2,806 research outputs found

    Sensitivity Conjecture and Log-rank Conjecture for functions with small alternating numbers

    Get PDF
    The Sensitivity Conjecture and the Log-rank Conjecture are among the most important and challenging problems in concrete complexity. Incidentally, the Sensitivity Conjecture is known to hold for monotone functions, and so is the Log-rank Conjecture for f(x∧y)f(x \wedge y) and f(x⊕y)f(x\oplus y) with monotone functions ff, where ∧\wedge and ⊕\oplus are bit-wise AND and XOR, respectively. In this paper, we extend these results to functions ff which alternate values for a relatively small number of times on any monotone path from 0n0^n to 1n1^n. These deepen our understandings of the two conjectures, and contribute to the recent line of research on functions with small alternating numbers

    Competitive Boolean Function Evaluation: Beyond Monotonicity, and the Symmetric Case

    Full text link
    We study the extremal competitive ratio of Boolean function evaluation. We provide the first non-trivial lower and upper bounds for classes of Boolean functions which are not included in the class of monotone Boolean functions. For the particular case of symmetric functions our bounds are matching and we exactly characterize the best possible competitiveness achievable by a deterministic algorithm. Our upper bound is obtained by a simple polynomial time algorithm.Comment: 15 pages, 1 figure, to appear in Discrete Applied Mathematic

    Lower Bounds on Quantum Query Complexity

    Full text link
    Shor's and Grover's famous quantum algorithms for factoring and searching show that quantum computers can solve certain computational problems significantly faster than any classical computer. We discuss here what quantum computers_cannot_ do, and specifically how to prove limits on their computational power. We cover the main known techniques for proving lower bounds, and exemplify and compare the methods.Comment: survey, 23 page

    Lower bounds for uniform read-once threshold formulae in the randomized decision tree model

    Full text link
    We investigate the randomized decision tree complexity of a specific class of read-once threshold functions. A read-once threshold formula can be defined by a rooted tree, every internal node of which is labeled by a threshold function TknT_k^n (with output 1 only when at least kk out of nn input bits are 1) and each leaf by a distinct variable. Such a tree defines a Boolean function in a natural way. We focus on the randomized decision tree complexity of such functions, when the underlying tree is a uniform tree with all its internal nodes labeled by the same threshold function. We prove lower bounds of the form c(k,n)dc(k,n)^d, where dd is the depth of the tree. We also treat trees with alternating levels of AND and OR gates separately and show asymptotically optimal bounds, extending the known bounds for the binary case
    • …
    corecore