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Abstract

We propose a numerical pipeline for shape optimization in naval en-
gineering involving two different non-intrusive reduced order method
(ROM) techniques. Such methods are proper orthogonal decompo-
sition with interpolation (PODI) and dynamic mode decomposition
(DMD). The ROM proposed will be enhanced by active subspaces
(AS) as a pre-processing tool that reduce the parameter space dimen-
sion and suggest better sampling of the input space.

We will focus on geometrical parameters describing the perturba-
tion of a reference bulbous bow through the free form deformation
(FFD) technique. The ROM are based on a finite volume method (FV)
to simulate the multi-phase incompressible flow around the deformed
hulls.

In previous works we studied the reduction of the parameter space
in naval engineering through AS [38, 10] focusing on different parts of
the hull. PODI and DMD have been employed for the study of fast
and reliable shape optimization cycles on a bulbous bow in [9].

The novelty of this work is the simultaneous reduction of both the
input parameter space and the output fields of interest. In particu-
lar AS will be trained computing the total drag resistance of a hull
advancing in calm water and its gradients with respect to the input
parameters. DMD will improve the performance of each simulation of
the campaign using only few snapshots of the solution fields in order to
predict the regime state of the system. Finally PODI will interpolate
the coefficients of the POD decomposition of the output fields for a fast
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approximation of all the fields at new untried parameters given by the
optimization algorithm. This will result in a non-intrusive data-driven
numerical optimization pipeline completely independent with respect
to the full order solver used and it can be easily incorporated into
existing numerical pipelines, from the reference CAD to the optimal
shape.

1 Introduction

In a shape optimization problem, we aim to find the shape — among all
the admissible geometries — that minimizes a certain objective function. In
this work we propose a novel approach to optimize the total resistance of a
ship hull advancing in calm water by deforming the original hull, a common
problem in the naval engineering field.

First we define the total resistance as the sum of the viscous and lift forces
acting on the hull. Formally, our optimization problem can be expressed as

min
∀µ∈D

f(Ω,µ) = min
∀µ∈D

∮
p cos θ dΩµ +

∮
τx dΩµ, (1)

where the D ⊂ RP is the parametric domain, P the number of parameters,
Ω ∈ R3 is the reference hull domain, and Ωµ = M(Ω,µ) is the defomed
hull. The morphing map M(·,µ) : R3 → R3 we use in this work is the
free form deformation (FFD) and will be properly defined in Section 2. Ex-
amples of other deformation techniques are radial basis functions (RBF)
interpolation [5, 22, 21], and inverse distance weighting (IDW) interpola-
tion [32, 13, 2]. The unknowns p and τx denote respectively the pressure
and the x component of the wall shear stress over the hull surface, while θ is
the angle between the flow direction and the surface. The evaluation of the
objective function requires a numerical simulation of the flow around the
ship, which has a high computational cost. The purpose of this work is be-
yond an analysis of the adopted full order model for the fluid dynamics, we
just provide a brief summary in order to facilitate the understanding of the
pipeline. We resolve the Reynolds-averaged Navier Stokes (RANS) equa-
tions with the k–ω SST turbulence model using a finite volume approach, a
typical benchmark in industrial hydrodynamics analysis. Such model deals
very well with turbulent fluid, but at high computational cost. Moreover,
due to the complexity of the optimization problem, we typically need many
evaluations of the objective function to converge to the optimal shape.

For this work we choose to simulate the flow around the DTMB 5415
hull due to the existence of a vast amount of literature and benchmark tests.
In Figure 1 the undeformed hull domain.

In order to reduce the computational cost, we introduce in the opti-
mization framework two reduced order modeling (ROM) techniques. These
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Figure 1: Complete hull domain of the DTMB 5415.

techniqes are able to represent complex systems in a low dimensional space,
reducing the number of degrees of freedom used in the full order model
discretization and providing an efficient and reliable approximation of the
solution. The ROM methods initially collect a database of high-fidelity so-
lutions — the solutions computed using the full-order model — during the
most computationally expensive phase, also called offline phase. Then, the
solutions are combined to build the reduced space we query during the on-
line phase to obtain the new solution. In this work, we adopt the dynamic
mode decomposition (DMD) and proper orthogonal decomposition with in-
terpolation (PODI), two emerging data-driven techniques. PODI is used to
approximate, given the high-fidelity solutions computed for some defomed
hulls, the solution for any new parametric point in the domain D. DMD
algorithm instead provides a simplification of the dynamics of complex sys-
tem: we use it in order to accelerate the single high-fidelity simulations we
need for PODI method, by storing few system outputs and exploiting them
to approximate the flow dynamics. For more details about equation-free
ROM methods, we suggest [37], while for a complete overview — including
intrusive approaches — we cite [27, 26, 24].

Moreover, additionally to these methods, we use the active subspace
(AS) property as preprocessing tool in order to be able to reduce the dimen-
sion of the parameter space and obtain a better accuracy in ROM solution
approximation.

In this contribution, we focus on all the components of the computational
pipeline: in Section 2 we provide a brief overview of the FFD method,
the Section 3 illustrates the DMD algorithm, in Section 4 the AS property
is explained, while Section 5 describes the idea behind PODI technique.
Finally, Sections 6 and 7 provide respectively the numerical results collected
during this work and the final conclusions.

2 The free form deformation technique

Free form deformationi (FFD) is a widespread deformation technique. Pro-
posed in [31], FFD was initially employed in computer graphics, getting
more popular both in academia and industry in the last decades. In this
section, we provide an overview of the method: for more details about FFD,
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among all the works in literature, we recommend [25, 9, 14].

Figure 2: Graphical representation of the FFD morphing mapM as compo-
sition of the maps ψ, T , and ψ−1. The displacements of the control points
P define the morphing of the domain.

The idea of FFD is very intuitive: the domain is deformed by manipulat-
ing a lattice of points surrounding the object to morph. The displacements
of these control points are the input parameters µGEO. To achieve this result
1) the physical domain Ω is mapped to the reference domain Ω̂ using the
function ψ, and a lattice of control points P is constructed around the ob-
ject to deform, then 2) through the map T the reference domain is morphed
using B-splines or Bernstein polynomials tensor product and finally 3) the
deformed domain is remapped to the physical one by using ψ−1. In Figure 2
is shown a sketch of the free form deformation map as a composition of the
three functions presented above. Formally, we can define the deformation
map M as

M(x,µGEO) := (ψ−1 ◦ T ◦ψ)(x,µGEO) ∀x ∈ Ω. (2)

This technique allows to manipulate complex geometries and also computa-
tional grids, since it is able to preserve derivatives continuity and perform
global deformation using only few parameters. Figure 3 shows the position
of the lattice of control points around a bulbous bow, which is the part of the
hull we want to parametrize and morph. Regarding the implementation, the
results in this contribution are obtained using PyGeM [1], an open source
Python package implementing several deformation techniques.
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Figure 3: Example of bulbous bow deformation using the FFD method. The
red dots are the FFD control points, already manipulated.

3 Dynamic mode decomposition as accelerator of
the single simulations

Dynamic mode decomposition is a data-driven modal decomposition tech-
nique for analysing the dynamics of nonlinear systems [29, 30]. A compre-
hensive overview on DMD and its major variants is in [17]. Other nonintru-
sive approaches with randomized DMD can be found in [4, 3], while naval
engineering applications are in [9, 10].

Here we present a brief overview of the method and how we integrate
it in the computational pipeline we propose. Let us consider m snapshots
representing the state of the system for a given time interval: {xi}mi=1 ∈
Rn. We seek a linear operator A to approximate the nonlinear dynamics
of the state variable x, that is xk+1 = Axk. In order to find the DMD
decomposition we only need to approximate the eigenpairs of the operator
A, without explicitly compute it. We proceed by dividing the snapshots in
two matrices X and Y as in the following:

X =


x11 x12 · · · x1m−1
x21 x22 · · · x2m−1
...

...
. . .

...
xn1 xn2 · · · xnm−1

 , Y =


x12 x13 · · · x1m
x22 x23 · · · x2m
...

...
. . .

...
xn2 xn3 · · · xnm

 .
With this representation we seek A such that Y ≈ AX. Using the Moore-
Penrose pseudo-inverse operator, denoted by †, we express the best-fit matrix
as A = YX†. We can compute the POD modes of the matrix X and project
the data onto the subspace defined by them. We use the truncated singular
value decomposition obtaining X ≈ UrΣrV

∗
r , where the unitary matrix Ur

contains the first r modes. With these modes we can compute the reduced
operator Ã ∈ Cr×r as Ã = U∗rAUr = U∗rYX†Ur = U∗rYVrΣ

−1
r U∗rUr =

U∗rYVrΣ
−1
r , without the explicit computation of the full operator A. The
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reduced operator describe the evolution of the low-rank approximated state
x̃k ∈ Rr as x̃k+1 = Ãx̃k. We can then recover the high-dimensional state
xk using the POD modes already computed: xk = Urx̃k.

Using the eigendecomposition of the matrix Ã, that is ÃW = WΛ, we
are able to compute the eigenpairs of the full operator A. In particular
the eigenvalues in Λ correspond to the nonzero eigenvalues of A, while the
eigenvectors Φ of A can be computed in two ways: by projecting the low-
rank approximation W on the high-dimensional space Φ = UrW, or by
computing them exactly with Φ = YVrΣ

−1
r W.

Figure 4: Example of total drag reconstructed using the DMD algorithm.
On the left the reconstructed field, while on the right the absolute error with
respect to the high-fidelity solution.

The actual implementation of the DMD algorithm we used and many
different variants from multiresolution DMD [18], to DMD with control [23],
and higher order DMD [19], can be found in the open source Python package
PyDMD [12].

In this work the DMD is used to accelerate the computation of the total
drag resistance for a given deformed hull. It uses only few snapshots of the
high-fidelity simulation, equispaced in time, to predict the evolution of the
target output. In particular we are interested in the value of the total drag
at regime. Figure 4 reports the forces field approximated using DMD and
the absolute error with respect to the high-fidelity solution for a particular
geometrical configuration.
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4 How to reduce the parameter space dimension
with active subspaces

The active subspaces (AS) property has been formalized by Constantine
in [7, 8]. It is a property of a scalar function f : RN → R and a proba-
bility density function ρ : RN → R+, where N is the number of the input
parameters. Taking linear combinations of the original parameters we can
approximate f using these new parameters, thus reducing the parameter
space dimension. The output of interest f(µGEO), in our case the total drag
of the hull advancing in calm water, depends on the geometrical parameters
introduced in Section 2, while ρ describe the uncertainty in the model in-
puts, i.e. how we sample the parameter space. For sake of clarity we will
drop the pedix and from now on f(µ) := f(µGEO). The general idea is
to rotate the input domain, after a proper rescale, in order to unveil a low
dimensional parametrization of f , which means to find proper directions in
the input space where f varies the most on average. We do so by checking
the gradients of the output of interest with respect to the parameters.

To proper exploit the AS property we introduce some hypotheses: f has
to be continuous and differentiable with square-integrable partial derivatives
in the support of ρ. Then we introduce the uncentered covariance matrix C
of the gradients of the target function, which is the matrix constructed with
the average products of partial derivatives of the map f as follows

C = E [∇µf ∇µf
T ] =

∫
(∇µf)(∇µf)Tρ dµ, (3)

where with E we identify the expected value, and∇µf = ∇f(µ) =
[
∂f
∂µ1

, . . . , ∂f∂µp

]T
is the column vector of partial derivatives of f . Since C is symmetric we
can express it with its real eigenvalue decomposition C = WΛWT , where
W is the eigenvectors matrix, and Λ the diagonal matrix with the eigen-
values in descending order. It can be proven that the eigenvalues express
the amount of variance of the gradient along the corresponding eigenvector
direction. This means that taking the first M most energetic eigenvalues
and the corresponding eigenvectors, we can approximate the target function
with a reduce number of input parameters. So the eigenpairs of C define
the active subspaces of the pair (f, ρ). We proceed by partitioning W and
Λ as follows

Λ =

[
Λ1

Λ2

]
, W = [W1 W2] , (4)

where the pedix 1 means the first M eigenvalues and eigenvectors respec-
tively. Now we can use W1 to project the original parameters to the active
subspace, that is the span of the first M eigenvectors. This means to align
the input parameter space to W1 and retain only the directions where f
varies the most on average. We call active variable µM the range of WT

1 ,
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that is µM = WT
1 µ ∈ RM . We can thus introduce a lower-dimension ap-

proximation g : RM → R of the quantity of interest f , which is a function
of µM as follows

f(µ) ≈ g(WT
1 µ) = g(µM ). (5)

Active subspaces have been proven useful in naval applications in [38,
36, 10], but also coupled with POD-Galerkin model order reduction [35].
A gradient-free algorithm for the discovery of active subspaces has been
proposed in [6], while an AS variant using average gradients in [20].

We are going to find the active subspace for the total drag resistance
of the deformed hulls obtained by the FFD method and the application of
the DMD algorithm. Then we are going to exploit this active subspace to
perform a better sampling of the parameter space and thus enhancing the
construction of the reduced order model.

5 Proper orthogonal decomposition with interpo-
lation

Reduced order modeling (ROM) is a popular technique to reduce the com-
putational cost of numerical simulations. Among all the available methods
to achieve this reduction, we focus in this contribution to the reduced basis
method using the proper orthogonal decomposition (POD) algorithm for the
basis identification. This method allows to reduce the number of degrees of
freedom of a parametric system by collecting the snapshots — the full order
system outputs — for several different configurations and combining them
in an efficient way for a real-time approximation of new solutions (for any
new configuration). In the POD reduction framework, we can discern two
main techniques: POD-Galerkin, which requires all the details of the full
order system to generate a consistent low-dimensional representation of the
physical problem, and POD with interpolation (PODI), which instead re-
quires only the snapshots. Due to these requirements, the PODI method is
particularly suited for industrial problem, since it is able to been coupled
to all the numerical solvers, even commercial ones. In this contribution,
we adopt PODI method. For more information about POD-Galerkin, we
suggest [34, 33, 16, 15], while for other examples of PODI applications we
recommend [14, 11, 28].

To calculate the POD modes we use the singular value decomposition
(SVD) applied to the snapshots matrix X such that X = UΣV∗. The
columns of the unitary matrix U are the POD modes end the corresponding
singular values, the elements in the diagonal matrix Σ in decresing order,
indicate the energy associated to each mode. Hence it is possible to select
the first modes — the most energetic — to span the reduced space and
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project onto it the high-fidelity snapshots. In matricial form, we have:

XPOD = UT
NX, (6)

where UN is the matrix containing the first N modes, and XPOD is the
matrix whose columns xPOD

i are the reduced snapshots. We note that
xPOD
i ∈ V Nand xi ∈ V N where N refers to the number of degrees of

freedom of the full-order system. Finally, due to the reduced dimension,
we are able to interpolate the reduced snapshots in order to approximate
the solution manifold. The new interpolated reduced snapshots are then
mapped back to the high-dimensional space for a real-time evaluation of the
solution. To perform the non-intrusive model order reduction, we use the
open source package EZyRB [11].

6 Numerical results

Here we are going to present the results of the complete numerical pipeline
applied to the DTMB 5415 hull. Moreover we demonstrate the improve-
ments obtained using the proposed pipeline, called POD+AS, with respect
to the POD approach on the full parameter space.

After generating NPOD = 100 deformed hulls, we perform the high-
fidelity simulations accelerated via the DMD algorithm. We construct the
snapshots matrix and compute the POD modes and the corresponding eigen-
values for the construction of the reduced output space. We compare this
approach with the one proposed in this work that exploits a preprocessing
step with the finding of the active subpace for the total drag resistance. With
the NPOD input/output couples, we individuate an eigenvector W1 (com-
pare Section 4) describing an active subspace of dimension 1, and we sample
the full space only along the active direction described by this vector. After
this second sampling we collect a new set of high-fidelity simulations formed
by NPOD+AS = 80 snapshots. For this new snapshots matrix we compute
again the POD modes and eigenvalues, and we compare the two approaches
looking at the POD singular values decay. A faster decay means a better
approximation of the output fields for a fixed number of modes. In Figure 5
the blue line shows the singular values σi divided by the first and greatest
singular value σmax for the sampling of the full parameter space; with the
dashed red line the POD singular values decay for the POD+AS approach.
A faster decay is observed, especially for the first few modes. This translates
in an enhanced reduced order model, which exhibits a better approximation
of the solutions manifold, with respect to the classical approach.

Since we are relying on multidimensional interpolation to reconstruct the
solutions at untried parameters, having a new reduced parameter space im-
proves the creation of such interpolator. In the POD+AS approach we have
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Figure 5: POD singular values decay as a function of the number of modes.
The blue line corresponds to the original sampling, while the red dotted line,
called POD+AS approach, corresponds to the sampling along the active
direction.

to interpolate a univariate function in N -dimension, where N is the number
of POD modes we retain. In the POD approach on the full parameter space
instead, we have the same number of modes to fit but a multivariate function
depending on 5 input parameters, resulting in a difficult interpolation.

7 Conclusions and perspectives

In this work we presented a nonintrusive numerical pipeline for shape op-
timization of the bulbous bow of a benchmark hull. It comprises auto-
matic geometrical parametrization and morphing through FFD, estimation
of the total drag resistance via DMD using only few snapshots of the time-
dependent high fidelity simulations, the reduction of the parameter space
exploiting the AS property, and the construction of a surrogate model with
PODI for the real-time evaluation of the many-query problem solved by
an optimization algorithm. We proved that the reduction of the parame-
ter space can further enhance the reduced order model creation. Moreover
all this parts of the pipeline can be used and integrated separately into an
existing computational workflow resulting in a great interest for industrial
applications.
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