates the set up of a new SLA between the current provider and the service user. To
achieve the negotiation between the user and the provider, the manager uses a negotiation process such
as the one proposed in [222]. (3) The last possibility occurs while the compatibility between the user
and the provider is not verified. The SLA manager then select another service able to meet the quality
requirements of the user context in the web services cluster. We do not review here details of selection
mechanisms but various existing approaches [75; 134; 229] can be applied by the SLA manager. The SLA
is negotiated between the new provider and the service user by the SLA manager.
Adaptation illustration. We illustrate here adaptation steps through a particular situation involving
services introduced in the case study.

The adaptation process described here occurred with an increase of the execution charge in the com-
puting cluster. The execution charge of the computing cluster belongs to the provider context category.
The services accessing the computing cluster offered by the ESA are monitored and managed through a
particular access interface illustrated in Figure 8.4. The execution charge can significantly increase with
entrance of new requests in the computing cluster. The adaptation mechanisms initiated in response to
these new requests will differ with the extent of the increasing. The adaptation process initiated by this
increasing is described through its four steps here.

The first step is the modification notification. The provider charge is monitored through the applica-

116

8.5 Related Work

Table 8.4: Web Service context of MERIS/MGVI and EOLI-SA services after an increasing of the execution
charge

Increasing of the execution charge of 20%

MERIS/MGVI Regional EOLI-SA
execution time: 5h and 7h hours by day of the
selected period

execution time: inferior to 1 min 10 sec

reliability: upper than 95% reliability: upper than 97%
availability: upper than 85% availability: upper than 97%

Increasing of the execution charge of 50%

MERIS/MGVI Regional EOLI-SA
execution time: 8 and 10 hours by day of the
selected period

execution time: inferior to 1 min 30 sec

reliability: upper than 95% reliability: upper than 80%
availability: upper than 78% availability: upper than 80%

tion illustrated in Figure 8.4. With this application, the provider is able to notice the growth of the cluster
utilization. The cluster is allowed to work without delays within the execution duration advertised at a
fixed level of charge. When the charge moves beyond this level, the provider notifies the SLA manager.
We observe the effect produced by two different increases: the first case is an increase of the charge of
the computing cluster for 20%; the second involves an increase of 50%.

The second step of the adaptation process amounts to spread context modifications. The dependencies
are directly related to an increase of the execution charge, i.e., Dep 2, Dep 3, Dep 6. Dep 2 induces an
increase of the execution time and Dep 3 leads to a decrease of the availability of the MERIS/MGVI
service. The Dep 6 leads to a decrease of the EOLI-SA availability. This decrease enables Dep 5,
which refers to a decrease of reliability. The effects of an increase of the execution charge on service
context of both services are: an increase of the execution time and a decrease of the availability for the
MERIS/MGVI service; and a decrease of the availability and the reliability for the EOLI-SA service. The
web service contexts of both services resulting from increases of 20% and 50% are illustrated in Table 8.4.

The third step of the SLA manager’s process is the compatibility checking between user requirements
and the provider’s capabilities. With an increase of 20%, the MERIS/MGVI capabilities still meet user
requirements. The EOLI-SA is also facing the user expectations with this increase of the execution
charge. With an increase of 50%, MERIS/MGVI does not meet the constraint on the maximum allowed
execution time, so that the compatibility does not verify. In contrast, the EOLI-SA service is still facing
the user requirements and does not break any constraint of the user.

The fourth step of the SLA manager is the adaptation. With an increase of 20%, the MERIS/MGVI
service is in scenario 2; it is compatible with user requirements but breaches the initial SLA: its execution
time is above 6 hours by day of the selected period. The SLA between the user and the provider must
be renegotiated. This new SLA is illustrated in Table 8.5. The EOLI-SA service respects the scenario
1; it is still compatible with user requirements and the initial SLA is still applicable. The initial SLA
is preserved between the user and the provider. With an incresing of the execution charge of 50%, the
MERIS/MGVI service follows the scenario 3. The service fails to meet the constraint stating that the
execution time must be inferior to 7 hours by day of the selected period. The SLA manager selects
another service in the services cluster that is able to meet user requirements. The EOLI-SA is in the
scenario 2; it is compatible with user expectations but the SLO 3 of its SLA is breached, the availability
is inferior to 92%. A new SLA is negotiated between the service user and the provider, it is illustrated
in Table 8.5.

8.5 Related Work

Adaptation to failures and SLA violations has received attention [17; 83; 154; 196]. However, the influence
of context on SLA adaptation has not been studied in depth. Analyzing the impact of context variations
on software behavior is a problem outlined in various other areas such as computer human interaction [47],
pervasive computing [150; 223] and autonomic systems [22; 196]. Context-sensitivity is usually defined as
an application software system’s ability to sense and analyze context from various sources. It lets appli-

117

8. CONTEXT DRIVEN ADAPTATION OF SLAS

Table 8.5: SLAs resulting from the increasing of the execution charge

New SLA established for the MERIS/MGVI service with an in-
creasing of the execution charge of 20%
SLO 1: the execution time must be between 6h and 7h by day

of the selected period
SLO 2: the reliability must be superior to 90 %
SLO 3: the availability must be superior to 80%
SLO 4: the network time must be inferior to 1’
New SLA established for the EOLI-SA service with an increasing
of the execution charge of 50%
SLO 1: the execution time must be inferior to 1’30”
SLO 2: the reliability must be superior to 70%
SLO 3: the availability must be superior to 80%

cation software take different actions adaptively in different contexts [150]. In response to these changes,
several adaptation strategies exist [40; 129]. Among them, In et al. [83] outline the problem caused
by QoS of situation-aware applications. The relationships between changes of situations and resources
required to support the desired level of QoS is not clear. They solve this problem with a situation-aware
middleware able to predict all QoS requirements of the applications and to analyze tradeoff relationships
among the different QoS requirements. The resource availability may be changed according to dynami-
cally varying situations. Such changes in QoS requirements and QoS constraint violations are identified
by their middleware that resolves conflicts by rescheduling resources for supporting high priority missions.
In contrast to this model, our proposal relies on an existing definition of dependencies between context
elements. Moreover, in the web service area, all resources cannot be modified or rescheduled or are even
out of the scope of the service provider or the service user. Our model adapts SLA to context changes
and does not intervene on the context elements to comply to QoS requirements. Tosic [204] proposes
an alternative to custom-made SLA, the utilization of Web Service Offerings which is supported by an
infrastructure (WSOI) and a specific language (WSOL) [206]. Each service is proposed with some classes
of service that differ in usage privileges, service priorities, response time guaranteed and verbosity of
response information. Their approach cuts off the negotiation problem between the service provider and
the service user. However, such predefined classes of service only allow a discrete variation of QoS offered
to the service user. Classes of services are predefined, limiting their number and therefore the adaptation
possibilities. The Appendix C provides more information about SLA management.

8.6 Conclusions

The management of SLAs between an user and a provider in the context of web services is essential to
enable autonomy of web service executions. It allows an automatic resolution of conflicts occuring after
web service failures or updated expectations of the user. The first advantage of our method is the reliance
on the identification of context elements and existing dependencies between these context elements. The
context and dependencies allow the SLA manager to anticipate problems. The modifications of context
elements are reported to the SLA manager by the provider and the user before the service is executed by
the service user. Thus, the SLA manager is able to anticipate and adapt consequently the existing SLA or
establish a contract with a new provider. The second advantage of our method is that the SLA manager
tries to preserve the existing contract between the service provider and the service user. Long term
collaborations between stakeholders are protected from the continuous switching over existing services
and new services are selected only when the current provider is not able to meet the user expectations.

118

Part IV

Conclusions

119

Chapter 9

Conclusions

This chapter presents the conclusions of this work. Section 9.1 outlines the main ideas proposed in this
thesis. Section 9.2 presents the main contributions of this thesis. Section 9.3 outlines the limitations of
this work and Section 9.4 proposes some directions for future work.

9.1 Summary

Service-Oriented Computing (SOC) is now an accepted and known paradigm. SOC is supported by several
specification languages and technologies enabling its adoption by scientists and practitioners. However,
SOC is an emergent paradigm with large ongoing research activities. Among others, the management
and monitoring of services could be improved. Service management spans a range of activities, from
installation and configuration to collecting metrics and tuning, to ensure responsive service execution.
It typically involves gathering information about the managed-service framework, services and business
processes, and managed-resource status and performance via root-cause failure analysis, SLA monitoring
and reporting, service deployment, and life-cycle management and capacity planning [163]. To manage
services, one possibility is to investigate the quality of services and to use them in the web services
monitoring. QoS allow to discriminate services and to observe the performance of a service. We propose
models and methods enabling the management of web services through their QoS characteristics. This
thesis involves different steps:

• The definition of a Quality of Service Specification Model enabling services stakeholders to
express their expectations and capabilities about QoS to meet and to offer. The specification model
proposed provides modeling constructs about the measurement of quality properties, the desired
values of quality properties, the interdependencies between values of distinct quality dimensions
and, the priorities between QoS properties to take into consideration during optimization.

• The suggestion of some QoS-driven management methods enabling to improve the management
of web services before the service execution. Proposed management methods (i.e., selection, com-
position and user profiling) rely on specifications made with the quality model previously defined.
The selection, the composition and the user profiling methods are driven by quality expectations
and capabilities specified by involved stakeholders. Such methods allow to customize the services
execution from user requirements. The service proposed to the service user are those that best fill
its expectations.

• The proposition of processes enabling the management of service level agreements during
the service execution. Service Level Agreements specify contracts between stakeholders of the
composition about quality levels expected. SLA are essential to guarantee the right execution of
services and to prevent from opportunistic behavior. Proposed processes enable to monitor and
control the contract achievement. These processes also allow to take self-healing measures if the
initial contract fails.

121

9. CONCLUSIONS

9.2 Main Contributions

This work contributes to the improvement of web services management by offering different models and
methods supporting a quality driven management. The main contributions are:

• A quality model to allow requesters to specify quality expectations, providers to advertise service
qualities and management third parties to compare alternative services. Upon basis of observed
similarities between various existing quality models, we review these and integrate them into a
single quality model called QVDP. (Chapter 3)

• A service selection method based on quality properties of a service. By drawing on multi-criteria
decision making techniques, we suggest a service selection framework that uses information pre-
viously specified with the QoS model in order to select the most appropriate service at runtime.
(Chapter 4)

• A service composition method based on the QoS users’ expectations and providers’ capabilities. The
composition method proposes an approach to the computation of individual services’ aggregate QoS
ratings when multiple QoS criteria are given, and a reinforcement learning algorithm which uses
these ratings in order to find the selection of services that maximizes the overall QoS level delivered
to the users. (Chapter 5)

• A user profiling method relying on the formulation of QoS users’ expectations. A service provider’s
reputation is a function of the feedback, given after every past transaction by the users of the
service. To obtain a reliable reputation score from honest feedback, it is necessary to account for
the bias arising from each user’s outlook (i.e., tendency to provide overly optimistic or pessimistic
feedbacks), sensitivity to deception (tendency to react positively or negatively with weak or strong
importance to differences between the quality level expected and delivered), and sensitivity to brand
image (tendency to react positively or negatively with weak or strong importance to the image of
a provider). These form together the feedback profile specific to a user. We propose a probabilistic
model able to compute the feedback profile of each user. (Chapter 6)

• A normative management of service level agreements defined between web services. Service Level
Agreements (SLAs) are used in Service-Oriented Computing to define the obligations of the parties
involved in a transaction. We outline a norm-oriented multiagent system (NoMAS) architecture that
is combined with the service-oriented architecture in order to support the definition, management,
and control of SLAs between the service clients and service providers. (Chapter 7)

• We propose a method using context to manage SLA during service executions. SLAs define the
service users’ Quality of Service (QoS) requirements that the service provider should satisfy. Re-
quirements defined once may not be satisfiable when the context of the web services changes (e.g.,
when requirements or resource availability changes). Changes in the context can make SLAs obso-
lete, making SLA revision necessary. We propose a method to autonomously monitor the services’
context, and adapt SLAs to avoid obsolescence thereof. (Chapter 8)

9.3 Limitations

Beyond contributions proposed in this thesis, our work presents some limitations described here:

• The different models and methods outlined do not provide a complete framework of service manage-
ment. Papazoglou enumerates services management activities as gathering information about the
managed service platform, services and business processes and managed-resource status and perfor-
mance via root-cause failure analysis, SLA monitoring and reporting, service deployment, life-cycle
management and capacity planning [163]. The service management is confronted to numerous issues
and we choose to address some of them in this thesis. The models and methods presented offer a

122

9.3 Limitations

consistent set as they refer to the management of web services from an user approach. The different
activities are driven by quality and by user expectations about quality values. All the contributions
presented in this work aim at maximizing the user satisfaction about services executions.

• The overall work proposed in this thesis suffers from a lack of integrated validation. However,
it is possible to validate most proposed methods with help of comparative analyzes with other
existing models or through the use of appropriate case studies. Most methods have then been
individually validated, although some proposed validations lack of applied experimentations. The
quality model proposed in Chapter 3 of Part I has been validated through a case study developed
in collaboration with the European Space Agency. Moreover, we have compared the expressiveness
of the proposed model with other existing quality model in Table 3.1. The methods improving the
management of web services presented in Part II propose quantitative analyzes. The composition
method (Chapter 5) and the user profiling method (Chapter 6) outline a quantitative validation with
comparisons to similar state-of-the-art methods. The selection method (Chapter 4) has not been
compared to existing methods. The selection method proposed relies on Multi-Criteria-Decision-
Making which is subject to a particular context of utilization. Indeed, existing MCDM methods
are usually differentiated by theirs inputs, each method relying on different information. E.g.:
to fix criteria priorities, some methods use weights determined by users, other computes weights
with order relationships or quantitative comparisons. It is then difficult to compare alternative
methods to determine the most efficient. The most adapted method is the one that best fits to
the problem. Some existing selection approaches introduce quantitative experiments. However, the
proposed experiments concern simulations about execution time [120; 229] or comparisons between
the proposed service selection method and a random selection [69; 120; 203]. Conducting such
experiments do not allow us to conclude that our proposed selection model is the one that maximize
user satisfaction. The models proposed to improve the management of Service Level Agreements
in Part III (Chapter 7 and 8) suffer from a lack of validation. They propose an illustration of
the introduced concepts through a case study but do not evaluate them. To properly validate
proposed models, they should be implemented but especially integrated into existing web services
platform. This way, their performance and efficiency could be appropriately measured. Finally, the
integration of proposed methods into a complete framework has not been evaluated. Practically,
the development needed to enable experiences and get significant results is important and involves
several development resources. The validation strategy to conduct a such evaluation is detailed in
Subsection 9.3.1. The lack of existing validation for the whole proposed models is also induced by
the difficulty to find appropriate data. Some existing datasets propose quality information of web
services [5; 232]. However, these datasets do not provide us relevant information to perform an
evaluation of our methods. It is then difficult to conduct significative experiments about service
quality and requester behavior.

9.3.1 Validation strategy

To set up a global validation of our work, we describe here the validation strategy that should be
adopted. The aim of a such validation is to highlight the efficiency of proposed methods to improve the
management of Web services. To carry out this validation, we should conduct some surveys comparing
the utilization of our management methods with usual methods. The aim of this survey is to evaluate the
set of contributions according different criteria such as usability, efficiency, improvement, conformance to
requester’s expectations, etc. The validation should be performed in several steps:

1. Development of the Web service management framework. To allow an integrated validation
of this work, proposed contributions should be programmed into an integrated framework. The
development should be in accordance to Web service standards to assure interoperability. Methods
proposed in this thesis should be offered as a framework enabling selection, composition, profiling
and SLA management. This framework will act as layer above the Web services managed by the

123

9. CONCLUSIONS

framework. Rather than accessing directly to Web services, Web services are accessed through the
framework which monitors their execution capabilities and behavior.

2. Utilization of the framework. The framework has to be evaluated by some testers (people with
relevant experience in Web service management and people with low experience in Web services
utilization) assuming the role of services requester’s. The framework enables service requesters
to specify their quality expectations about executions and to use proposed management methods.
Testers follow a set of predefined scenarios of Web services utilizations. Some scenarios relies on
the framework while the others are driven by usual or manual management methods. The design
of scenarios must take into account several contexts and volumes of Web services utilization.

3. Surveys on frameworks users. Once testers have tried the framework through scenarios, they
should answer to a questionnaire enabling to evaluate the framework. Testers should respond to
issues related to the usability, the efficiency and the improvements offered by the framework. The
survey results will be get through a statistical evaluation of answers.

A such validation should allow to highlight the improvement of our method in comparison to usual or
manual management methods. However, a such validation depends on the framework development. The
experiments could be biased by the design and the usability of the framework. The survey has to be
conducted on the underlying methods and not on the framework development.

9.4 Future Work

The work proposed in this thesis covers some of the existing issues of web services management. However,
the proposed framework does not address all issues related to the quality management of web services.
Among remaining issues, the following are highlighted:

• Ensuring the specification compatibility between users requirements and providers capabilities.
With the QoS model proposed, providers and users are both able to define their own quality metrics.
However, to ensure the compatibility between providers and users specifications, a semantic match
is needed. Confronting offered possibilities to expected values requires a compatibility between
specifications of values. The measurement functions used by stakeholders must compute the same
values and quality characteristic must have the same semantic. Upon basis of the proposed QoS
model, we could propose a framework enabling semantic match between users requirements and
providers capabilities.

• Automatic generation of SLA. In our work, we did not give any recommendation about generation
of contracts between stakeholders. With service management methods, we determine the services
most adapted to the execution according to user requirements and expectations. With our SLA
management processes, we propose to adapt the SLA to quality variations and to use normative
agents to control SLA executions. Upon basis of optimization results obtained with selection and
composition methods, we could automatically generate SLAs between users and selected providers.
Information about alternative services could also be used to adapt the SLA if the selected service
fails its execution.

• Autonomic Service Composition. In our service composition method, the possible composition is
given by a directed acyclic hypergraph. This representation is subject to a preliminary manual
matching. The integrity of a service composition imposes a matching of its operations with those
of its constituent component services. It imposes semantic constraints on the component services
and guarantees that constraints on data that component services exchange are satisfied [163]. This
matching could be automatized to improve the efficiency and the usability os services compositions.

• The definition of an appropriate language supporting the proposed work. Web services technologies
are supported by several description languages enabling the communication between stakeholders.

124

9.4 Future Work

In this work, we propose several methods and processes improving the management of web services.
However, we did not integrate our proposals into any existing specification languages. The use of
such languages is essential to allow the deployment of our proposals with existing technologies.

• The complete integration of proposed models and methods into existing web services technologies.
To allow the utilization of methods and processes proposed in our work, these must be accessed
with appropriate technologies. The methods we present could be integrated into existing standards
(the Sun ONE application framework1, Microsoft.NET2, the Oracle BPEL process manager3, or the
IBM WebSphere Application Server4). Existing web services repositories could be used to monitor
services executions and collect historical quality data of services executions. The cloud computing
and its possibilities of services hosting offers large possibilities of services management.

• Defining web services communities according to user expectations. The management of web services
could be improved with the use of web services communities. Web services communities offer services
clusters assuming quality similarities. Service belonging to such clusters improve their reliability
and self-healing capabilities. If one service of the cluster is down, it can be substituted by another
member of the cluster.

1http://www.sun.com/software/products/application framework/home app framework.xml
2http://www.microsoft.com/net/
3http://www.oracle.com/technology/products/ias/bpel/index.html,
4http://www-01.ibm.com/software/webservers/appserv/was/

125

9. CONCLUSIONS

126

Part V

Appendices

127

Appendix A

Service Selection Approaches

This appendix introduces the related work of the service selection approach proposed in Chapter 4. It is
inspired by a service selection survey proposed by Yu and Reiff-Marganiec [226]. The fundamental issues
of service selection are: (1) specifying requester’s service requirements, (2) evaluating service proposals,
and (3) aggregating the evaluation results into a comparable unit. Requester’s requirements and the
service offerings have both functional and complex non-functional aspects, which need to be expressed
and matched against each other to be evaluated.

There exists numerous service selection approaches based on non-functional properties. These propo-
sitions present some overlap in functionalities but also have some divergences in their foundations. Such
approaches can be differentiated according different criteria allowing to apply the most suited solutions
to specific applications.

A.1 Service Selection Criteria

Yu and Reiff-Marganiec define 7 main criteria involved in the evaluation of selection approaches. These
criteria are introduced here (further details can be found in [226]):

• Model for non-functional properties: service requesters need to objectively distinguish services
based on their non-functional criteria to make the most appropriate choice amongst a number of
services functionally equivalent. To this aim, a model for non-functional properties is required.

• Hierarchical properties: non-functional properties at a lower level are the most relevant to the
selection issue. So, it is meaningful to place properties into a hierarchical structure.

• User preferences: service requesters usually have varying preferences for the non-functional cri-
teria depending on their situation. The selection mechanism should allow them to express values
for each property and represent the relationships between preferences.

• Evaluation of properties: it is difficult to predict how many non-functional properties will be
available, and additionally the type of these properties. The evaluation framework must on one hand
adapt to varying numbers of criteria, but also automatically identify the measurement methods that
should be used to evaluate each criteria.

• Dynamic aggregation: when all desired non-functional criteria have been evaluated, these must
be aggregated into an individual score to gain a final score for the service.

• Automation: the ultimate goal of service selection research is to provide fully automatic processes.
A service designer would still specify data for the service when making it available, and a user
would still be able to specify requirements, but the selection would be performed without human
intervention.

129

A. SERVICE SELECTION APPROACHES

• Scalability and accuracy Scalability means that the approach can consider large numbers of
properties, but also that many ranking processes are taking place simultaneously. Of course there
is also a question as to how accurate the result is. While one would aim for perfect accuracy (that
is one has provably chosen the best service), it is often sufficient to choose a good enough service if
the decision can be made quickly.

A.2 Categorization of Approaches

Yu and Reiff-Marganiec categorizes service selection approaches. Such categories are introduced here
(further details can be found in [226]):

• Policy vs reputation: policy based service selection approaches allow to specify the non-functional
requirements by coding these in a QoS policy model or policy language [92; 124]. In contrast to the
policy based approaches, there are a number of approaches based on trust and reputation [59; 135].

• UDDI extensions vs semantic web: in order to address the problem of modeling and using
services properties, some research projects have investigated the extensions to UDDI and Semantic
Web service technologies [4; 188]. Such approaches do not offer extensible service quality model,
meaning that the approaches are restricted for selections based on the few predefined, generic crite-
ria. Understanding these disadvantages, some work has been conducted to define the nonfunctional
models for web services using Semantic Web Service (SWS) technology. Wang et al. introduced
the WSMO (Web service ModelingOntology) [213] based approach. Manikrao et al. [132] introduce
the DAML-S based service selection approach. The matching algorithm uses the semantics of the
vocabulary by introducing advanced concepts of matching.

• Graphic preference modeling vs ontology based preference modeling: It is important to
consider how users can best express their needs. To that end, a graphical preference modeling and
service selection approach has been discussed in [185], where the preferences are modeled as TCP
network graph [23] or UCP network graph [20]. The selection algorithm that is presented is based
on simple textual matching without making use of a model for non-functional properties and hence
is less extensible and cannot deal with hierarchically structured properties. Maximilien et al. [133]
and Lamparter [120] present two approaches which use ontology modeling techniques to model both
the requesters requirements and service properties.

NFP model User prefer-
ences

Evaluation
of proper-
ties

Hierarchical
properties

Dynamic
aggregation

Automation Scalability

[4] unknown average no yes low average high
[59] yes low no yes low low high
[92] no average no no low low low
[120] yes average no yes average high low
[124] yes average no yes low low average
[132] yes low yes yes high average average
[133] yes average no yes low high high
[135] no low no yes average low high
[185] yes high no no high low low
[188] no average no no average average low
[213] yes low no yes average average high

The previous table presents the comparison of investigated methods according criteria presented in
Section A.1. The comparison illustrates that most of the approaches are lacking flexible methods for
evaluating properties. Moreover, the level of expressing meaningful preferences is still low. However, the
use of semantic web/ontology technologies has a huge advantage for addressing preference modeling and
services non-functional properties. By analyzing the current service selection approaches, we found that
most of them are designed by focusing on one or few aspects of the overall service selection problem.

130

Appendix B

Service Composition Approaches

This appendix presents the state-of-the-art of service composition approaches. It is inspired by the survey
made by Rao and Su [174].

The service composition issue comes from different sources: (1) the growing number of services avail-
able over the Web; Web services can be created and updated on the fly. (2) The composition needs
to consider the updating at runtime and must adapt its behavior. (3) Web services are developed by
different organizations using different models to describe the services and their concepts. These does not
exist a unique language to evaluate the Web services in an identical means.

Most existing web service composition approaches are inspired by cross enterprise workflows and AI
planning research areas. Section B.1 prensents composition approaches using workflows while Section B.2
outlines composition approaches relying on AI planning.

B.1 Services Composition using Workflows

We briefly introduce here the service composition approaches relying on workflows, more details can be
found in Rao and Su [174]. In the workflow-based composition methods, we should distinguish the static
and dynamic workflow generations. The static one means that the requester should build an abstract
process model before the composition planning starts. EFlow [32] is a platform for the specification,
enactment and management of composite services. EFlow uses a static workflow generation method. A
composite service is modeled by a graph that defines the order of execution among the nodes in the process.
The graph is created manually but it can be updated dynamically. The authors further refine the service
composition platform and propose a prototype of composite service definition language(CSDL) [33]. An
interesting feature of CSDL is that it distinguishes between invocation of services and operations within
a service. It provides the adaptive and dynamic features to cope with the rapidly evolving business and
IT environment in which Web services are executed. Polymorphic Process Model (PPM) [186] uses a
method that combines the static and dynamic service composition.

B.2 Services Composition using Artificial Intelligence Planning

Many research efforts tackling Web service composition problem via Artificial Iintelligence (AI) planning
have been reported. Rao and Su classify the methods into five categories [174], namely, the situation
calculus, the Planning Domain Definition Language (PDDL), rule-based planning, the theorem proving
and others.

• Situation calculus: McIlraith et. al. [139; 140; 152] adapt and extend the Golog language for
automatic construction of Web services. Golog is a logic programming language built on top of the
situation calculus. The authors address the Web service composition problem through the provision
of high-level generic procedures and customizing constraints.

131

B. SERVICE COMPOSITION APPROACHES

• PDDL: A strong interest to Web service composition from AI planning community could be ex-
plained roughly by similarities between DAML-S and PDDL representations. PDDL is widely
recognized as a standardized input for state-of-the-art planners. Moreover, since DAML-S has been
strongly influenced by PDDL language, mapping from one representation to another is straightfor-
ward (as long as only declarative information is considered). When planning for service composition
is needed, DAML-S descriptions could be translated to PDDL format. Then different planners could
be exploited for further service synthesis. In presenting the Web service composition method based
on PDDL, McDermott [137] introduces a new type of knowledge, called value of an action, which
persists and which is not treated as a truth literal. FromWeb service construction perspective, the
feature enables us to distinguish the information transformation and the state change produced by
the execution of the service.

• Rule-based planning: Medjahed [142] presents a technique to generate composite services from
high level declarative description. The method uses composability rules to determine whether two
services are composable. The composition approach consists of four phases. First, the specification
phase enables high-level description of the desired compositions using a language called Composite
Service Specification Language(CSSL). Second, the matchmaking phase uses composability rules
to generate composition plans that conform to service requesters specifications. The third phase is
selection phase. If more than one plan is generated, in the selection phase, the service requester
selects a plan based on quality of composition (QoC) parameters (e.g. rank, cost, etc.). The final
phase is the generation phase. SWORD [170] is another developer toolkit for building composite
Web services using rule-based plan generation. SWORD does not deploy the emerging service-
description standards such as WSDL and DAML-S, instead, it uses Entity-Relation (ER) model to
specify the Web services. In SWORD, a service is modeled by its preconditions and postconditions.
They are specified in a world model that consists of entities and relationships among entities. A
Web service is represented in the form of a Horn rule that denotes the postconditions are achieve if
the preconditions are true. To create a composite service, the service requester only needs specify
the initial and final states for the composite service, then the plan generation can be achieved using
a rule-based expert system.

• Other AI-planning methods: Some other AI planning techniques are proposed for the auto-
matic composition of Web services. The SHOP2 planner [221] is applied for automatic composition
of Web services, which are provided with DAML-S descriptions. SHOP2 is an Hierarchical Task
Network(HTN) planner. The authors believe that the concept of task decomposition in HTN plan-
ning is very similar to the concept of composite process decomposition in DAML-S process ontology.
The authors also claim that the HTN planner is more efficient than other planning language, such
as Golog. In their paper, the authors give a very detail description on the process of translating
DAML-S to SHOP2. In particular, most control constructs can be expressed by SHOP2 in an
explicit way.

132

Appendix C

Service Level Agreement
Management Approaches

This appendix outlines the related work of Service Level Agreements approaches. It is inspired by the
survey made by Seidel et al. [187]. Currently, three main SLAs specification frameworks are established:
the Web Service Level Agreement (WSLA) developed by IBM [109], the Web Service Agreement (WS-
Agreement) developed by the Open Grid Forum (OGF) [128] and SLang [119].

C.1 WSLA

WSLA [109] is a framework developed by IBM for specifying and monitoring Service Level Agreements
(SLA) for Web Services. The framework is able to measure and monitor the QoS parameters of a Web
Service and reports violations to the contract specified in the SLA. In a Web Service environment, services
are usually subscribed dynamically and on demand. In this environment automatic SLA monitoring and
enforcement helps to fulfill the requirements of both service providers and requesters. WSLA provides
a formal language based on XML Schema to express SLAs and a runtime architecture which is able to
interpret this language. Components of the runtime architecture can be outsourced to third parties to
ensure a maximum of objectivity. The WSLA language allows service requesters and providers to define
SLAs and their parameters and specify how they are measured. The WSLA monitoring services are
automatically configured to enforce an SLA upon receipt.

C.2 WS-Agreement

The Web Services Agreement Specification [128] from the Open Grid Forum (OGF) describes a protocol
for establishing an agreement on the usage of Services between providers and requesters. It defines a
language and a protocol to represent the services of providers, create agreements and monitor agreements
compliance at runtime. An agreement defines a relationship between two parties that is dynamically es-
tablished and managed. In the agreement each party agrees on its respective roles, rights and obligations.
A provider offers a service according to conditions described in the SLA. The agreement specifies the avail-
ability and ther QoS characteristics offered by the provider. Agreements can be negotiated by entities
acting on behalf the provider and/or the requester. An agreement creation process usually consists of
three steps: (1) The initiator retrieves a template from the responder, which advertises the types of offers
the responder is willing to accept. (2) The initiator makes an offer. (3) The offer is either accepted or
rejected by the responder. An agreement consists of the agreement name, its context and the agreement
terms. The context describes information about the involved parties and meta-data such as the duration
of the agreement. Agreement terms define Service Level Objectives (SLOs), which describe the quality
of service aspects of the service that have to be fulfilled by the provider. The Web Services Agreement

133

C. SERVICE LEVEL AGREEMENT MANAGEMENT APPROACHES

Specification allows the usage of any standard or domain specific condition expression language to define
SLOs. The specification of domain-specific term languages is explicitly left open.

C.3 SLang

SLang is a reference model for inter-organizational service provision at storage, network, middleware and
application level [119]. SLang meets multiple objectives: (1) it provides a format for the negotiation of
QoS properties; (2) the means to capture these properties unambiguously for inclusion in contractual
agreements; and, (3) a language appropriate as input for automated reasoning systems of QoS aware
adaptive middleware. SLang associate QoS measures to identifiable architectural elements of Application
Service Providers (ASP). The QoS semantic of SLang does not refer to a specific ASP model and are
defined according to diverse domains of the performance perspectives. For example, the throughput of a
database server and the throughput of a component container server are different concepts: the former
is defined in terms of the query response time, the latter in terms of the roundtrip method invocations
per second. Similarly, SLang allows to adapt the QoS syntax to the reference domain. SLang adopts
classification of SLA according to vertical and horizontal SLAs. Horizontal SLAs govern the interaction
between coordinated pairs whereas, vertical SLAs are dedicated to interactions between subordinated
pairs, within the service provision architecture stack. The main requirements fulfilled by the SLang
language are:

• Parametrization : each SLA includes a set of parameters, the values that quantitatively describe a
service.

• Compositionality: a service can be the result of a cooperation between different domain entities.
An SLA language has to enable such composition.

• Validation: Before initiating an SLA, contractors have to be able to validate it, checks its syntax
and consistency, further verified as a result of a composition.

• Monitoring: parties should be able to automatically monitor the extent of which the service levels
set forth in an agreement are actually provided by its providers.

• Enforcement: Once service levels are agreed, network routers, database management systems, mid-
dleware and web servers can be extended to enforce service levels in an automated manner by using
techniques such as caching, replication, clustering and farming.

134

Bibliography

[1] Y. Achbany, I. J. Jureta, S. Faulkner, and F. Fouss. Continually
learning optimal allocations of services to tasks. IEEE Trans. Serv.
Comput., 1(3):141–154, 2008. 58

[2] T. Akamatsu. Cyclic flows, markov process and stochastic traffic
assignment. Transportation Research B, 30(5):369–386, 1996. 63

[3] R. J. Al-Ali, O. F. Rana, D. W. Walker, S. Jha, and S. Sohail. G-
qosm: Grid service discovery using qos properties. Journal of Com-
puting and Informatics (Special issue on Grid Computing), 21(4):363–382,
2002. 106

[4] E. Al-Masri and Q. H. Mahmoud. Discovering the best web service.
In WWW ’07: Proceedings of the 16th international conference on World
Wide Web, pages 1257–1258, New York, NY, USA, 2007. ACM. 130

[5] E. Al-Masri and Q. H. Mahmoud. Investigating web services on
the world wide web. In WWW ’08: Proceeding of the 17th international
conference on World Wide Web, pages 795–804, New York, NY, USA,
2008. ACM. 123

[6] T. Amemiya. Tobit models: A survey. Journal of Econometrics, 24(1-
2):3–61, 1984. 79

[7] X. Bai, W. Dong, W.-T. Tsai, and Y. Chen. Wsdl-based automatic
test case generation for web services testing. In SOSE ’05: Proceed-
ings of the IEEE International Workshop, pages 215–220, Washington,
DC, USA, 2005. IEEE Computer Society. 16

[8] C. Bana e Costa and J. Vansnick. Macbeth - an interactive path
towards the construction of cardinal value fonctions. International
transactions in operational Research, 1:489–500, 1994. 54, 55

[9] A. C. Barbosa, J. Sauvé, W. Cirne, and M. Carelli. Evaluating
architectures for independently auditing service level agreements.
Future Gener. Comput. Syst., 22(7):721–731, 2006. 106

[10] V. R. Basili and H. D. Rombach. The tame project: Towards
improvement-oriented software environments. IEEE Trans. Software
Eng., 14(6):758–773, 1988. 39

[11] S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Gruninger, R. Hull,
M. Kifer, D. Martin, S. McIlraith, D. McGuinness, J. Su, and
S. Tabet. Semantic web services framework (swsf). Technical re-
port, http://www.daml.org/services/swsf/1.0/, 2005. 18

[12] BEA, IBM, Microsoft, and S. AG. Web services policy framework
(ws-policy). Technical report, May 2003. 1

[13] A. Benharref, R. H. Glitho, and R. Dssouli. Mobile agents for
testing web services in next generation networks. In MATA, pages
182–191, 2005. 16

[14] A. Benharref, M. A. Serhani, M. Salem, and R. Dssouli. Managing
Web Service Quality, chapter Multi-Tier Framework for Management
of Web Services Quality, pages 23 – 47. Khan, Khaled M., 2009.
15

[15] D. Berardi, D. Calvanese, G. D. Giacomo, and L. U. D.
Bolzano/bozen. Automatic service composition based on behav-
ioral descriptions. International Journal of Cooperative Information Sys-
tems, 14:2005, 2005. 66

[16] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web.
Scientific American, May 2001. 17

[17] D. Bianculli, R. Jurca, W. Binder, C. Ghezzi, and B. Faltings. Au-
tomated dynamic maintenance of composite services based on ser-
vice reputation. In Springer-Verlag, editor, ICSOC ’07: Proceedings of
the 5th international conference on Service-Oriented Computing, pages 449
– 455, Berlin, Heidelberg, 2007. 117

[18] B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. J. Macleod,
and M. J. Merrit. Characteristics of Software Quality. North-Holland,
1978. 17

[19] G. Boella, L. Torre, and H. Verhagen. Introduction to norma-
tive multiagent systems. Comput. Math. Organ. Theory, 12(2-3):71–79,
2006. 101

[20] C. Boutilier, F. Bacchus, and R. I. Brafman. UCP-Networks: A
Directed Graphical Representation of Conditional Utilities, pages 56–64.
2001. 130

[21] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn,
H. F. Nielsen, S. Thatte, and D. Winer. Simple Object Access Pro-
tocol (SOAP) 1.1. W3c note, World Wide Web Consortium, May
2000. See http://www.w3.org/TR/SOAP/. 15

[22] J. S. Bradbury, J. R. Cordy, J. Dingel, and M. Wermelinger. A
survey of self-management in dynamic software architecture spec-
ifications. In WOSS ’04: Proceedings of the 1st ACM SIGSOFT workshop
on Self-managed systems, pages 28–33, New York, NY, USA, 2004.
ACM. 115, 117

[23] R. I. Brafman, C. Domshlak, and S. E. Shimony. On graphical
modeling of preference and importance. J. Artif. Intell. Res. (JAIR),
25:389–424, 2006. 39, 130

[24] G. Brahnmath, R. R. Raje, A. Olson, M. Auguston, B. R. Bryant,
and C. C. Burt. A quality of service catalogue for software compo-
nents. In Proceedings of the Southeastern Software Engineering Conference,
2002. 26

[25] J. Brans and P. Vincke. A preference ranking organization method:
The PROMETHEE method for multiple criteria decision-making.
Management Science, 31(6):647–656, 1985. 51, 52, 55

[26] P. Brockhoff and I. Skovgaard. Modelling individual differences be-
tween assessors in sensory evaluations. Food Quality and Preference,
5:215–224, 1994. 77, 80, 82, 83, 86

[27] R. G. Brown. Smoothing, forecasting and prediction of discrete time series.
Prentice-hall, 1962. 63

[28] Business objective driven REliable and Intelligent grids for real
busiNess (BREIN project). Final brein architecture d4.1.3 v2 - wp
4.1 architectural design. Technical report, 2009. 107

[29] A. Campbell, G. Coulson, and D. Hutchison. A quality of service
architecture. SIGCOMM Comput. Commun. Rev., 24(2):6–27, 1994.
106

[30] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani. An ap-
proach for qos-aware service composition based on genetic algo-
rithms. In GECCO ’05: Proceedings of the 2005 conference on Genetic
and evolutionary computation, pages 1069–1075, New York, NY, USA,
2005. ACM. 66

[31] C. Cappiello, M. Comuzzi, and P. Plebani. On automated gener-
ation of web service level agreements. In CAiSE, pages 264–278,
2007. 99, 114

[32] F. Casati, S. Ilnicki, L.-j. Jin, V. Krishnamoorthy, and M.-C. Shan.
Adaptive and dynamic service composition in eflow. In CAiSE
’00: Proceedings of the 12th International Conference on Advanced Informa-
tion Systems Engineering, pages 13–31, London, UK, 2000. Springer-
Verlag. 131

[33] F. Casati, M. Sayal, and M.-C. Shan. Developing e-services for
composing e-services. In CAiSE ’01: Proceedings of the 13th International
Conference on Advanced Information Systems Engineering, pages 171–186,
London, UK, 2001. Springer-Verlag. 131

[34] F. Casati, E. Shan, U. Dayal, and M.-C. Shan. Business-oriented
management of web services. Commun. ACM, 46(10):55–60, 2003.
15

[35] C. Castelfranchi and Y.-H. Tan, editors. Trust and deception in virtual
societies. Kluwer Academic Publishers, Norwell, MA, USA, 2001.
100, 101

[36] J. Castro, M. Kolp, and J. Mylopoulos. Towards requirements-
driven information systems engineering: the tropos project. Infor-
mation Systems, 27(6):365–389, 2002. 39

[37] W.-N. Chen and J. Zhang. An ant colony optimization approach
to a grid workflow scheduling problem with various qos require-
ments. Systems, Man, and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on, 39(1):29–43, Jan. 2009. 66

[38] L. Cherkasova, Y. Fu, W. Tang, and A. Vahdat. Measuring and
characterizing end-to-end internet service performance. ACM Trans.
Internet Technol., 3(4):347–391, 2003. 100

[39] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana.
Web services description language (wsdl). Technical report, W3C,
2001. 27

[40] M. A. Cibrán, B. Verheecke, W. Vanderperren, D. Suvée, and
V. Jonckers. Aspect-oriented programming for dynamic web service
selection, integration and management. World Wide Web, 10(3):211–
242, 2007. 118

[41] A. D’Ambrogio. A model-driven wsdl extension for describing the
qos of web services. In Proceedings of the International Conference on
Web Services (ICWS’06), 2006. 27, 45

[42] C. Dellarocas. Immunizing online reputation reporting systems
against unfair ratings and discriminatory behavior. In ACM Confer-
ence on Electronic Commerce, pages 150–157, 2000. 72, 89

[43] C. Dellarocas. Reputation mechanism design in online trading en-
vironments with pure moral hazard. Information Systems Research,
16(2):209–230, 2005. 89

[44] C. Dellarocas. Strategic manipulation of internet opinion forums:
Implications for consumers and firms. Manage. Sci., 52(10):1577–
1593, 2006. 84

[45] C. Dellarocas and C. A. Wood. The Sound of Silence in Online
Feedback: Estimating Trading Risks in the Presence of Reporting
Bias. Management Sci., 2007. 89

135

http://www.w3.org/TR/SOAP/

BIBLIOGRAPHY

[46] W. E. Deming. Quality, productivity, and competitive position. Mas-
sachusets Institute of Technology, Center for Advanced Engineer-
ing Study, 1982. 17

[47] A. K. Dey, G. D. Abowd, and D. Salber. A conceptual framework
and a toolkit for supporting the rapid prototyping of context-aware
applications. Hum.-Comput. Interact., 16(2):97–166, 2001. 112, 117

[48] Distributed Management Task Force, Inc. (DMTF). Web services
for management (ws-management) specification. Technical report,
2008. 1

[49] W.-L. Dong, H. Yu, and Y.-B. Zhang. Testing bpel-based web ser-
vice composition using high-level petri nets. In EDOC ’06: Proceed-
ings of the 10th IEEE International Enterprise Distributed Object Comput-
ing Conference, pages 441–444, Washington, DC, USA, 2006. IEEE
Computer Society. 58

[50] D. M. F. Dignum. Towards socially sophisticated bdi agents. In
ICMAS ’00: Proceedings of the Fourth International Conference on MultiA-
gent Systems (ICMAS-2000), page 111, Washington, DC, USA, 2000.
IEEE Computer Society. 101

[51] J. A. Farrell and H. Kreger. Web servces management approaches.
IBM Systems Journal, 41(2):212–227, 2002. 15

[52] A. V. Feigenbaum. Quality control: Principles, practice, and administra-
tion. McGraw-Hill, 1951. 17

[53] N. E. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous and
Practical Approach. PWS Publishing Co., Boston, MA, USA, 1998.
16

[54] D. F. Ferguson and M. L. Stockton. Service-oriented architecture:
Programming model and product architecture. IBM Systems Journal,
44(4):753–780, 2005. 17

[55] J. Figueira, S. Greco, and M. Ehrgott. Multiple Criteria Decision Anal-
ysis: State of the Art Surveys. Springer Verlag, Boston, Dordrecht,
London, 2005. 51, 52, 53, 55, 61, 75

[56] J. Figueira and B. Roy. Determining the weights of criteria in
the electre type methods with a revised simos’ procedure. European
Journal of Operational Research, 139:317–326(10), 1 June 2002. 54, 75

[57] F. Fouss, Y. Achbany, and M. Saerens. A probabilistic reputation
model. Information Sciences, 2010. 78, 79

[58] S. Frolund and J. Koistinen. Qml: A language for quality of ser-
vice specification. Technical report, HP Laboratories, Palo Alto,
California, 1998. 26

[59] S. Galizia, A. Gugliotta, and J. Domingue. A trust based method-
ology for web service selection. In ICSC ’07: Proceedings of the Inter-
national Conference on Semantic Computing, 2007. 130

[60] D. Garvin. What does product quality really mean? Sloan Manage-
ment Review, 26(1):25–43, 1984. 13

[61] D. Garvin. Managing quality: The strategic and competitive edge. Free
Press, 1988. 17

[62] T. Gilb. Principles of software engineering management. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1988. 14

[63] W. M. Goldstein. Judgments of relative importance in decision
making: Global vs local interpretations of subjective weight. Or-
ganizational Behavior and Human Decision Processes, 47(2):313–336, De-
cember 1990. 54

[64] R. E. Goodin. Structures of mutual obligations. J. of Social Policy,
31(4):579–596, 2002. 99, 100

[65] A. R. Gray and S. G. MacDonell. A comparison of techniques for
developing predictive models of software metrics. Information & Soft-
ware Technology, 39(6):425–437, 1997. 16

[66] P. Green. Bayesian reconstructions from emission tomography data
using a modified em algorithm. Medical Imaging, IEEE Transactions on,
9(1):84–93, Mar 1990. 78, 79, 80

[67] P. J. Green. On use of the em for penalized likelihood estima-
tion. Journal of the Royal Statistical Society. Series B (Methodological),
52(3):443–452, 1990. 79

[68] T. R. Gruber. A translation approach to portable ontology speci-
fications. Knowl. Acquis., 5(2):199–220, 1993. 18

[69] X. Gu and K. Nahrstedt. A scalable qos-aware service aggregation
model for peer-to-peer computing grids. In HPDC ’02: Proceedings
of the 11th IEEE International Symposium on High Performance Distributed
Computing, page 73, Washington, DC, USA, 2002. IEEE Computer
Society. 46, 66, 123

[70] D. Harel and A. Naamad. The statemate semantics of statecharts.
ACM Trans. Softw. Eng. Methodol., 5(4):293–333, 1996. 58

[71] M. He, N. R. Jennings, and H.-F. Leung. On agent-mediated elec-
tronic commerce. IEEE Transactions on Knowledge and Data Engineering,
15(4):985–1003, 2003. 107

[72] C. Herssens, S. Faulkner, F. Fouss, and I. J. Jureta. A frame-
work for qos driven selection of services. In SCC ’08: Proceedings of
the IEEE Service Computing Conference, volume 2, pages 537–538, Los
Alamitos, CA, USA, 2008. IEEE Computer Society. 43, 45

[73] C. Herssens, S. Faulkner, and I. J. Jureta. Context-driven auto-
nomic adaptation of sla. In ICSOC ’08: Proceedings of the 6th Interna-
tional Conference on Service-Oriented Computing, Lecture Notes in Com-
puter Science, pages 362–377, Berlin, Heidelberg, 2008. Springer-
Verlag. 95, 109

[74] C. Herssens, I. J. Jureta, and S. Faulkner. Capturing and using
qos relationships to improve service selection. In CAiSE 08: Proceed-
ings of the Conference on Advanced Information System Engineering, pages
312–327, 2008. 37, 38, 39, 43, 101

[75] C. Herssens, I. J. Jureta, and S. Faulkner. Dealing with qual-
ity tradeoffs during service selection. In ICAC ’08: Proceedings of the
IEEE International Conference on Autonomic Computing, volume 0, pages
77–86, Los Alamitos, CA, USA, 2008. IEEE Computer Society. 37,
38, 39, 43, 116

[76] Hewlett Packard (HP). Hp software & solutions. Technical report,
2007. 15

[77] J. Hokkanen and P. Salminen. Choosing a solid waste manage-
ment system using multicriteria decision analysis. European Journal
of Operational Research, 98(1):19–36, April 1997. 54

[78] J. Hokkanen, P. Salminen, E. Rossi, and M. Ettala. The choice of
a solid waste management system using the electre ii decision-aid
method. Waste Management and Research, 13:175–193, 1995. 61, 75

[79] I. Horrocks. DAML+OIL: a description logic for the semantic web.
IEEE Data Engineering Bulletin, 25(1):4–9, 2002. 18

[80] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof,
and M. Dean. Swrl: A semantic web rule language combining owl
and ruleml. Technical report, W3C, 2003. 25

[81] C. Hwang and K. Yoon. Multiple attribute decision making : Methods and
applications. Springer-Verlag, 1981. 55, 56, 61, 75

[82] IEEE. Software Engineering Standards. IEEE, 1989. 17

[83] H. P. In, C. Kim, and S. S. Yau. Q-mar: An adaptive qos man-
agement model for situation-aware middleware. In L. T. Yang,
M. Guo, G. R. Gao, and N. K. Jha, editors, EUC, volume 3207 of
Lecture Notes in Computer Science, pages 972–981. Springer, 2004. 106,
117, 118

[84] International Business Machines (IBM). Web service level agree-
ment (wsla) language specification. Technical report, 2003. 99,
101

[85] International Organization for Standardization (ISO). ISO 8402
Quality management and quality assurance - Vocabulary. 1986. 17

[86] International Organization for Standardization (ISO). Cd15935
information technology: Open distributed processing—reference
model—quality of service. Technical report, 1998. 27

[87] International Organization for Standardization (ISO). Quality
management systems - fundamentals and vocabulary, iso 9000-
2000. Technical report, 2000. 14

[88] International Organization for Standardization (ISO). Quality
management systems - guidelines for performance improvements,
iso 9004-2000. Technical report, 2000. 14

[89] International Organization for Standardization (ISO). Quality
management systems - requirements, iso 9001-2000. Technical re-
port, 2000. 14

[90] K. Ishikawa. What is total quality control? The Japanese way. Prentice
Hall, 1985. 17

[91] M. C. Jaeger, G. Mühl, and S. Golze. Qos-aware composition of
web services: An evaluation of selection algorithms. In OTM Con-
ferences (1), pages 646–661, 2005. 66

[92] H. Janicke and M. Solanki. Policy driven service discovery. In
Workshop on Service oriented Computing, 2007. 130

[93] W. S. Jevons. The Theory of Political Economy, chapter Theory of
Utility. 1965. 105

[94] Y. Jiang, C.-K. Tham, and C.-C. Ko. Challenges and approaches
in providing qos monitoring. Int. J. Netw. Manag., 10(6):323–334,
2000. 16

[95] C. Julien. Adaptive preference specifications for application ses-
sions. In ICSOC 2006, 4th International Conference on Service-Oriented
Computing, pages 78–89, 2006. 112

[96] H.-W. Jung and B. Choi. Optimization models for quality and cost
of modular software systems. European Journal of Operational Research,
112(3):613–619, February 1999. 55

[97] J. M. Juran. Quality control handbook. McGraw-Hill, 1951. 17

[98] R. Jurca and B. Faltings. Obtaining reliable feedback for sanction-
ing reputation mechanisms. J. Artif. Intell. Res. (JAIR), 29:391–419,
2007. 72, 89

[99] I. Jureta, J. Mylopoulos, and S. Faulkner. Revisiting the core on-
tology and problem in requirements engineering. In RE ’08: Proceed-
ings of the 2008 16th IEEE International Requirements Engineering Confer-
ence, 2008. 38

136

BIBLIOGRAPHY

[100] I. J. Jureta, S. Faulkner, Y. Achbany, and M. Saerens. Dynamic
task allocation wihin an open service-oriented mas architecture. In
Proceedings of the 6th International Joint Conference on Autonomous Agents
and Multi-Agents Systems (AAMAS’07), 2007. 18, 38, 40

[101] I. J. Jureta, S. Faulkner, Y. Achbany, and M. Saerens. Dynamic
web service composition within a service-oriented architecture. In
Proceedings of the International Conference on Web Services (ICWS’07),
2007. 18, 38, 40, 67

[102] I. J. Jureta, S. Faulkner, and P. Thiran. Dynamic requirements
specification for adaptable and open service-oriented systems. In
Proceedings of the International Conference on Service-Oriented Computing
(ICSOC’07), 2007. 39

[103] I. J. Jureta, C. Herssens, and S. Faulkner. A comprehensive qual-
ity model for service-oriented systems. Software Quality Journal,
17(1):65–98, 2009. 11, 17, 60

[104] S. Kakade. On the Sample Complexity of Reinforcement Learning. PhD
thesis, Gatsby Computational Neuroscience Unit, University Col-
lege London, 2003. 64

[105] S. Kalepu, S. Krishnaswamy, and S. W. Loke. Verity: a qos met-
ric for selecting web services and providers. In Proceedings of Web
Information Systems Engineering Workshops, pages 131–139, 2003. 16

[106] H. Kaminski and M. Perry. Sla automated negotiation manager
for computing services. In CEC/EEE ’06: IEEE Int. Conf. E-Commerce
Tech, 2006. 109

[107] H. Kaminski and M. Perry. Emerging Web Services Technology, chap-
ter Employing Intelligent Agents to Automate SLA Creation, pages
33–46. Springer-Verlag, 2007. 100

[108] R. L. Keeney and H. Raiffa. Decisions with Multiple Objectives: Prefer-
ences and Value Tradeoffs. Cambridge University Press, 1993. 55

[109] A. Keller and H. Ludwig. The wsla framework: Specifying and
monitoring service level agreements for web services. Journal of Net-
work Systems Management, 11(1), 2003. 2, 28, 97, 99, 102, 106, 133

[110] J. O. Kephart and D. M. Chess. The vision of autonomic comput-
ing. IEEE Computer, 36(1):41–50, 2003. 17

[111] C. Keum, S. Kang, I.-Y. Ko, J. Baik, and Y.-I. Choi. Generating
test cases for web services using extended finite state machine. In
TestCom 2006: Proceedings of 18th IFIP TC6/WG6.1 International Confer-
ence on Testing of Communicating Systems,, volume 3964, pages 103–
117. Springer, 2006. 16

[112] B. Kiepuszewski, A. H. M. ter Hofstede, and C. Bussler. On struc-
tured workflow modelling. In Conference on Advanced Information Sys-
tems Engineering, pages 431–445, 2000. 58

[113] B. Kitchenham and S. L. Pfleeger. Software quality: The elusive
target. IEEE Softw., 13(1):12–21, 1996. 14, 73

[114] J. M. Ko, C. O. Kim, and I.-H. Kwon. Quality-of-service oriented
web service composition algorithm and planning architecture. J.
Syst. Softw., 81(11):2079–2090, 2008. 66

[115] M. J. Kollingbaum. Norm-governed Practical Reasoning Agents. PhD
thesis, University of Aberdeen, 2005. 101, 102

[116] M. J. Kollingbaum and T. J. Norman. Supervised interaction - a
form of contract management to create trust between agents. In
Trust, Reputation, and Security, pages 108–122, 2002. 102

[117] T. Korkmaz and M. Krunz. A randomized algorithm for find-
ing a path subject to multiple qos constraints. Computer Networks,
36:1694–1698, 1999. 66

[118] V. S. Lai, B. K. Wong, and W. Cheung. Group decision making in
a multiple criteria environment: A case using the ahp in software
selection. European Journal of Operational Research, 137(1):134–144,
February 2002. 55

[119] D. D. Lamanna, J. Skene, and W. Emmerich. Slang: A language for
defining service level agreements. volume 0, page 100, Los Alami-
tos, CA, USA, 2003. IEEE Computer Society. 133, 134

[120] S. Lamparter, A. Ankolekar, R. Studer, and S. Grimm. Preference-
based selection of highly configurable web services. In WWW ’07:
Proceedings of the 16th international conference on World Wide Web, pages
1013–1022, New York, NY, USA, 2007. ACM. 123, 130

[121] P. Laureti, L. Moret, Y. C. Zhang, and Y. K. Yu. Information fil-
tering via iterative refinement. Europhysics Letters, 75:1006, 2006.
80, 83, 84

[122] F. Leymann. Web services flow language (wsfl 1.0). Technical re-
port, IBM, May 2001. 1

[123] J. Liu, N. Gu, Y. Zong, Z. Ding, S. Zhang, and Q. Zhang. Web
services automatic composition based on qos. In ICEBE ’05: Proceed-
ings of the IEEE International Conference on e-Business Engineering, pages
607–610, Washington, DC, USA, 2005. IEEE Computer Society. 66

[124] Y. Liu, A. H. Ngu, and L. Z. Zeng. Qos computation and policing
in dynamic web service selection. In WWW Alt. ’04: Proceedings of the
13th international World Wide Web conference on Alternate track papers &
posters, pages 66–73, New York, NY, USA, 2004. ACM. 56, 130

[125] P. Lockemann, J. Nimis, L. Braubach, A. Pokahr, and W. Lamers-
dorf. Multiagent Engineering, chapter Architectural Design, pages
405–429. Springer-Verlag, 2006. 99

[126] J. P. Loyall, R. E. Schantz, J. A. Zinky, and D. E. Bakken. Specify-
ing and measuring quality of service in distributed object systems.
In Proceedings of the International Symposium on Object-Oriented Real-Time
Distributed Computing, 1998. 26

[127] H. Ludwig, R. Dan, A. Franck, A. Keller, and R. P. King. Web
service level agreement (wsla) language specification. Technical
report, IBM Corporation, 2003. 109, 114

[128] H. Ludwig, T. Nakata, O. Wldrich, P. Wieder, and W. Ziegler. Re-
liable orchestration of resources using ws-agreement. In Proceedings
of the 2006 International Conference on High Performance Computing and
Communications , (HPCC06), volume 4208 of LNCS, pages 753 – 762,
Munich, September 2006. Springer. 133

[129] S. A. Lundesgaard, K. Lund, and E. F. Utilising alternative ap-
plication configurations in context- and qos- aware mobile middle-
ware. In DAIS ’06: Distributed Applications and Interoperable Syst., 2006.
118

[130] Z. Maamar, S. Mostefaoui, and Y. H. Toward an agent-based
and context-oriented approach for web services composition. IEEE
Trans. Knowl. and Data Eng., 17:686 – 697, 2005. 112

[131] A. Mani and A. Nagarajan. Understanding quality of service for
web services. Technical report, IBM, Developerworks web site,
2002. 14

[132] U. S. Manikrao and T. V. Prabhakar. Dynamic selection of web
services with recommendation system. In NWESP ’05: Proceedings
of the International Conference on Next Generation Web Services Practices,
page 117, Washington, DC, USA, 2005. IEEE Computer Society.
130

[133] E. M. Maximilien and M. P. Singh. A framework and ontology for
dynamic web services selection. IEEE Internet Computing, 8(5):84–93,
2004. 130

[134] E. M. Maximilien and M. P. Singh. Toward autonomic services
trust and selection. In Proceedings of the International Conference on
Service-Oriented Computing (ICSOC’04), 2004. 29, 46, 115, 116

[135] E. M. Maximilien and M. P. Singh. Multiagent system for dy-
namic web services selection. In Proceedings of the AAMAS Workshop
on Service-Oriented Computing and Agent-Based Engineering (SOCABE),
2005. 130

[136] J. A. McCall, P. K. Richards, and G. F. Walters. Factors in soft-
ware quality. volume i. concepts and definitions of software qual-
ity. Technical report, GENERAL ELECTRIC CO SUNNYVALE
CA, 1977. 14

[137] D. V. McDermott. Estimated-regression planning for interactions
with web services. In AIPS, pages 204–211, 2002. 132

[138] S. A. McIlraith and D. L. Martin. Bringing semantics to web ser-
vices. IEEE Intelligent Systems, 18(1):90–93, 2003. 17

[139] S. A. McIlraith and T. C. Son. Adapting golog for composition of
semantic web services. In Proceedings of the International Conference on
Principles of Knowledge Representation and Reasoning (KR’02), 2002. 131

[140] S. A. McIlraith, T. C. Son, and H. Zeng. Semantic web services.
IEEE Intelligent Systems, 16(2):46–53, 2001. 18, 131

[141] G. McLachlan and T. Krishnan. The EM algorithm and extensions.
Wiley, 1997. 78, 80

[142] B. Medjahed, A. Bougettaya, and A. K. Elmagarmid. Composing
web services on the semantic web. VLDB Journal, 12:333–351, 2003.
132

[143] D. A. Menascé. Qos issues in web services. IEEE Internet Computing,
6(6):72–75, 2002. 2, 45, 97, 109

[144] G. Morgan, S. Parkin, C. Molina-Jimenez, and J. Skene. Chal-
lenges of Expanding Internet: E-Commerce, E-Business, and E-Government,
chapter Monitoring Middleware for Service Level Agreements in
Heterogeneous Environments, pages 79–93. Springer-Verlag, 2005.
100

[145] V. Mousseau. Eliciting information concerning the relative impor-
tance of criteria. In P. Pardalos, Y. Siskos, and C. Zopounidis,
editors, Advances in Multicriteria Analysis, pages 17–43. Kluwer Aca-
demic, Dordrecht, 1995. 54, 61, 75

[146] L. Mui, M. Mohtashemi, and A. Halberstadt. Notions of reputa-
tion in multi-agents systems: a review. In AAMAS ’02: Proceedings of
the first international joint conference on Autonomous agents and multiagent
systems, pages 280–287, New York, NY, USA, 2002. ACM. 100

[147] C. Muldoon, G. OHare, D. Phelan, R. Strahan, and C. R. Access:
An agent architecture for ubiquitous service delivery. In CIA ’03:
Int. Worksh. Cooperative Info. Agents, 2003. 111

[148] J. Myerson. Use slas in a web services context, part 1: Guarantee
your web service with a sla. Technical report, IBM, 2004. 109, 111,
112

[149] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker. Web
services security: Soap message security 1.1 (ws-security 2004),
February 2006. 1

137

BIBLIOGRAPHY

[150] K. Nahrstedt, D. Xu, D. Wichadakul, and B. Li. Qos-aware middle-
ware for ubiquitous and heterogeneous environments. Comm. Mag.,
19(11):140–148, 2001. 117, 118

[151] S. Naik and P. Tripathy. Software Testing and Quality Assurance: Theory
and Practice. Wiley-Spektrum, 2008. 13, 14

[152] S. Narayanan and S. A. McIlraith. Simulation, verification and
automated composition of web services. In Proceedings of the Interna-
tional Conference on the World Wide Web (WWW 2002), 2002. 131

[153] F. Naumann, U. Leser, and J. C. Freytag. Quality-driven integra-
tion of heterogenous information systems. In VLDB ’99: Proceedings
of the 25th International Conference on Very Large Data Bases, pages 447–
458, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers
Inc. 56, 66

[154] M. A. Netto, K. Bubendorfer, and R. Buyya. Sla-based ad-
vance reservations with flexible and adaptive time qos parame-
ters. In ICSOC ’07: Proceedings of the 5th international conference on
Service-Oriented Computing, pages 119–131, Berlin, Heidelberg, 2007.
Springer-Verlag. 117

[155] OASIS (Advanced open standards for the information society. Uddi
version 3.0.2. Technical report, 2004. 1

[156] Object Management Group (OMG). The corba trading services.
Technical report, 1997. 26

[157] Object Management Group (OMG). Uml profile for modeling qos
and fault tolerance characteristics and mechanisms specification,
v1.0. Technical report, May 2005. 4, 18, 27, 30, 40, 48

[158] L. Osterweil. Strategic directions in software quality. ACM Comput.
Surv., 28(4):738–750, 1996. 17

[159] J. O’Sullivan, D. Edmond, and A. ter Hofstede. What’s in a ser-
vice? Distributed and Parallel Databases, 12(2):117–133, 2002. 45

[160] G. Oulsnam. Unravelling unstructured programs. Comput. J.,
25(3):379–387, 1982. 58

[161] M. Ouzzani and A. Bouguettaya. Efficient access to web services.
IEEE Internet Computing, 8(2):34–44, 2004. 66

[162] M. P. Papazoglou and D. Georgakopoulos. Service oriented com-
puting. Commun. ACM, 46(10):24–28, 2003. 1, 17, 45, 57, 109

[163] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann.
Service-oriented computing: State of the art and research chal-
lenges. Computer, 40(11):38–45, 2007. 1, 121, 122, 124

[164] Parasoft. Soatest. Technical report, 2006. 15

[165] A. Parasuraman and V. A. Zeithaml. Understanding and improv-
ing service quality: A literature review and research agenda. In
B. Weitz and R. Wensley, editors, Handbook of Marketing. Sage Pub-
lications, 2006. 73

[166] A. Parasuraman, V. A. Zeithaml, and L. L. Berry. A Conceptual
Model of Service Quality and Its Implications for Future Research.
Journal of Marketing, 49(4):41–50, 1985. 73

[167] S. Park, L. Liu, C. Pu, M. Srivatsa, and J. Zhang. Resilient trust
management for web service integration. In ICWS ’05: Proceedings
of the IEEE International Conference on Web Services, pages 499–506,
Washington, DC, USA, 2005. IEEE Computer Society. 90

[168] A. Paschke, J. Dietrich, and K. Kuhla. A logic based sla manage-
ment framework. In SWPC ’05: Semantic Web Policy Workshop at ISWC
’05, 2005. 102, 106

[169] J. Pitt, P. Venkataram, and A. Mamdani. Qos management in
manets using norm-governed agent societies. In ESAW, pages 221–
240, 2005. 107

[170] S. Ponnekanti and A. Fox. Sword: A developer toolkit for build-
ing composite web services. In Proc. Alternate Tracks of the 11th World
Wide Web Conf., 2002. 132

[171] R. S. Poston. Using and fixing biased rating schemes. Commun.
ACM, 51(9):105–109, 2008. 89

[172] L. Qiu, L. Chang, and Z. Lin, F. andShi. Context optimization of
ai planning for semantic web services composition. Service Oriented
Comput. and Applications, 1(2):117–128, 2007. 111, 112

[173] S. Ran. A model for web services discovery with qos. SIGecom Exch.,
4(1):1–10, 2003. 16, 20

[174] J. Rao and X. Su. A survey of automated web service composition
methods. In Proceedings of the First International Workshop on Semantic
Web Services and Web Process Composition, pages 43–54, 2004. 131

[175] C. A. Reeves and D. A. Bednar. Defining quality: Alternatives
and implications. The Academy of Management Review, Special Issue:
Total Quality, 19(3):419–445, July 1994. 17, 73

[176] B. Roy and V. Mousseau. A theoretical framework for analysing
the notion of relative importance of criteria. Journal of Multi-Criteria
Decision Analysis, 5:145–159, 1996. 54

[177] T. Saaty. The Analytic Hierarchy Process, Planning, Piority Setting, Re-
source Allocation. McGraw-Hill, New york, 1980. 51, 54, 61, 75

[178] T. L. Saaty. Axiomatic foundation of the analytic hierarchy pro-
cess. Manage. Sci., 32(7):841–855, 1986. 54, 55

[179] M. Saerens, Y. Achbany, F. Fouss, and L. Yen. Randomized
shortest-path problems: Two related models. Neural Computation,
21(8):2363–2404, 2009. 62, 63, 67

[180] A. Sahai. Automated sla monitoring for web services. In DSOM ’02:
IFIP/IEEE Int. Worksh. Distrib. Syst.: Operations and Management, 2002.
97, 99, 109, 114

[181] A. Sahai, A. Durante, and V. Machiraju. Towards automated sla
management for web services. Technical report, Hewlett-Packard
Laboratories, 2002. 114

[182] W. J. Salamon and D. R. Wallace. Quality characteristics and met-
rics for reusable software. Technical report, National Institute of
Standards and Technology, 1994. 16

[183] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. Item-based col-
laborative filtering recommendation algorithms. In WWW ’01: Pro-
ceedings of the 10th international conference on World Wide Web, pages
285–295, New York, NY, USA, 2001. ACM. 86, 87

[184] A. Schmietendorf, R. Dumke, and D. Reitz. Sla management -
challenges in the context of web-service-based infrastructures. In
ICWS ’04: Proceedings of the IEEE International Conference on Web Ser-
vices, page 606, Washington, DC, USA, 2004. IEEE Computer So-
ciety. 16

[185] C. Schröpfer, M. Binshtok, S. E. Shimony, A. Dayan, R. Brafman,
P. Offermann, and O. Holschke. Introducing preferences over nfps
into service selection in soa. In Service-Oriented Computing - ICSOC
2007 Workshops: ICSOC 2007, International Workshops, Vienna, Austria,
September 17, 2007, Revised Selected Papers, pages 68–79, Berlin, Hei-
delberg, 2007. Springer-Verlag. 130

[186] H. Schuster, D. Georgakopoulos, A. Cichocki, and D. Baker. Model-
ing and composing service-based nd reference process-based multi-
enterprise processes. In CAiSE ’00: Proceedings of the 12th International
Conference on Advanced Information Systems Engineering, pages 247–263,
London, UK, 2000. Springer-Verlag. 131

[187] J. Seidel, O. Wldrich, P. Wieder, R. Yahyapour, and W. Ziegler.
Using sla for resource management and scheduling - a survey. In
D. Talia, R. Yahyapour, and W. Ziegler, editors, Grid Middleware and
Services - Challenges and Solutions, CoreGRID Series. Springer, 2008.
Also published as CoreGRID Technical Report TR-0096. 133

[188] Y.-J. Seo, H.-Y. Jeong, and Y.-J. Song. A study on web services
selection method based on the negotiation through quality broker:
A maut-based approach. In ICESS, pages 65–73, 2004. 130

[189] M. A. Serhani, R. Dssouli, A. Hafid, and H. Sahraoui. A qos broker
based architecture for efficient web services selection. In ICWS ’05:
Proceedings of the IEEE International Conference on Web Services, pages
113–120, Washington, DC, USA, 2005. IEEE Computer Society. 16

[190] N. Shadbolt, T. Berners-Lee, and W. Hall. The semantic web re-
visited. IEEE Intelligent Systems, 21(3):96–101, 2006. 17

[191] S. E. Shaikh and N. Mehandjiev. Multi-attribute negotiation in
e-business process composition. In WETICE ’04: Proceedings of the
13th IEEE International Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises, pages 141–146, Washington, DC, USA,
2004. IEEE Computer Society. 55

[192] A. ShaikhAli, O. F. Rana, R. Al-Ali, and D. W. Walker. Uddie:
An extended registry for web services. Applications and the Internet
Workshops, IEEE/IPSJ International Symposium on, 0:85, 2003. 16

[193] C. Sierra and F. Dignum. Agent-mediated electronic commerce:
Scientific and technological roadmap. In Agent Mediated Electronic
Commerce, pages 1–18, 2001. 107

[194] J. Simos. Gestion des Déchets Solides Urbains Genevois : Les Faits, le
Traitement, l’Analyse. Presses Polytechniques et Universitaires Ro-
mandes, Lausanne, 1990. 54, 61, 75

[195] J. Skene, D. D. Lamanna, and W. Emmerich. Precise service level
agreements. In Proceedings of the International Conference on Software
Engineering (ICSE’04), 2004. 26

[196] L. Skorin-Kapov, , and M. Matijasevic. Dynamic qos negotiation
and adaptation for networked virtual reality services. In WOWMOM
’05: IEEE Int. Symp. World of Wireless Mobile and Multimedia Networks,
2005. 117

[197] J. C. Spall. Introduction to stochastic search and optimization. Wiley,
2003. 63, 64

[198] S. Staab and R. Studer, editors. Handbook on Ontologies. Interna-
tional Handbooks on Information Systems. Springer, 2004. 18

[199] R. Staehli, F. Eliassen, J. O. Aagedal, and G. Blair. Quality of
service semantics for component-based systems. In Proceedings of
the International Conference on Reflective and Adaptive Middleware Systems,
2003. 26

[200] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction
(Adaptive Computation and Machine Learning). The MIT Press, March
1998. 62, 63, 64

[201] W. T. L. Teacy, J. Patel, N. R. Jennings, and M. Luck. Cop-
ing with inaccurate reputation sources: experimental analysis of a
probabilistic trust model. In AAMAS, pages 997–1004, 2005. 91

138

BIBLIOGRAPHY

[202] D. Tennenhouse. Proactive computing. Commun. ACM, 43(5):43–50,
2000. 17

[203] H. Tong and S. Zhang. A fuzzy multi-attribute decision making
algorithm for web services selection based on qos. In APSCC ’06:
Proceedings of the 2006 IEEE Asia-Pacific Conference on Services Comput-
ing, pages 51–57, Washington, DC, USA, 2006. IEEE Computer
Society. 56, 123

[204] V. Tosic. Service offerings for xml web services and their management ap-
plications. PhD thesis, Carleton University, 2004. 118

[205] V. Tosic, B. Esfandiari, B. Pagurek, and K. Patel. On requirements
for ontologies in management of web services. In Proceedings of the
International Workshop on Web Services, e-Business, and the Semantic Web
(WES’02), 2002. 26, 102

[206] V. Tosic, B. Pagurek, and K. Patel. Wsol - a language for the for-
mal specification of classes of service for web services. In ICWS’ 03,
IEEE Int. Conf. Web Serv., 2003. 118

[207] K. Trzec and D. Huljenic. Intelligent agents for qos management.
In AAMAS ’02: Proceedings of the first international joint conference on Au-
tonomous agents and multiagent systems, pages 1405–1412, New York,
NY, USA, 2002. ACM. 107

[208] W. T. Tsai, R. Paul, Z. Cao, L. Yu, A. Saimi, and B. Xiao. Verifica-
tion of web services using an enhanced uddi server. Object-Oriented
Real-Time Dependable Systems, IEEE International Workshop on, 0:131,
2003. 16

[209] V. M. R. Tummala, K. S. Chin, and S. H. Ho. Assessing suc-
cess factors for implementing ce a case study in hong kong elec-
tronics industry by ahp. International Journal of Production Economics,
49(3):265–283, May 1997. 55

[210] J. F. Vilas, J. J. P. Arias, and A. F. Vilas. High availability with
clusters of web services. In APWeb, pages 644–653, 2004. 115

[211] A. E. Walsh. UDDI, SOAP, and WSDL: The Web Services Specifica-
tion Reference Book. Prentice Hall Professional Technical Reference,
2002. 109

[212] C. Wang, G. Wang, H. Wang, A. Chen, and R. Santiago. Quality of
service (qos) contract specification, establishment, and monitoring
for service level management. In EDOCW ’06: Proceedings of the 10th
IEEE on International Enterprise Distributed Object Computing Conference
Workshops, page 49, Washington, DC, USA, 2006. IEEE Computer
Society. 112

[213] X. Wang, T. Vitvar, M. Kerrigan, and I. Toma. A qos-aware se-
lection model for semantic web services. In ICSOC, pages 390–401,
2006. 130

[214] W. C. Wedley, E. U. Choo, and B. Schoner. Magnitude adjustment
for ahp benefit/cost ratios. European Journal of Operational Research,
133(2):342–351, January 2001. 55

[215] E. W. V. Winterfeldt. Decision analysis and behavioral research. Cam-
bridge University Press, 1986. 55

[216] World Wide Web Consortium (W3C). Hypertext transfer protocol
– http/1.1. Technical report, 1999. 1

[217] World Wide Web Consortium (W3C). Web services description
language (wsdl) 1.1. Technical report, 2001. 1

[218] World Wide Web Consortium (W3C). Web services glossary. Tech-
nical report, 2004. 1

[219] World Wide Web Consortium (W3C). Soap version 1.2. Technical
report, 2007. 1

[220] World Wide Web Consortium (W3C). Extensible markup language
(xml) 1.0 (fifth edition). Technical report, 2008. 1

[221] D. Wu, E. Sirin, J. A. Hendler, D. S. Nau, and B. Parsia. Au-
tomatic web services composition using shop2. In WWW (Posters),
2003. 132

[222] J. Yan, R. Kowalczyk, J. Lin, M. B. Chhetri, S. K. Goh, and
J. Zhang. Autonomous service level agreement negotiation for ser-
vice composition provision. Future Gener. Comput. Syst., 23(6):748–
759, 2007. 99, 101, 107, 114, 116

[223] S. S. Yau, F. Karim, Y. Wang, B. Wang, and S. K. S. Gupta. Re-
configurable context-sensitive middleware for pervasive computing.
IEEE Pervasive Computing, 1(3):33–40, 2002. 117

[224] B. Yu and M. P. Singh. An evidential model of distributed repu-
tation management. In AAMAS, pages 294–301, 2002. 90, 91

[225] B. Yu and M. P. Singh. Detecting deception in reputation manage-
ment. In AAMAS, pages 73–80, 2003. 90, 91

[226] H. Q. Yu and S. Reiff-Marganiec. Non-functional property based
service selection: A survey and classification of approaches. In
2nd Workshop on Non Functional Properties and Service Level Agreements
in Service Oriented Computing, 2008. 129, 130

[227] T. Yu and K.-J. Lin. Service selection algorithms for composing
complex services with multiple qos constraints. In ICSOC, pages
130–143, 2005. 66

[228] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z.
Sheng. Quality driven web services composition. In WWW ’03:
Proceedings of the 12th international conference on World Wide Web, pages
411–421, New York, NY, USA, 2003. ACM. 29

[229] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam,
and H. Chang. Qos-aware middleware for web services composi-
tion. IEEE Trans. Softw. Eng., 30(5):311–327, 2004. 46, 58, 66, 116,
123

[230] L. Zeng, H. Lei, and H. Chang. Monitoring the qos for web ser-
vices. In ICSOC ’07: Proceedings of the 5th international conference on
Service-Oriented Computing, 2007. 40

[231] C. Zhang, R. N. Chang, C.-S. Perng, E. So, C. Tang, and T. Tao.
Qos-aware optimization of composite-service fulfillment policy. Ser-
vices Computing, IEEE International Conference on, 0:11–19, 2007. 66

[232] Z. Zheng and M. R. Lyu. A distributed replication strategy eval-
uation and selection framework for fault tolerant web services. In
ICWS ’08: Proceedings of the 2008 IEEE International Conference on Web
Services, pages 145–152, Washington, DC, USA, 2008. IEEE Com-
puter Society. 123

[233] C. Zhou, L.-T. Chia, and B.-S. Lee. Daml-qos ontology for web
services. In Proceedings of the International Conference on Web Services
(ICWS’04), 2004. 28

139

	List of Figures
	List of Tables
	Glossary
	1 Introduction
	1.1 Contributions
	1.1.1 Quality of Service Definition and Specification
	1.1.2 QoS-driven management of Web Services
	1.1.3 SLA management

	1.2 Organization

	I Quality of Service Definition and Specification
	2 Quality Management of Web Services : Context
	2.1 Web Service Quality Definition
	2.2 Quality of Service Monitoring
	2.2.1 Functional management
	2.2.2 Non-functional management

	3 Quality of Service Specification Model
	3.1 Introduction
	3.2 Motivation and Case Study
	3.2.1 Motivation
	3.2.2 Case study

	3.3 Quality Model for Service-Oriented Systems
	3.3.1 Quality characteristics submodel (Q)
	3.3.2 Quality value submodel (V)
	3.3.3 Quality dependency submodel (D)
	3.3.4 Quality priority submodel (P)

	3.4 Comparison with Prior Quality Models
	3.4.1 Q-WSDL
	3.4.2 WSLA
	3.4.3 DAML-QoS
	3.4.4 Maximilien and Singh
	3.4.5 Zeng and colleagues

	3.5 QVDP and QoS in UML
	3.5.1 Elements of the metamodel
	3.5.2 Comparison of the QVDP and the UML QoS Framework Metamodel
	3.5.3 Extending the UML QoS Framework Metamodel
	3.5.4 Case study

	3.6 Discussion
	3.6.1 Experience
	3.6.2 User Evaluation
	3.6.3 Strengths
	3.6.4 Weaknesses
	3.6.5 Future work

	3.7 Conclusions

	II QoS-driven Management of Services
	4 QoS based Service Selection
	4.1 Introduction
	4.2 Preliminaries
	4.2.1 Overview of the service selection approach
	4.2.2 Case study

	4.3 Conceptual Foundations
	4.4 Selection Framework
	4.4.1 Fixing hard constraints
	4.4.2 Hierarchies of QoS Characteristics and QoS Dimensions
	4.4.3 Priorities as between criteria weights
	4.4.4 Preferences as intra criterion comparison
	4.4.5 Benefits/costs analysis

	4.5 Discussion of our Framework
	4.5.1 Between criteria weighting
	4.5.2 Intra criterion comparison
	4.5.3 Hierarchy
	4.5.4 Benefits/costs analysis

	4.6 Related Work
	4.7 Conclusions

	5 QoS based Service Composition
	5.1 Introduction
	5.2 Service Selection Model
	5.3 Service Evaluation
	5.3.1 QoS preferences
	5.3.2 QoS priorities
	5.3.3 Computation of the QoS rating

	5.4 RL-Based Composition
	5.4.1 Baseline
	5.4.2 Reinforcement learning based on randomized shortest paths

	5.5 Experimental Results
	5.5.1 Comparison to classical competing methods
	5.5.2 Entropy impact to variations of quality level

	5.6 Related Work
	5.7 Conclusions

	6 User Profiling
	6.1 Introduction
	6.1.1 Context
	6.1.2 Problem
	6.1.3 Contributions

	6.2 Computing True Feedback
	6.2.1 Preparing preferences
	6.2.2 Preparing priorities
	6.2.3 Feedback evaluation

	6.3 Computing a Feedback Profile
	6.3.1 Description of the basic model
	6.3.2 Accounting for truncation
	6.3.3 The complete likelihood function of the model
	6.3.4 Estimating the parameters

	6.4 Experiments
	6.4.1 Experimental setup
	6.4.2 Predictability of a Feedback Profile
	6.4.3 Studies of the residuals
	6.4.4 Applications
	6.4.5 Discussion of the results

	6.5 Related Work
	6.6 Conclusions

	III SLA Management
	7 Normative Management of Service Level Agreements
	7.1 Introduction
	7.2 Case Study and Conceptual Foundations
	7.2.1 Case Study
	7.2.2 Service Level Agreement
	7.2.3 Mutual Obligations
	7.2.4 Supervised Interaction

	7.3 The Architecture and the Process for SLA Management
	7.3.1 SLA management architecture
	7.3.2 SLA Management Process

	7.4 Evaluation
	7.5 Related Work
	7.6 Conclusions

	8 Context driven Adaptation of SLAs
	8.1 Introduction
	8.2 Case Study
	8.3 Conceptual Foundations
	8.3.1 Context categories
	8.3.2 Context dependencies

	8.4 Dynamic SLA Adaptation
	8.4.1 Managing Service Level Agreements
	8.4.2 Adapting Service Level Agreements

	8.5 Related Work
	8.6 Conclusions

	IV Conclusions
	9 Conclusions
	9.1 Summary
	9.2 Main Contributions
	9.3 Limitations
	9.3.1 Validation strategy

	9.4 Future Work

	V Appendices
	A Service Selection Approaches
	A.1 Service Selection Criteria
	A.2 Categorization of Approaches

	B Service Composition Approaches
	B.1 Services Composition using Workflows
	B.2 Services Composition using Artificial Intelligence Planning

	C Service Level Agreement Management Approaches
	C.1 WSLA
	C.2 WS-Agreement
	C.3 SLang

	Bibliography

