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A novel approach to reduced-order modeling of high-dimensional systems with time-varying properties
is proposed. It combines the problem formulation of the Dynamic Mode Decomposition method with the
concept of balanced realization. It is assumed that the only information available on the system comes
from input, state, and output trajectories, thus the approach is fully data-driven. The goal is to obtain an
input-output low dimensional linear model which approximates the system across its operating range.
Time-varying features of the system are retained by means of a Linear Parameter-Varying representation
made of a collection of state-consistent linear time-invariant reduced-order models. The algorithm
formulation hinges on the idea of replacing the orthogonal projection onto the Proper Orthogonal
Decomposition modes, used in Dynamic Mode Decomposition-based approaches, with a balancing
oblique projection constructed from data. As a consequence, the input-output information captured in
the lower-dimensional representation is increased compared to other projections onto subspaces of same
or lower size. Moreover, a parameter-varying projection is possible while also achieving state-consistency.
The validity of the proposed approach is demonstrated on a morphing wing for airborne wind energy
applications by comparing the performance against two recent algorithms. Analyses account for both
prediction accuracy and closed-loop performance in model predictive control applications.
© 2021 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Data-driven approaches to extract from trajectories of high-
dimensional systems, parsimonious models capable of balancing
accuracy of the prediction with complexity, are an increasingly
popular research topic [1]. In fact, pioneering ante litteram contri-
butions to the field, prompted by the goal of identifying low-order
structures in complex physical problems such as turbulence, were
made in the fluid mechanics and aerodynamics communities [2].
The fundamental idea common to many successful approaches, de-
veloped in the wake of these early contributions, is to project the
high-dimensional data on a lower dimensional subspace (also con-
structed from data), such that the most important features of the
dynamics are therein preserved. A celebrated example is the Dy-
namic Mode Decomposition (DMD) approach [3,4], whereby the
spectrum of a low-order linear dynamical model approximating
the training data is obtained by leveraging the Proper Orthogonal
Decomposition (POD) [5] reduction technique. Specifically, the pro-
jecting subspace provided by POD is spanned by the left singular
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vectors associated with the largest singular values of a data matrix
gathered from observations of the dynamics. The exact interpre-
tation of the largest singular values depend on the inner product
used to define the data matrix. In standard applications, where the
so-called snapshot matrix, corresponding to the correlation matrix
between the dynamical states, is used, the largest singular values
are associated with the modes capturing most of the energy in the
system. Thus, the projection onto the lower dimensional subspace
preserves the spatial structures with the highest energy content.
This criterion for choosing the projection subspace might not al-
ways give the best results, as low-energy features can have a large
effect on the dynamics, e.g. in the case of non-normal systems,
which can be found in some fluid dynamics problems [6]. More-
over, as recently shown in [7], projections onto POD modes are not
uniquely defined, due to the arbitrariness of the definition of the
state. These findings reinforced the known fact that the quality of
the approximation highly depends on the choice of inner product
and thus care is required when the projection operator is com-
puted.

Despite these potential shortcomings, POD- and DMD-based
methods have been successfully applied in various aerospace and
control flow problems [1,8-11]. However, a relatively unexplored
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application domain of data-driven (or equation-free) reduced-order
modeling (ROM) is aeroservoelasticity, where the coupling among
multiple disciplines (e.g. aerodynamics, structural dynamics) and
components of the system (e.g. wing, actuators) often results in
high-order models. Expect for a few notable recent exceptions, e.g.
the works in [12,13] where nonlinear ROMs have been developed,
the standard practice to reduce dimensionality is the use of well
established model-based reduction technique [14]. See the work
in [15] for an application and further references on this line of
research. However, the increasing complexity of the high-fidelity
solvers (often made up of distinct sub-solvers for the different
disciplines) on one hand, and the potential advantage of recalibrat-
ing or directly substituting parts of the code with experimental
or flight data on the other, favour the adoption of equation-free
strategies. Among the possible reasons for the lack of their appli-
cation in the field, two important issues are highlighted here.

First, a common feature of the majority of the available ap-
proaches is the focus on internal dynamics, meant here as partial
or ordinary differential equations without external excitations and
with fully observable states. The work in [16] recently extended
the DMD framework to controlled systems (DMDc), but the key
steps of the algorithm (specifically, the selection of the projecting
subspace) do not substantially change. That is, emphasis is not put
on preserving the input-output behaviour of the system, which is
crucial for control systems.

Second, in aeroservoelastic applications, capturing the varia-
tion in the stability and response of the system as the operating
conditions change is paramount. This can be done, for example,
using the so-called Linear Parameter-Varying (LPV) representation
[17], which are of acknowledged benefit for control related tasks
[18-21]. Unfortunately, obtaining accurate models featuring low
orders is notoriously a difficult task [22], even for the well ex-
plored class of model-based approaches [23-25]. One of the most
common strategies is to seek low-order linear time-invariant (LTI)
representations for frozen-parameter conditions (defining a grid)
and then interpolate them for intermediate values of the parame-
ters. Since states, and thus state-space models, are defined up to a
nonsingular (similarity) transformation, a correct interpolation re-
quires that the state of each frozen model is defined with respect
to the same basis. The need to work with a consistent state-space
basis for the local ROMs, required for a correct interpolation [26],
poses a challenge for DMD-inspired data-driven approaches. State-
consistency will depend indeed on the selection of the projecting
subspace. If this changes across the parameter range, as it is the
case when one computes the POD modes at each grid point, then
state-consistency will not hold in general. Conversely, if the sub-
space is kept fixed for all the frozen-parameter LTI systems, then
accuracy might deteriorate since projection will no longer take
place onto the optimal (from an energy point of view) subspace
for the considered parameter.

Motivated by the discussion above, the main contribution of
this paper is the proposal of a novel equation-free approach to
obtain LPV low-order models, namely the Balanced Mode Decom-
position (BMD) algorithm. The key idea is to use, instead of an
orthogonal projection associated with one subspace (as in standard
DMD), an oblique projection, which is associated with two sub-
spaces, namely a basis space and a test space, characterizing the
range space and null space of the projection, respectively. Oblique
projection, often encountered in model reduction [27] and sys-
tem identification [28], was also used for model-based reduction
of LPV models in [29]. As detailed in Section 3, the oblique pro-
jection proposed here can be interpreted, within the context of
DMD-type approaches, as an alternative choice to the subspace
spanned by the POD modes, and it is instrumental to achieve two
favourable properties. The first is that emphasis can be put on the
input-output behaviour of the ROM by defining the range and null
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spaces of the projection as a function of the controllability and
observability Gramians. These objects are well known in the con-
text of model order reduction of linear systems, as they are the
main ingredients to perform balanced truncation [14]. This tech-
nique consists of transforming the system in balanced coordinates
and then removing the states associated with the lowest degree
of controllability and observability. In the same spirit, range and
null spaces of the proposed oblique projection are defined so that
the identified model is (approximately) in balanced coordinates,
and thus projection onto lower-dimensional subspaces will pre-
serve the structures in the data matrices that are most observable
and controllable. The second favourable property is that the LPV
model has a consistent state-space basis [26] across the parameter
space without having to sacrifice accuracy. This results from the
fact that one subspace (the basis space) is common to all param-
eters and thus provides a common basis. At the same time, the
other subspace (the test space) has no influence on the state’s ba-
sis, and thus can be chosen different for each parameter in order
to alleviate the limitations of a fixed subspace projection.

The second contribution of the paper is to extensively compare
the results of the BMD method with two recent extensions of DMD
with control. The first algorithm is the algebraic DMDc (aDMDc)
[30], which extended DMDc to parameter-varying systems de-
scribed by algebraic, in addition to differential, equations. Including
algebraic constraints is very important, for example, when consid-
ering state trajectories generated by aerodynamic solvers capturing
unsteady effects, such as in panel methods or unsteady vortex
lattice methods [31]. The second algorithm is the input-output
reduced-order model (IOROM) approach, proposed in [32] to con-
struct data-driven reduced-order LPV models. Improved ways of
defining the low-dimensional subspace such that state-consistency
is achieved while preserving accuracy in the (orthogonal) projec-
tion were proposed therein. However, the projection operator is
the same for all parameters, and is obtained from the POD modes
as in standard DMD. An extension of IOROM to handle algebraic
constraints is also developed here in order to allow for a fair
comparison. The algorithms are tested on a high-fidelity, fluid-
structure interaction (FSI) numerical model of an airborne wind
energy (AWE) morphing wing. The FSI simulator is described in
[33] and the wing was analyzed in detail in [34]. Airborne wind
energy and morphing wings are paradigmatic examples of applica-
tion domains where the system’s response originates from complex
interactions across different domains, and thus could benefit from
equation-free approaches. The first type of comparison investigates
the accuracy of the reduced-order models to predict various out-
puts of the wing as the size of the model is decreased. In a second
set of analyses, models featuring different orders are used by a
model predictive control (MPC) algorithm to track predefined tra-
jectories of the airborne wind energy system with the goal of gain-
ing insight into the trade-off between size and performance, the
latter evaluated by simulating the FSI solver in closed-loop with
the MPC controller. Preliminary results of the work were presented
in [35].

Fig. 1 shows a conceptual representation of the proposed data-
driven ROM framework.

2. Data-driven reduced-order modeling

This section provides background material on the tools and con-
cepts relevant to the reduced-order modeling algorithm proposed
in this work. In Section 2.1 the general data-driven low-order mod-
eling problem is presented. Section 2.2 reviews the algebraic DMD
with Control (aDMDc) [30], and Section 2.3 reports on the input-
output reduced-order model (IOROM) [32]. These are the two ROM
algorithms from the literature used for comparison in this paper.
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I. Aeroservoelastic system
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Morphing wing

Flexible skin "3 A ruator

I1. Fluid-structure interaction modeling

Aerodynamic
pressure

Displacement
& velocity

f(state™!,input™*!) = g(state™, input™)

III. System’s trajectories

Mode superposition Snapshots
Input

Output

P AN M

Balanced Mode Decomposition (BMD)

Input, state, output . .
put, bEHiy Balancing basis and

trajectories —> P —
(on parameters grid) P
Regression on the Interpolation of
(oblique projected) ~ ——> grid-based
low-rank subspace LPV model
Best low-rank approximation

0 First bending mode prediction error vs. ROM size

——BMD -
60 - V=302
0 - IOROM
40r N —~DMDc
so® .
Ot':i‘ » -
10 15 20 25 30 35 40

25
Rank n.

40

Fig. 1. Overview of the algorithm and its proposed application: I illustrative aeroeservoelastic testcase [34]; IL typical fluid-structure interaction problem; III. system charac-
terized uniquely by its states, inputs, and outputs trajectories; IV. sketch of the newly proposed BMD algorithm and comparison with two other algorithms.

2.1. Problem statement and preliminaries

The starting pointis a generic discrete-time nonlinear parameter-
varying model which can be used to describe typical control sys-

tems, such as aeroservoelastic systems modelled by FSI solvers
Xer1 = f s Uk, ox),
_ i (1)
Yk = hxg, uk, pi),

where x e R™, u € R™ y € R" are the state, input and output,
and p:Z — R™ is a vector of time-varying parameters defin-
ing the operating conditions of the system. The problem of finding
an LPV low-order approximation of (1) can be divided into two
phases: first, local LTI approximations for frozen values of p in a
pre-defined grid {o/ }?i , are computed; then, an LPV model is ob-
tained through interpolation. The following discussion is concerned
with the former phase.

It is assumed that for each frozen value p there exists an equi-
librium (or trim) point characterized by the tuple (x(p), u(p),

y(p)) such that
x(p) = f&x(p),u(p), p),
y(p) = hx(p),u(p), p).

The deviation vectors Xy := xx — X(p), Uy := uy — u(p), and yj :=
Yk — ¥(p) can then be used as states of an LTI approximation of
the system around the equilibrium:

Xep1 = A(0)Xy + B(0)1y, (2a)

Yk = C(0)Xk + D(p)il, (2b)

where (A(p), B(p), C(p), D(p)) is a state-space representation
completely describing the linearization about the trim point as-
sociated with p. The dependence of local (i.e. related to LTI ap-
proximations for frozen values of p) quantities on the parameter

p will be dropped in the remainder. It is understood that they de-
pend on the particular value of the parameter considered. Instead,
the subscript p will be used when discussing LPV models.

In the data-driven setting, the only information on the system
comes from input, state, and output trajectories {xy, ux_1, yk,l};z; 1
of length ng. After having subtracted from them the corresponding
trim values, these trajectories can be used to form the following
snapshot matrices

Xo = [XO —X X1 —X Xng—1 _;}] € RMXMs |
X1 = [X] —X X2—X Xng _)_(] € RM=X7s
Up = [uo —u u;—1u Un,—1 _ﬁ] € RMuxns (3)
U = [U]—fl U, —1u uns_ﬁ] € RMuxns
Yo = [.VO—J_/ yi—Yy ynsq—j/] c Ry Xns

The notation [Xp; Up] will denote the operation of stacking row-
wise two matrices Xo and Up.

The first goal is to obtain a linear time-invariant low-order ap-
proximation of (2), that is

Fzy + Guy,
Hzj, + Dy,

Zipr =

Yk
where Z € R™ and n, < ny. Once this is available, the family of
frozen LTI systems, or directly the signals of interest, are interpo-
lated so that the response of the system is available at each value
pr for a generic time-varying trajectory of the parameter.

2.2. Algebraic dynamic mode decomposition with control algorithm

The algebraic Dynamic Mode Decomposition with Control (aD-
MDc) algorithm was recently proposed in [30] to extend the DMDc
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algorithm to systems described by algebraic-differential equations.
The DMDc algorithm from [16] is first briefly reviewed. This algo-
rithm seeks a data-driven approximation of the matrices involved
in the state equation (2) by means of two truncated singular value
decompositions (SVD) of the snapshot matrices. The first one is

[Xo; Ugl=UZV' =U,%,V,, (4)

where the subscript r denotes a truncation of the SVD decompo-
sition of order r (obtained by keeping only the r largest singular
values in the decomposition). Note that the value of r does not
define the size of the final reduced-order model, and it could be
set for example by using the hard threshold criterion suggested in
[36]. The effect of choosing r on the accuracy of the model will be
discussed in the result section. The second truncated SVD is com-
puted from the snapshot matrix X1

Xi = 080T 20,8, 07 (5)

where the columns of ﬁnz are also called POD modes of X; and
are used for the projection onto a lower dimensional space. The
selection of n, defines the size of the reduced-order model. The
thresholds used in (4) and (5) should be chosen such that r > n,
[16].

An approximation of the high-order matrices appearing in (2)
can be formulated in terms of the truncated SVD (4) and the snap-
shot matrix X; as

[A Bl=X1V,/ = U,. (6)

Then, a low-order approximation is obtained by projecting (6) onto
the set of POD modes by making use of (5)

[F G1=[07,A0x, 0B].

Therefore, the low-order model obtained by DMDc (which only in-
cludes the state equation) is

Ziy1 = FZ + Gy,

where z € R™ is the state of the low-order model and the high-
order state can be recovered by X = Uy, Z.

The aDMDc algorithm [30] builds on the DMDc approach and
addresses the presence of algebraic constraints in the dynamic
equations which might arise when considering unsteady aerody-
namics features. Specifically, the morphing wing analyzed in [30]
is described by an FSI solver that implements a 3D panel method
with a free evolving wake inspired by the method in [31]. This
leads to a dependence of the states’ evolution on the inputs at the
next time step. Therefore, a slightly different starting point from
the general one presented in (1) has to be considered, namely

EXpeq15 Uk1) = f (X, Uk, i), 7)
Yk = hx, ug, o),

where g is in general a nonlinear function taking into account the
dependence of the states on the control inputs at the next time
step. This dependence results from algebraic equations relating the
doublet strengths (aerodynamics states) and downwash (function
of the other states and the control inputs). This effect is sometimes
accounted for with artificial aerodynamic states by simply chang-
ing the feedthrough matrix to the outputs. However, to correctly
capture the evolution of the states it is important to formulate the
problem as stated in (7). The reader is referred to [30] for further
discussion on this aspect.

The proposed LTI representation of the system accounting for
the algebraic constraints due to the unsteady aerodynamics is
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Xis1 = AXy + Bil + Rilpy 1,

where, as in DMDc, the objective is to find a low-order approxi-
mation for the state equation only.

The only difference with respect to DMDc is that now the first
SVD decomposition is computed with respect to the snapshot ma-
trices Xo, Ug, and U1, that is

[Xo; Uo; Ui]l=UxVT U, %V, .
And the high-order matrices are thus approximated by
[A B Rl=X1V,/ = 'U, .

A low-order approximation is then obtained by projecting (6) onto
the same set of POD modes used in DMDc (5)

[F G L1=[07A0,, 078 O7R].
This procedure results in the aDMDc low-order model

Zew1 = FX + Gl + Liigyq, (8)

where the high-order state can again be obtained from X = Uy, z.

The approach proposed in the parametrically varying version of
the aDMDc algorithm is to use a different set of POD modes for
each value of p in the grid {pf}?gzl. The frozen LTI models (8) are
then simulated simultaneously, the relative states are lifted to the
high-order ones using the corresponding projection matrices (e.g.
ﬁnz(pf) for the model corresponding to the jth element in the
parameter space), and the state corresponding to the desired value
of p is obtained by interpolating the high-dimensional states. A
first consequence of this approach is that the frozen LTI models
(8) do not have a consistent basis for the state, because the basis
of the state is determined by the POD modes, which change across
the parameter grid. While this has the advantage of projecting over
POD modes specifically computed for a particular value of p, it also
requires running in parallel all of the low-order models. Moreover,
this algorithm does not provide an LPV model and thus the use of
LPV robust control design strategies is precluded [21]. While other
control techniques, such as model predictive control, can still be
successfully used (see Section 4.4), the necessity to run in paral-
lel, multiple low-order models, is a drawback of the method when
targeting real-time applications.

2.3. Input-output reduced-order model algorithm

The input-output reduced-order model (IOROM) algorithm was
proposed in [32] to compute a family of state-consistent data-
driven low order LTI state-space models (including the output
equation) which can be directly parameterized by the vector p.

Consider first the case when there is no parameter dependence
(or equivalently, p is fixed). Drawing inspiration from the interpre-
tation of DMD as linear dynamics fitting [4], the main idea is that,
given the snapshot matrices (3), the matrices (A, B, C, D) defining
(2) can be obtained by solving the following least-squares problem

MBI

where the subscript F denotes the Frobenius norm of a matrix.
Without appropriate regularization, this problem would be ill-
posed for high-dimensional systems (ny >> 1). Most importantly,
even if (9) was solved accurately, it would not provide a low
dimensional representation of the system. For these reasons, an
orthogonal projection of the state onto a low dimensional sub-
space of dimension n, is performed by introducing the projection

2
min
A,B.C,D

(9)

F
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matrix Q € R™*"z where Q1Q = In,, such that the orthogonal
projection of X on an n,-dimensional subspace is given by Q Q Tx.
Equivalently, one can think that the original state is approximated
by X = QZz for some reduced-order state (or coefficient vector)
Z € R™, This results in the following low-order state-space model

Zkyr = (Q TAQ)Zk + (Q " B)il, (10)
Yk = (CQ)Zx + Diig.

The vector 7= Q "X € R™ can thus be interpreted as the state of
the low-rank approximation of (2)

A Bl _[QFQT @Gl _[Q@ o7][F G¢][Q" o
C D] | HQ"T D | |0 Iy||H DJ[ 0 I]

u

The projection matrix Q is constructed from the POD modes of
X, that is

Q = UnZ»

11
where  Xo = Up, B,V . ()
The least-squares problem giving (F, G, H, D) is then
o ITxT_fe o[F clfe™ o][X][*
F.G,HD || Yo 0 I [[H D 0 In | |Uo]|f’
(12)

whose solution is
4 5], -Te ]
H D opt - Yo Up ’

where { denotes the pseudo-inverse of a matrix. It is worth noting
that the reduced-order model given by the IOROM algorithm is
qualitatively similar to the one associated with DMDc. The main
difference (besides the output equation, not considered in DMDc)
is that the pseudo-inverse operation, which also amounts to an
SVD decomposition and thus is conceptually similar to (4), is done
here directly on the projected snapshot matrices. This is different
than what is done in DMDc, where the SVD decomposition (4) is
applied to Xp and Up. A minor difference is also that the POD
modes are computed here with respect to Xy instead of Xj.

In the parameter-varying case, the regression problem (13)
is solved at each value of the parameter grid {pf}r}g: ;1 by tak-
ing the corresponding snapshot matrices {Xo(p?), X1(p?), Ug(p?),
Yo(pj)}?ir By always using the same projection matrix Q when
computing the low-order models at different p, state-consistency
is automatically guaranteed because the orthogonal projection has
the same range space. An LPV reduced-order model is then ob-
tained by interpolating (13) across the parameter’s range. That is

zk-tl = Fpkzlc + kaftk + (Z(or) — Z(Pr+1)),
Yk = Hpzk + D p Uy,

where (Fp,, Gp,, Hp,, Dp,) are obtained by interpolating the cor-
responding matrices for the value of p at timestep k. Note that the
low-order state is Zy = z; — z(pg), Where the trim point z(o) =
Q TX(px) can change as a function of p. The term (Z(ox) — Z(0k+1))
is added to correctly take into account this effect [32].

Since the choice of a fixed projection matrix is typically asso-
ciated with less accuracy, two strategies are proposed in [32] to
alleviate this issue. The first consists of using in the decomposition
(11) a fat snapshot matrix X obtained by stacking column-wise
the snapshot matrices of multiple parameters. This matrix will fea-
ture ngng columns, which can result in computationally expensive
calculations when this number is large. The second, less accu-
rate but more practical in case several grid points are analyzed,
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consists of iteratively building Q by incrementally processing the
snapshot data from each grid point in a similar fashion to the
Gram-Schmidt orthogonalization procedure. The former strategy is
used here when showing results for the IOROM algorithm, together
with a linear interpolation of the state-space matrices.

3. Balanced mode decomposition with oblique projection
algorithm

This section presents the technical aspects of the Balanced
Mode Decomposition (BMD) algorithm proposed in this paper. Sec-
tion 3.1 clarifies the goals and the novelty of the contribution with
respect to previous works. Section 3.2 presents the algorithm and
Section 3.3 details the computation of the subspaces defining the
oblique projection. Finally, Section 3.4 presents a version of the al-
gorithm which can handle algebraic constraints and thus allows
the analyses in Section 4 of the morphing wing with an unsteady
aerodynamics model.

3.1. Novelty and connections with prior work

The main motivation for the proposal of the BMD algorithm
for data-driven LPV low-order modeling is to address two lim-
itations of recent extensions of the celebrated DMD method to
input-output parameter-varying models. The first one concerns the
use of Q (i.e. the subspace spanned by the most energetic POD
modes according to the standard choice of inner product as un-
weighted scalar product) for the projection of the higher-order dy-
namics, which is suboptimal as also acknowledged by the authors
of [32]. In the input-output context, a subspace typically providing
lower input-output errors with respect to the others having same
size n; is the one where the system’s state is in balanced coordi-
nates [37]. This is indeed the rationale behind balanced truncation,
which consists of removing the states corresponding to the small-
est ny —n, Hankel singular values [38]. The justification for this is
that the sum of the Hankel singular values provides a lower bound,
and for systems in balanced coordinates, an upper bound on the
error of the approximation achieved by removing system’s states.
Even though not guaranteed to be optimal, balanced truncation is
a very effective tool in model-based order reduction [14,39]. These
ideas are used here to propose a new projection operator for the
high-dimensional state.

Whereas the aspect mentioned above is relevant also for the
case where the sought model is an LTI (i.e. when there is no pa-
rameter dependence), the second one is specific to the LPV setting.
Precisely, the second limitation addressed by the BMD algorithm
concerns how to handle state-consistency across the frozen models
in order to estimate the system’s response at intermediate points
in the parameter grid. In the currently available approaches, this is
addressed in two possible ways. When state-consistency is not ful-
filled, all reduced-order models are run in parallel by interpolating
directly the high-dimensional lifted state. This is the case of aD-
MDc, and while it has the advantage that the projection operators
are parameter-dependent (i.e. at each parameter’s value one can
use a different set of POD modes), an LPV model is not available
and moreover computational efficiency might be compromised. On
the other hand, a parameter-independent projection matrix for all
frozen models can be used in order to guarantee state-consistency.
This is the case for the IOROM algorithm, and it has the drawback
that, whereas the orthonormal basis associated with the n, most
energetic modes will be in general different at each value of p, a
fixed one that is common to all parameters is used.

The central idea to overcome both of the aforementioned issues
is to replace the orthogonal projection employed in standard POD-
based approaches by an oblique projection. Given V € R™*"z and
W e R™*"z such that W is bi-orthogonal to V, ie. WTV =1,
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the oblique projection of % is given by I1X, where ITT=VWT. As
a result, the original state is approximated as X = VZz (where, as
before, z € R™ is the reduced-order state), and the component
of X that is eliminated by the projection is in the nullspace of
I1. As opposed to the orthogonal projection, which is character-
ized by a single subspace (the one spanned by the columns of
Q), the oblique projection is defined by two subspaces: the ba-
sis space (spanned by the columns of V), such that the projection
of X lies in the span of V; and the test space (spanned by the
columns of W), such that the projection VZ has zero error within
it, ie. W' (x—VZz) = 0. Technically, the high-dimensional state
vector is projected along the orthogonal complement of the sub-
space spanned by the columns of W onto a subspace spanned
by the columns of V. In practice, this means that what is lost by
projecting X (i.e. the nullspace of the projection) is orthogonal to
W, and the state basis only depends on V. The two issues dis-
cussed above are then addressed by: computing V and W from
the empirical controllability and observability Gramians of the sys-
tem (which leads to a model-free balanced truncation); employing
a fixed V and a parameter-dependent W. Since V by definition de-
fines the basis of the vector space where the state of each model
is defined, this basis will be common to all the local state-space
models, and thus state-consistency is guaranteed.

The idea of using an oblique projection for LPV model-order re-
duction was first proposed in [29]. Therein, the setting where a
model of the system is available (in the form of high-order state-
space models) is considered, and thus both the construction of V
and W, and the computation of the low-order model, is model-
based. In the data-driven ROM literature, balancing concepts are
used in two important techniques, namely Balanced POD (BPOD)
[40] and the Eigensystem Realization Algorithm (ERA) [41]. The
former is only partially equation-free: the controllability Gramian
is computed from data, while for the observability Gramian an
adjoint simulation model is needed. Additionally, the high-order
state-space matrices are required for the balanced projection. For
the case of ERA, a balanced model comes from impulse response
simulations of the model in the spirit of system identification al-
gorithms from realization theory [42]. The ERA algorithm is closely
related to BPOD, as it can be interpreted as a data-driven bal-
anced truncation. An important difference is that ERA provides
only the reduced-order model and not the balancing transforma-
tion, namely the set of vectors known as balancing and adjoint
modes in BPOD. These modes are the counterpart of the basis and
test space in BMD, respectively, and are a desirable output of a
ROM algorithm as they show the most important spatio-temporal
structures in the dynamics. In an aeroservoelastic setting, this can
provide insights into efficient design solutions. It is recalled that
BPOD can be interpreted as a special case of POD when impulse
responses are used to build the snaphost matrices and the ob-
servability Gramian is used as inner product [40]. Conceptually
(because in practice the algorithm formulation is articulated in a
different way), it can be helpful to think of BMD as a version of
DMD that makes use of this special case of POD.

3.2. BMD regression problem

We consider first the frozen-parameter case and, by virtue of
the previously discussed oblique projection, propose the following
low-order LTI system model

Ziyr = WTAV)Ze+ (W T B)iy,
Yk = (CV)z + Dy,

where the computation of the balancing basis V and test spaces

W from system'’s trajectories will be detailed in Section 3.3. The

vector Z= W "X € R™ can thus be interpreted as the state associ-

ated with the following low-rank approximation of (2)

(14)
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A Bl _[VFWT vG] [V O7][F G][wT o
C D] | HWT D |7|0 Iy ||H DJ[ O Iy |

(15)

The matrices (F, G, H, D) can then be obtained with the following
least-squares problem

Xi] [v O][F G][wT o0 ][Xo

Yo 0 Iy ||H D 0 Iy [|Uo
which has solution
[F G} _[WTxl][WTxO]T (a7)

H D opt Yo Uo

To build a low-order LPV model, snapshot matrice§ are first col-

lected for the values of the parameter in the grid {pf}r;i 1» and the
least-squares problem (16) is solved at each grid point. Crucially,

the test space W is allowed to be a function of p. This leads to
the following solution for the reduced-order models in the grid

2

min
F,G,H,D

.
(16)

[F(pf) G(pf)}

. ] _ [WT(pf)xl(pf)] [WT(pf)xo(pf)]T
H(p?) D(p’) ’

opt B YO(pj) UO(pj)

(18)

where the dependence on p of the local quantities has been here
explicitly reported in order to clearly point out that all the objects
involved in the construction of the low-order state-space models
are parameter-varying.

The BMD LPV reduced-order model is then obtained by inter-
polating the frozen matrices (18) across the parameter’s range

zk-4~—1 = Fpk%k + kaﬁNk + (Z(k) — Z(Pk+1))s (19)
Yk = Hpzk + Dp Uk,

where, as in IOROM, (Fp,, Gp,, Hp,, Dy, ) are obtained by interpo-
lating the corresponding matrices for the value of p at timestep k,
and the term (z(pox) — Z(ox+1)) takes into account the fact that the
equilibrium point associated with each p is in general different,
and z(px) = W TR(pk). Note that, since V is fixed, the basis space
is common to all the frozen models and thus the interpolation can
be done at the state-matrices level (as in IOROM). However, the
projection is parameter-dependent due to the use of a parameter-
varying test space W (p).

3.3. Basis and test spaces construction

In order to preserve the most important features of the input-
output mapping of the system when projecting into the lower
order subspace of dimension n;, the matrices V and W are com-
puted from the controllability and observability Gramians, respec-
tively W, and W,. This ensures that the projection preserves the
most observable and controllable states, enabling an approximate
data-driven balanced truncation of the reduced-order LPV model.

Because the approach is fully data-driven, empirical Gramians
are computed from data matrices consisting of appropriate state
trajectories using known systems theoretical results. The empirical
controllability Gramian can be obtained, following the definition
[37,43], by impulse response simulations (one for each input chan-
nel). As for the empirical observability Gramian, if the model is
linear and its adjoint is available, then it can be computed from
impulse response simulations (one for each output channel) of the
adjoint system, as done in balanced POD [40]. This computation is
identical to the one giving the controllability Gramian, but is ap-
plied to the adjoint system (for an LTI model in state-space form,
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Algorithm 1 Balanced Mode Decomposition with oblique projection.

ng

Input: parameter grid points {p/} i1

snapshot matrices {Xo(p/), X1(p?), Uo(p?), Yo(ﬂj)]’?‘g

i£,; empirical Gramians (We(pd), WD(,oj)};fg:l; desired model order n,.

Output: test space projection matrices {W(pj)}'}il; fixed basis space projection matrix V; reduced-order models at the grid points {F(0/), G(p/), H(p/), D(,of)}?g:].

1: forj:l.,...,ng do )
Le(p)Le(p)T = We(pd)
Lo(pD)Lo(p))T = Wo(pT)
H(p?) = Le(p?) T Lo (p7)
(U, %, %) =svd(H(p’))
U=U(C,1:ny)

(T, %, %) = svd(Lc(p)0)
QG 1+n(j—1):nzj)=UC,1:nz)
end for

: Uy, %) =svd(Q)

11: V=Uy(,1:np)

12: for j=1,...,ng do

130 (Q.R)=ar(Le(p)TV)

14: Q :~Q(:, 1:ny)

15:  R=R(1:ng,:)

16:  W(p)) =Lo(p)Q(RT)™!

Cholesky factorization of W,
Cholesky factorization of W,

SLRNDU A WN

Fixed basis space

Thin QR factorization

Parameter-varying test space

17:
[F(p{) c(pf_)} _ [Wpr)xl (p")] |:WT(/7j)X_o(pj)
H(p?) D(p’) Yo(p)) Uo(p))
18: end for

i
} solution of the BMD regression problem

this is obtained by replacing A and B by AT and CT). If the above
does not hold, for example in case one has only access to the sys-
tem’s trajectories and not to the model’s matrices, the approach
developed in [44], valid also for nonlinear systems and not re-
quiring an adjoint model, can be used. In this method the data
matrices used for the Gramian computation consist of state tra-
jectories obtained from unforced (zero input) simulations (one for
each state) obtained by perturbing the initial condition of each
state. Since these are unforced responses, when the system is suf-
ficiently damped, it will be generally sufficient to observe only the
initial time-steps and thus this calculation can be parallelized and
efficiently implemented to reduce the computational time.

Once W, and W, are available, a procedure based on [29,
Proposition 2] is employed to compute the test and basis spaces.
This construction is reported in the first part of the pseudocode
given in Algorithm 1, which summarizes input, output, and main
steps of the BMD algorithm (MATLAB notation is used for matrix
operations and rows/columns selection). For a fixed value of p,
the construction proposed in [29] is an equivalent procedure, but
more numerically stable for large-scale systems, to the well known
square root algorithm for balanced truncation [43]. Indeed, it can
be noted (see lines 5-11) that the subspace V is taken as a basis
for span(L.U), where L. (L,) is a Cholesky factor of W, (W,) and
U consists of the first n, left singular vectors of H = LCTLO. The sin-
gular values of H are the Hankel singular values of the system and
the SVD decomposition of H plays a fundamental role in balanced
reduction [37,43]. As for the subspace W, it can be shown that
the expression in line 16 is equivalent to W = W,V (VT W, V)™,
but it is computed with improved numerical robustness [45] by
making use of a thin QR factorization (line 13). These choices of
V and W are shown [29, Proposition 2] to provide the same bal-
ancing projection operator used in the square root algorithm. The
desired order n, is indicated as an input of Algorithm 1, because
one might want to obtain a low-order model with a specified size.
This is also the approach used in the analyses presented in Sec-
tion 4. Alternatively, n, can be indirectly defined as in aDMDc and
IOROM by setting a threshold on the singular values of a data ma-
trix. Whereas in those two methods this is done with respect to
singular values of the snapshot matrix of the state (X7 in Eq. (5)
and Xp in Eq. (11)), in the BMD algorithm the matrix H should
be considered. That is, a threshold on the Hankel singular values
of the system can be selected, as in standard balanced reduction.
This threshold can be conveniently expressed as percentage of the

largest Hankel singular value. Note that for each parameter in the
grid there is a different matrix H (line 4), and thus, given a thresh-
old, the number of truncated singular values might differ at each
grid point. Because obviously a common value of n, for all the lo-
cal models should be selected, a remedy for this is e.g. to choose
as n, the maximum number of truncated singular values across
the grid.

The output {F(pj), G(pj), H(p)), D(,of)}';.‘g:1 provided by the
BMD algorithm is a grid LPV model. After an interpolation algo-
rithm to evaluate the matrices’ entries for any value of p inside the
considered range has been chosen, this model can be used for sim-
ulation and control design. Note also that recently proposed robust
analysis methods for linear-time varying (LTV) systems [46,47] can
be applied to this model, e.g. to investigate specific aircraft ma-
noeuvres. Indeed, by fixing a particular trajectory for p the LPV
system is transformed into an LTV one. Moreover, the parameter-
varying test space W (p7) can be useful to gain insights into the
aeroservoelastic modes which have been eliminated and those that
have been kept in the projection, while the parameter-independent
basis space can be used to recover at each time-step k the high-
dimensional state via the transformation x;, = V z.

As noted in the introduction, the algorithm provides an ap-
proximate balanced truncation. Approximation is related to the
use of empirical Gramians, which are only finite-time approxi-
mations of the true ones (for this reason, also called finite-time
Gramians) since their computation is trajectory-based. As a result,
they only provide in principle a finite-time balanced realization
[14], whereas the theoretical order reduction error bounds are only
available for infinite-time balanced realizations. This source of er-
ror can however be made arbitrarily small by using long enough
data sequences for constructing the Gramians. The slowest decay
rate of the system’s impulse responses is the key parameter to con-
sider when choosing the length of the trajectory [48].

3.4. Extension to handle algebraic constraints

Since the BMD algorithm will be applied in Section 4 to a
wing described by an FSI solver which implements the algebraic
constraints described in Section 2.2, an extension to handle this
instance is presented here. For a fixed value of p, the model struc-
ture for the high-order model becomes

X1 = AXy + Bl + Rilgyq,
V& = CXy + Dily + Piigyq,
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where a potential effect of the algebraic constraints in the output
equation is also considered via the matrix P (in the analyses of the
morphing wing this matrix was, as expected, always found to be
zero). Therefore, the low-order approximation (for each value of p
in the parameter grid) becomes

A B R| _[VFWT VvG VL
c DP|"|HWT D P
.
_[v 0][FGL]M6 IO 8
= -
0 I, [|[H D P 0 0 Iy

The new objective function to be minimized is

. X1
min
F.G.LLHD.P|| Yo

2
w ol[F ¢ L]|W 0 01X
“lo 1 Hopl|l? M O Uil
W 0 0 Iy || U;

and the new optimal solution is

H D P Yo Uo

.
[F G L]_[WTX1] W Xo
U1

The BMD LPV reduced-order model with algebraic constraints is
then, in analogy to (19), given by

zktl = F,Ok%k + kailk + L,Okﬂlfi’l + (z(lok) - z(karl))s (20)
Yi = Hpzi + D p i + P p kg1

The IOROM algorithm has also been extended to the algebraic-
differential case in order to allow its application to the test case
considered in Section 4. This can be done in a similar way to what
has been shown above for BMD. Specifically, starting from (12), the
new least-squares problem for the IOROM reduced-order model is

. X1
min
F.G,LH.D,P || Yo

2
QT 0 07[Xo
oo eyl s ]
W 0 0 In | [Ui]|;
which has the following solution
T 1l
F G L] [QTx QUXO 1)

H D P|™| Yo 0 '

U1

Eq. (20), when the interpolated matrices are taken from (21), pro-
vides the IOROM LPV reduced-order model with algebraic con-
straints.

4. Results

This section presents and discusses results obtained by apply-
ing the three algorithms aDMDc, IOROM, and BMD to the flexible
and highly cambered morphing wing depicted in Fig. 1. The wing
is made of composite material, and the trailing edges are able to
morph and, by doing so, to increase or decrease the camber, thus
replacing conventional ailerons. The reader is referred to the re-
lated previous works for details on the wing design [49] and its
investigation with fluid-structure interaction tools [34].
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4.1. Summary of the wing’s FSI model

The high-fidelity FSI model of the morphing wing is presented
in detail in [33,50]. The structural model is based on a combination
of linear plate and beam elements. The external skin of the lifting
surface and the Voronoi-based internal structure are modelled us-
ing plates, while the stringers are modelled with beam elements.
The stiffness and mass matrices are obtained with the commer-
cial software Nastran [51]. From these, a modal decomposition is
performed to extract the structural modes of the wing, which are
coupled via thin plate spline and inverse distance weighting [52]
with the aerodynamic model. The aerodynamic model is based on
a 3D unsteady panel method [53]. The unsteadiness of the flow
is represented by shedding at each time step a new row of vor-
tex ring singularities after the trailing edge. All the other wake
nodes are then moved, via a second-order Runge-Kutta integra-
tion scheme, using the local velocity of the flow. The aerodynamic
forces on the surface are computed with the coefficient of pressure
on each panel, considering the far field velocity, the induced ve-
locity by the wing itself, and the induced velocity by all the wake
panels.

The state of the system x consists of the total number of struc-
tural modes of the wing and the doublet strengths (from the 3D
panel method solver), with ny=618. The input vector u of size n,=6
is given by

u=[o; p; q; r; Fs; Fgs], (22)

where « is the angle of attack, p, q, and r are the roll, pitch, and
yaw rotation rates, and Fs; and Fys are the (normalized) symmet-
ric and anti-symmetric morphing actuation inputs. Their value is
associated with a camber deformation and is thus related to a
trailing edge deflection: specifically, the amount of upwards (neg-
ative value) or downwards (positive value) deflection.

As for the output channels, we will consider both single output
and multiple output models. Emphasis will be given to the case
where the output is the first bending mode of the wing (n,=1),
since this is usually the one associated with dynamic instabilities
and large deformations, and thus it is of particular interest for ac-
tive control tasks [54,55]. The flight speed will be considered as
the time-varying parameter (n,=1).

The training phase, common to both the algorithms and con-
sisting of generating the snapshot matrices in Eq. (3), is carried
out by exciting the system with a series of impulses deployed in
random order in all input channels, following the same procedure
adopted in [30]. The amplitude of these signals has been chosen so
that nonlinear effects due to the wake’s evolution are not excited.
The same precaution is used for the computation of the empirical
gramians. Trajectories are of length ny=500 and are recorded with
sampling time 0.006 s.

4.2. Fixed-parameter models

In this first set of tests, the accuracy of the different mod-
els at fixed values of the flight speed V is assessed by means
of sinusoidal inputs. The frequencies, different for each channel,
are expressed in terms of the aircraft reduced frequency f; =: %
where ¢=0.29 m is the mean chord of the wing. The first, third, and
fifth input channels are excited with sinusoids == f;, 1o fr, and

ﬁ fr, respectively, while the other channels are set to zero. For
reference, the first bending mode of the wing has a frequency of
approximately 10 Hz [33]. This test is performed for 3 flight speeds
in the range of operating conditions of interest, namely V=30 m/s,
V=40 m/s, and V=50 m/s. To quantify the accuracy as a function of

the order of the model n;, the Euclidean norm of the error signal
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Fig. 2. Relative error on the prediction of the system’s output (bending mode) for three different values of the flight speed as a function of the model order.

between the first bending mode amplitude provided by the high-
fidelity FSI and each of the predictions obtained with the three
ROM algorithm is computed. The results in terms of relative error
(with respect to the predicated signal norm) are shown in Fig. 2.

It is clear that for all speeds BMD provides the smallest error
for a very low-order approximation of the full dynamics, as ex-
pected in view of the choice of low-dimensional subspace where
the high-dimensional data are projected. As the size n, of the
system increases, the difference between the algorithms is less no-
ticeable and, for high enough orders, the algorithms tend to give
same results.

It is also noted that the results obtained with the aDMDc al-
gorithm showed great sensitivity, in the range of n, displayed in
Fig. 2, to the SVD truncation order r employed in Eq. (4). Using the
hard threshold criterion from [36] did not provide good results as
it resulted in a very large r (therefore the truncation included very
low singular values deteriorating the approximation). Since fine-
tuning the value of r to optimize the results obtained with aDMCc
would have required trying several values of r for each different
value of ng, this was not pursued here. Instead, the heuristic choice
r=n,+10 was implemented and proved to provide reasonable re-
sults. Even though, because of this possibly suboptimal choice, the
resulting gap in performance with the other two methods observed
in Fig. 2 can be also ascribed to numerical inaccuracies associated
with the decomposition (4), the need to optimally choose r can be
considered as a disadvantage of the aDMDc problem formulation.
It is finally observed that, in the extensive analyses performed,
aDMCc typically showed worse performance than BMD irrespec-
tive of the choice of r.

4.3. Parameter-varying models

In the second set of tests, the accuracy during parameter-
varying manoeuvres is tested. A manoeuvre of 3 s where the flight
speed linearly increases from V=20 m/s to V=50 m/s is analyzed.
Unless otherwise specified, the reduced-order models are obtained
using snapshot matrices obtained gridding the flight speed range
every 2 m/s and thus using 16 different speeds (ng=16). A linear
interpolation will be used to evaluate quantities for values of p
that are not in the grid.

4.3.1. Sinusoidal excitation

The same sinusoidal input signals used in Section 4.2 are con-
sidered here. In Fig. 3, the bending mode amplitude response ob-
tained with the FSI solver (FSI) is compared with the predictions
of the three algorithms when the order of the models is fixed at
n,=14. The goal is to compare the prediction accuracy of the algo-
rithms when a very low number of states (in comparison with the
order of the original system) is employed. It is noted that the same
observations can be gathered when values of n, in the same range
are considered. All the signals are normalized by the largest value
of the bending amplitude measured in the FSI simulation, which
for the analyzed case was 0.7. Note that a unitary value of the first
bending mode corresponds to a wingtip displacement of 4.6 cm.
In this case, since only one value of n, was considered, the aDMDc
model was here obtained by fine tuning the threshold value r in
order to provide the best results.

The plot confirms, also in the LPV setting, that the BMD algo-
rithm guarantees the smallest error when a low-rank approxima-
tion of the system is desired. In this simulation, aDMDc outper-
forms IOROM, possibly due to the fact that it uses a parameter-
varying set of POD modes. However, aDMDc does not provide a
family of interpolated low-order models, and interpolates directly
the high-order states, thus requiring parallel simulations of the
low-order models. The better performance of BMD, despite the fact
that a part of the projection (the one related to the basis space)
is constant, is ascribed to the improved selection of subspace for
the projection compared to the standard POD one, common to the
other two methods. In addition to the improvement in the ac-
curacy, the BMD algorithm is also capable of providing, like the
IOROM algorithm, a family of consistent LTI models with the ad-
vantages for LPV control design and in general real-time applica-
tions.

4.3.2. Effect of the input signals

This section investigates the accuracy of the reduced-order
models for different types of input signals. The Euclidean norm of
the error signal between the first bending mode amplitude pro-
vided by the high-fidelity FSI and the prediction obtained with
each of the three ROM algorithms is again used as metric to as-
sess the quality of the approximation. Three classes of inputs are
considered: Sine coincides with the signal tested so far and already
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model order.

investigated in [30]; Chirp excites the system by injecting in all 6
input channels defined in (22) a chirp signal with frequency lin-
early varying from =) f; to 7Z fr; PRBS excites the system by
injecting in all 6 input channels a PRBS-9 sequence. This last input,
namely a Pseudo-Random Binary Signal (PRBS) [56], is a determin-
istic signal with white-noise-like properties. It is very well known
in the system identification and experiment design fields since it
has the favourable property of equally distributing energy across
all the frequencies in the input spectrum. In this way, informa-
tion on the models in different frequency ranges can be extracted.
Although not a common input in aeroservoelastic applications, it
has been used in this spirit here, since the previously adopted sets
of input will only give information on the behaviour of the re-
duced models around the aircraft reduced frequency f;. Results
are shown in Fig. 4.

The plots confirm the advantage in using the BMD approach
when seeking a low-order model capturing parameter variations.

10

These results are important considering that they are obtained by
exploring different frequency ranges of the system’s response.

An interesting aspect observed in Fig. 4 is that none of the algo-
rithms exhibit a monotonic improvement of the model’s accuracy
(measured here by the relative prediction’s error) as a function
of the system’s order. Indeed, in a very few cases, a small dete-
rioration can be observed between two consecutive values of ng,
before the curve keeps decreasing as n; increases. Even though
this might seem surprising at first glance, there is no theoreti-
cal guarantee that such a monotonic improvement is achieved in
this type of algorithms. The reason is that adding one mode to the
low dimensional subspace where the dynamics is described might
(in principle) deteriorate the model’s approximation, if that mode
alone does not add meaningful information. This is for example
the case when pairs of modes describe relevant features of the sys-
tem (e.g. modes of vibration), and so only when both of them are
used in the projection there is an improvement. In practice, nu-
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Fig. 5. Relative error on the prediction of the system’s output (bending mode) for speed-varying manoeuvres with values of ng as a function of the model order.

merical errors due to the SVD truncation and the interpolation of
the models across the parameter’s grid can also have an effect on
these results. However, it is noted that the number of occurrences
and the entity of this deterioration are limited.

4.3.3. Effect of the parameter grid

In this section we analyze the effect of the flight speed grid
where the reduced-order LTI models are computed, i.e. the selec-
tion of the parameter ng. This is an important aspect, which is
known to influence both the accuracy of the LPV models and the
quality of the control design based on them. Three cases are com-
pared in Fig. 5: ng=4 where the grid includes one plant every 10
m/s; ng=8 where the grid includes one plant every 4 m/s from
V=20 m/s to V=48 m/s and then V=50 m/s; ng=16 which is the
grid used so far. PRBS inputs are used to excite the system in these
tests.

From the analyses it can be gathered that aDMDc is more ro-
bust than the other algorithms to the value of ng. In particular,
both IOROM and BMD present poor performance for a few reduced
order models in the range of n, between 30 and 40 when the
flight speed grid is coarser. The reason for this behaviour is due to
the interpolation approaches employed by the three ROM schemes.
Whereas IOROM and BMD interpolate the low-order state-space
matrices obtained at the grid points, aDMDc interpolates directly
the high-order vector states which are obtained by lifting the low-
order states z from the local models (8) running in parallel. Inter-
polating every entry of the state-space matrices therefore makes
the choice of the grid a more delicate aspect in IOROM and BMD.
The unstable behaviours resulting in very high (out of the plot)
errors are indeed ascribed to numerical inaccuracies in this inter-
polation. It has been observed that the entries of the matrices are
overall bigger as the order n, is increased, hence justifying why
these outliers take place within the aforementioned range of mod-
el's orders. While there does not seem to be a fundamental reason
to explain it, it is apparent that the sensitivity of BMD to the
coarseness of the parameter grid is more accentuated. A possible
explanation is that, because at each grid point the computation of
the empirical Gramians is required, dealing with coarse grid exac-
erbates the numerical inaccuracies associated with the projections
on low-order models. Improved interpolation schemes, not con-
sidered in this work, could be employed to ameliorate this issue.
Except for these isolated numerical problems, BMD shows better
performance even when very coarse grids are employed.
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4.3.4. Prediction capability for other signals

The capability of the models to predict other quantities of in-
terest, such as for example aerodynamic coefficients depending on
the system’s states, is investigated. In particular, we test the accu-
racy when these coefficients are added to the vector of output (this
is done for BMD) or computed directly from the states (this is done
for IOROM and aDMDc). In the latter case, the low-order states
are lifted to the high-order ones, which are then used to compute
the coefficients using their known relationship to the states. While
this is the only possible way of reconstructing the system'’s sig-
nals for aDMDc, in IOROM and BMD this can alternatively be done
by simply adding the desired quantities to the vector of outputs.
This would probably be the preferred approach if the signals are
used for control (either because they represent measurements fed
to the controller or because they are performance measures to be
optimized). The different choice done here for BMD and IOROM is
for the sake of exploring different models, and results showed that
whether the signals were computed from output channels or re-
trieved from the states had a very minor impact on the predictive
accuracy.

Fig. 6 shows the normalized lift (C), pitch (Cp), and drag (Cp)
coefficients for the same constant acceleration manoeuvre con-
sidered in the previous sections and with a sinusoidal excitation.
Normalization is performed, as done earlier in Fig. 3, by dividing
each signal by the largest value of the corresponding signal in the
FSI simulation.

The same observations gathered earlier with respect to the tra-
jectory of the bending mode are confirmed here. It is particularly
interesting to observe that, even though these coefficients are not
outputs of the model, and thus the balancing projection is not
aimed directly at capturing them, the BMD algorithm is still able
to perform better than the others. Fig. 7 shows the same analyses
when chirp signals are used as input to excite the model. Similar
conclusions can be drawn.

4.4. Reduced-order models for model predictive control

In this section, a control application of the morphing wing’s
low-order models is investigated. Specifically, model predictive
control (MPC) [57] is considered, given its well established use
in the AWE field [58]. Two distinct reference tracking problems
are examined, where pre-defined lift and first bending mode am-
plitude profiles are tracked while flying trajectories over a range
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Fig. 7. Comparison of the normalized lift, pitch, and drag coefficients for a parameter-varying simulation with n,=14 and chirp inputs.

of different flight speeds and in the presence of turbulence and
gusts. The analysis of these manoeuvres is motivated by the inter-
est in using active control to guarantee a safe operation for the
AWE system (with respect to some of its critical components such
as the wing or tether) by keeping indicators of the structural in-
tegrity close to desired, and possibly pre-optimized, values. This
can avoid passive remedies such as reducing the load transmit-
ted to the ground station, which in turn decreases the amount of
wind energy harvested. Having effective and reliable control laws
to guarantee the integrity of the AWE system can represent an im-
portant enabler for this technology [59].

In its basic form, model predictive control repeatedly solves a
finite-horizon optimal control problem of length N, subject to in-
put and state-constraints. At each instant, a model of the system
is employed to predict its response and thus select the control se-
quence (u,-):\’:CO_l which minimizes the cost

Ne—1

Jwec= )" (”5’k - rk”,zv + Hﬂk”i/, + HAf‘k”zzva)’
k=0

(23)
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where r is the reference trajectory, and for a vector x, we de-
note by ||x||p the weighted l;-norm (XTPX)%. Besides the terms
penalizing deviation of the output y from r (with the weighting
matrix N € R"™>") and control effort (with the weighting matrix
M € R™>M) the cost in (23) also penalizes fast changes in the
input via the term Afly, = iy — lix_1 (e.g. to avoid actuator rate sat-
uration).

The following optimization problem will be solved to obtain the
optimal input sequence

minimiz Jmpec(i@, 3), (24a)

Wi g
subjectto  y; = f (&, Ujy1), (24b)
@i, eu, (24c¢)

where: the cost function (24a) is defined in (23); the constraint
set U (24c) enforces minimum and maximum values for the in-
put; and (24b) enforces the dynamic constraint that relates the
sequence of input to the output via an input-output model of
the system f. Precisely, f will be formulated here by using the
reduced-order aDMDc, IOROM, and BMD models. The goal of the
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Fig. 8. Speeds variations during the manoeuvres (left plot) and reference tracking profiles (right plot).

analyses is to compare the associated closed-loop cost i, that

is the cost (23) incurred by the true system (simulated here by the
high-dimensional FSI solver) when this is regulated by the inputs
optimized solving problem (24). Since the model is used to predict
the system’s output, and thus select the input sequence, any mis-
match between model and system can result in a degradation of
the controller performance.

The analysis considers the case where the morphing wing
(Fig. 1, I) flies a trajectory with flight velocities ranging between
V=27 m/s and V=50 m/s (Fig. 8-left). Additionally, the wing is sub-
ject to a gust at the maximum flight speed with gust length 0.5 s
corresponding to a 1 degree deflection of the angle of attack «,
and to turbulence generated with a Dryden filter (Fig. 8-left). The
right plot in Fig. 8 depicts the lift and the first bending mode’s
amplitude profiles tracked by the MPC algorithm. Recall from the
previous discussion that a unitary value of the first bending mode
corresponds to a wingtip displacement of 4.6 cm.

The scenario considered here has only a symmetric morphing
actuation input, i.e. i = Fs. This normalized input is constrained to
be in the interval [-3, 3] at each time-step. This is associated with
allowable deflections of the trailing edge in the range + 9 mm.
Problem (24) is solved using the MATLAB implementation provided
in [60], where the application of MPC with models obtained via
DMDc was investigated.

The output y is either the first bending mode, or the lift force
generated by the wing, depending on the case. The control horizon
is N.=10 and the weights used in the cost are: N=1300, M=10, and
Ma=0.1 (lift tracking) and N=13000, M=10, and M5 =0.1 (bending
tracking). The penalty on the output deviation is increased in the
latter case due to the difference in magnitude of the two tracked
quantities (recall Fig. 8-right). Fig. 9 shows the comparison of the
closed-loop cost J IS[LPC resulting from closing the true plant (simu-
lated by means of the high-dimensional FSI solver) with the MPC
controller generated using the low-order models. For the sake of
clarity, the closed-loop cost ]IE,ILPC has been normalized in each case
by dividing it by the corresponding value obtained with the BMD
algorithm when n,=40.

The observations gathered in the previous sections regarding
the better prediction performance achieved with the BMD algo-
rithm when low-order approximations are considered are con-
firmed here in the context of control applications. Both plots show
that, while for higher orders the closed-loop costs have very sim-
ilar values, when the size of the model is decreased the BMD
gives in general the lowest cost. Another interesting observation
is that the lift tracking problem is quite robust to the use of low-
order models. Indeed, the closed-loop costs are always within two
times of the lowest cost achieved at n,=40 except for the case of
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aDMDc at n,=10). On the other hand, the bending tracking prob-
lem is shown to be more challenging when low-order representa-
tions are employed. Whereas no attempt to further optimize the
MPC problem tuning was made (all the design parameters were
kept the same independent of n;), this motivates further work on
the use of low-order models for control of coupled flexible struc-
tures like those encountered in AWE applications. In the real-time
control setting, it is important to stress that by using BMD and
IOROM models an order of magnitude computational speed-up was
achieved with respect to the cases where aDMDc models were
used. This is because the aDMDc models have the requirement of
running several models in parallel.

5. Conclusion

The paper proposes the Balanced Mode Decomposition with
oblique projection algorithm, a novel data-driven algorithm for
constructing low-order LPV models from system’s trajectories. Two
recent algorithms from the literature, aDMDc and IOROM, are con-
sidered for comparison since they both have connections with the
newly proposed approach. Technical details on the BMD algorithm
are given in order to clearly point out the innovations, and the
advantages with respect to previous work. The performance of
the BMD algorithm is assessed on a morphing wing for airborne
wind energy applications. The results, proposed both for the fixed
parameter and, more extensively, for the parameter-varying case,
confirm the theoretical advantages discussed in the technical part
of the paper. When seeking low-order model representations, the
BMD approach achieves generally, among the tested algorithms,
the lowest prediction error and best control performance when
used as model for an on-line MPC scheme. The improved accu-
racy is ascribed to the use of a projecting subspace that bal-
ances the low-order states (this element is of interest also in a
fixed-parameter setting), and to the use of a parameter-varying
projection operator (which can thus be enriched with parameter-
dependent features, instead of being fixed throughout the range).
This has the advantageous feature of being achieved while guar-
anteeing state-consistency. Owing to these appealing features, it
is envisaged the application of BMD for tasks such as off-line
and real-time control design, and in multi-disciplinary optimiza-
tion tool chains, where typically low-order representations are em-
ployed as surrogate models.
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