16,688 research outputs found

    JXTA-Overlay: a P2P platform for distributed, collaborative, and ubiquitous computing

    Get PDF
    With the fast growth of the Internet infrastructure and the use of large-scale complex applications in industries, transport, logistics, government, health, and businesses, there is an increasing need to design and deploy multifeatured networking applications. Important features of such applications include the capability to be self-organized, be decentralized, integrate different types of resources (personal computers, laptops, and mobile and sensor devices), and provide global, transparent, and secure access to resources. Moreover, such applications should support not only traditional forms of reliable distributing computing and optimization of resources but also various forms of collaborative activities, such as business, online learning, and social networks in an intelligent and secure environment. In this paper, we present the Juxtapose (JXTA)-Overlay, which is a JXTA-based peer-to-peer (P2P) platform designed with the aim to leverage capabilities of Java, JXTA, and P2P technologies to support distributed and collaborative systems. The platform can be used not only for efficient and reliable distributed computing but also for collaborative activities and ubiquitous computing by integrating in the platform end devices. The design of a user interface as well as security issues are also tackled. We evaluate the proposed system by experimental study and show its usefulness for massive processing computations and e-learning applications.Peer ReviewedPostprint (author's final draft

    Illinois Digital Scholarship: Preserving and Accessing the Digital Past, Present, and Future

    Get PDF
    Since the University's establishment in 1867, its scholarly output has been issued primarily in print, and the University Library and Archives have been readily able to collect, preserve, and to provide access to that output. Today, technological, economic, political and social forces are buffeting all means of scholarly communication. Scholars, academic institutions and publishers are engaged in debate about the impact of digital scholarship and open access publishing on the promotion and tenure process. The upsurge in digital scholarship affects many aspects of the academic enterprise, including how we record, evaluate, preserve, organize and disseminate scholarly work. The result has left the Library with no ready means by which to archive digitally produced publications, reports, presentations, and learning objects, much of which cannot be adequately represented in print form. In this incredibly fluid environment of digital scholarship, the critical question of how we will collect, preserve, and manage access to this important part of the University scholarly record demands a rational and forward-looking plan - one that includes perspectives from diverse scholarly disciplines, incorporates significant research breakthroughs in information science and computer science, and makes effective projections for future integration within the Library and computing services as a part of the campus infrastructure.Prepared jointly by the University of Illinois Library and CITES at the University of Illinois at Urbana-Champaig

    Peer to Peer Information Retrieval: An Overview

    Get PDF
    Peer-to-peer technology is widely used for file sharing. In the past decade a number of prototype peer-to-peer information retrieval systems have been developed. Unfortunately, none of these have seen widespread real- world adoption and thus, in contrast with file sharing, information retrieval is still dominated by centralised solutions. In this paper we provide an overview of the key challenges for peer-to-peer information retrieval and the work done so far. We want to stimulate and inspire further research to overcome these challenges. This will open the door to the development and large-scale deployment of real-world peer-to-peer information retrieval systems that rival existing centralised client-server solutions in terms of scalability, performance, user satisfaction and freedom

    Analysis of current middleware used in peer-to-peer and grid implementations for enhancement by catallactic mechanisms

    Get PDF
    This deliverable describes the work done in task 3.1, Middleware analysis: Analysis of current middleware used in peer-to-peer and grid implementations for enhancement by catallactic mechanisms from work package 3, Middleware Implementation. The document is divided in four parts: The introduction with application scenarios and middleware requirements, Catnets middleware architecture, evaluation of existing middleware toolkits, and conclusions. -- Die Arbeit definiert Anforderungen an Grid und Peer-to-Peer Middleware Architekturen und analysiert diese auf ihre Eignung für die prototypische Umsetzung der Katallaxie. Eine Middleware-Architektur für die Umsetzung der Katallaxie in Application Layer Netzwerken wird vorgestellt.Grid Computing

    The New Grid

    Get PDF
    The New Grid seeks to provide mobile users with an additional method for off-grid communication, or communication without connection to Internet infrastructure. The motivation for this project was to find another alternative to Internet-dependent communication. Current Internet infrastructure is antiquated; it is expensive to maintain and expand, it has numerous vulnerabilities and high-impact points of failure, and can be rendered unusable for lengthy periods of time by natural disasters or other catastrophes. This current grid will eventually need to be replaced by a more modern, scalable, and adaptive infrastructure. The results of the projects research showed that implementing a library to allow for the creation of mobile peer-to-peer mesh networks could serve as a starting point for a transition from current Internet infrastructure to a more scalable, adaptive, and reliable Internet- independent network grid. Development of The New Grid largely followed the Rational Unified Process, in which the development process is split into four phases: requirements gathering, system design, implementation, and testing. Most of fall quarter was spent outlining functional requirements for the system, designing possible methods of implementation, and researching similar solutions that seek to transition mass mobile communication to a newer, more modern network grid. The New Grid differs from similar solutions because it has been implemented as a modular library. Current systems that allow for off-grid mobile connection exist as independent applications with a defined context and predetermined usability scope. We, the design team, found that implementing the system in the form of a modular library has multiple benefits. Primarily, this implementation would allow The New Grid to be deployed as widely as possible. Developers can both write applications around our library as well as include specific modules into existing applications without impacting other modules or introducing additional overhead into a system. Another benefit of deploying the system as a modular library is adaptability. The current, initial stable build of The New Grid uses Bluetooth Low Energy as its backbone for facilitating communication within large networks of mobile devices; however, this library could use any existing or future communication protocol to facilitate connection as long as a hook is written to allow The New Grid to interface with that protocol. Thus, The New Grid is not limited by which connection protocols currently exist, a property that other similar systems do not possess. The New Grid can be used in any application that requires connection between users. The most common applications would likely be messaging, file sharing, or social networking. While developers may find a variety of uses for The New Grid, its primary purpose is to facilitate reliable connection and secure data transfer in an environment with a large user base. Achieving this goal was proven feasible through research and testing the library with a small cluster of Android devices communicating solely with Bluetooth Low Energy. Expanding this group of a few phones to a larger mesh network of hundreds of devices was shown to be feasible through testing the librarys algorithms and protocols on a large network of virtual devices. As long as developers seek to create applications that allow users to communicate independent of Internet infrastructure, The New Grid will allow smartphone users to communicate off-grid and hopefully spur a switch from infrastructure-dependent mobile communication to user-centric, adaptive, and flexible connection

    Storage Solutions for Big Data Systems: A Qualitative Study and Comparison

    Full text link
    Big data systems development is full of challenges in view of the variety of application areas and domains that this technology promises to serve. Typically, fundamental design decisions involved in big data systems design include choosing appropriate storage and computing infrastructures. In this age of heterogeneous systems that integrate different technologies for optimized solution to a specific real world problem, big data system are not an exception to any such rule. As far as the storage aspect of any big data system is concerned, the primary facet in this regard is a storage infrastructure and NoSQL seems to be the right technology that fulfills its requirements. However, every big data application has variable data characteristics and thus, the corresponding data fits into a different data model. This paper presents feature and use case analysis and comparison of the four main data models namely document oriented, key value, graph and wide column. Moreover, a feature analysis of 80 NoSQL solutions has been provided, elaborating on the criteria and points that a developer must consider while making a possible choice. Typically, big data storage needs to communicate with the execution engine and other processing and visualization technologies to create a comprehensive solution. This brings forth second facet of big data storage, big data file formats, into picture. The second half of the research paper compares the advantages, shortcomings and possible use cases of available big data file formats for Hadoop, which is the foundation for most big data computing technologies. Decentralized storage and blockchain are seen as the next generation of big data storage and its challenges and future prospects have also been discussed
    corecore