90,461 research outputs found

    On Reduced Input-Output Dynamic Mode Decomposition

    Full text link
    The identification of reduced-order models from high-dimensional data is a challenging task, and even more so if the identified system should not only be suitable for a certain data set, but generally approximate the input-output behavior of the data source. In this work, we consider the input-output dynamic mode decomposition method for system identification. We compare excitation approaches for the data-driven identification process and describe an optimization-based stabilization strategy for the identified systems

    The balanced mode decomposition algorithm for data-driven LPV low-order models of aeroservoelastic systems

    Get PDF
    A novel approach to reduced-order modeling of high-dimensional systems with time-varying properties is proposed. It combines the problem formulation of the Dynamic Mode Decomposition method with the concept of balanced realization. It is assumed that the only information available on the system comes from input, state, and output trajectories, thus the approach is fully data-driven. The goal is to obtain an input-output low dimensional linear model which approximates the system across its operating range. Time-varying features of the system are retained by means of a Linear Parameter-Varying representation made of a collection of state-consistent linear time-invariant reduced-order models. The algorithm formulation hinges on the idea of replacing the orthogonal projection onto the Proper Orthogonal Decomposition modes, used in Dynamic Mode Decomposition-based approaches, with a balancing oblique projection constructed from data. As a consequence, the input-output information captured in the lower-dimensional representation is increased compared to other projections onto subspaces of same or lower size. Moreover, a parameter-varying projection is possible while also achieving state-consistency. The validity of the proposed approach is demonstrated on a morphing wing for airborne wind energy applications by comparing the performance against two recent algorithms. Analyses account for both prediction accuracy and closed-loop performance in model predictive control applications

    Dynamic mode decomposition with control

    Full text link
    We develop a new method which extends Dynamic Mode Decomposition (DMD) to incorporate the effect of control to extract low-order models from high-dimensional, complex systems. DMD finds spatial-temporal coherent modes, connects local-linear analysis to nonlinear operator theory, and provides an equation-free architecture which is compatible with compressive sensing. In actuated systems, DMD is incapable of producing an input-output model; moreover, the dynamics and the modes will be corrupted by external forcing. Our new method, Dynamic Mode Decomposition with control (DMDc), capitalizes on all of the advantages of DMD and provides the additional innovation of being able to disambiguate between the underlying dynamics and the effects of actuation, resulting in accurate input-output models. The method is data-driven in that it does not require knowledge of the underlying governing equations, only snapshots of state and actuation data from historical, experimental, or black-box simulations. We demonstrate the method on high-dimensional dynamical systems, including a model with relevance to the analysis of infectious disease data with mass vaccination (actuation).Comment: 10 pages, 4 figure

    Shape optimization through proper orthogonal decomposition with interpolation and dynamic mode decomposition enhanced by active subspaces

    Get PDF
    We propose a numerical pipeline for shape optimization in naval engineering involving two different non-intrusive reduced order method (ROM) techniques. Such methods are proper orthogonal decomposition with interpolation (PODI) and dynamic mode decomposition (DMD). The ROM proposed will be enhanced by active subspaces (AS) as a pre-processing tool that reduce the parameter space dimension and suggest better sampling of the input space. We will focus on geometrical parameters describing the perturbation of a reference bulbous bow through the free form deformation (FFD) technique. The ROM are based on a finite volume method (FV) to simulate the multi-phase incompressible flow around the deformed hulls. In previous works we studied the reduction of the parameter space in naval engineering through AS [38, 10] focusing on different parts of the hull. PODI and DMD have been employed for the study of fast and reliable shape optimization cycles on a bulbous bow in [9]. The novelty of this work is the simultaneous reduction of both the input parameter space and the output fields of interest. In particular AS will be trained computing the total drag resistance of a hull advancing in calm water and its gradients with respect to the input parameters. DMD will improve the performance of each simulation of the campaign using only few snapshots of the solution fields in order to predict the regime state of the system. Finally PODI will interpolate the coefficients of the POD decomposition of the output fields for a fast approximation of all the fields at new untried parameters given by the optimization algorithm. This will result in a non-intrusive data-driven numerical optimization pipeline completely independent with respect to the full order solver used and it can be easily incorporated into existing numerical pipelines, from the reference CAD to the optimal shape

    On Optimizing Distributed Tucker Decomposition for Dense Tensors

    Full text link
    The Tucker decomposition expresses a given tensor as the product of a small core tensor and a set of factor matrices. Apart from providing data compression, the construction is useful in performing analysis such as principal component analysis (PCA)and finds applications in diverse domains such as signal processing, computer vision and text analytics. Our objective is to develop an efficient distributed implementation for the case of dense tensors. The implementation is based on the HOOI (Higher Order Orthogonal Iterator) procedure, wherein the tensor-times-matrix product forms the core routine. Prior work have proposed heuristics for reducing the computational load and communication volume incurred by the routine. We study the two metrics in a formal and systematic manner, and design strategies that are optimal under the two fundamental metrics. Our experimental evaluation on a large benchmark of tensors shows that the optimal strategies provide significant reduction in load and volume compared to prior heuristics, and provide up to 7x speed-up in the overall running time.Comment: Preliminary version of the paper appears in the proceedings of IPDPS'1
    • …
    corecore