163 research outputs found

    Spectrum Sensing of DVB-T2 Signals in Multipath Channels for Cognitive Radio Networks

    Get PDF
    © 2018 VDE VERLAG GMBHIn this paper, spectrum sensing of digital video broadcasting-second generation terrestrial (DVB-T2) signals in different fading environments with energy detection (ED) is considered. ED is known to achieve an increased performance among low computational complexity detectors, but it is susceptible to noise uncertainty. By taking into consideration the edge pilot and scattered pilot periodicity in DVB-T2 signals, a low computational complex noise power estimator is proposed. It is shown analytically that the choice of detector depends on the environment, the detector requirements, the available prior knowledge and with the noise power estimator. Simulation confirm that with the noise power estimator, ED significantly outperforms the pilot correlation-based detectors. Simulation also show that the proposed scheme enables ED to obtain increased detection performance in fading channels

    DVB-S2x Enabled Precoding for High Throughput Satellite Systems

    Get PDF
    Multi-user Multiple-Input Multiple-Output (MU-MIMO) has allowed recent releases of terrestrial LTE standards to achieve significant improvements in terms of offered system capacity. The publications of the DVB-S2x standard and particularly of its novel superframe structure is a key enabler for applying similar interference management techniques -such as precoding- to multibeam High Throughput Satellite (HTS) systems. This paper presents results resulting from European Space Agency (ESA) funded R&D activities concerning the practical issues that arise when precoding is applied over an aggressive frequency re-use HTS network. In addressing these issues, the paper also proposes pragmatic solutions that have been developed in order to overcome these limitations. Through the application of a comprehensive system simulator, it is demonstrated that important capacity gains (beyond 40%) are to be expected from applying precoding even after introducing a number of significant practical impairments

    Architecture and DSP Implementation of a DVB-S2 Baseband Demodulator

    Full text link
    This paper presents the design and implementation of a baseband demodulator for DVB-S2 satellite receivers. In order to meet the requirements of different complex and multi-domain signal processing stages of the DVB-S2 baseband signal-flow, the presented architecture is based on efficient fixed-point implementation of the various demodulation algorithms and on the use of a dynamic time-sharing scheduler for the various DSP software tasks. The prototyping of the demodulator and its verification in the design of a complete digital DVB-S2 satellite receiver using a versatile testbed is also presented

    Conditioned pilots for ISI channels

    Get PDF
    One of the proposals to increase the spectral efficiency of the DVB-S2 standard is based on time-frequency packing. This technique causes intersymbol and interchannel interferences to arise, requiring a significant growth of the number of pilots used to carry out frequency and phase synchronization. Therefore, a new pilot design will be introduced and suited optimal and suboptimal reduced-complexity algorithms derived. We will show that the proposed pilot strategy may outperform the classical one in terms of bit error rate and spectral efficiency

    Improved Multiplierless Architecture for Header Detection in DVB-S2 Standard

    No full text
    International audienceOne of the first processing steps in a DVB-S2 signal receiver is the detection of frame's header. Recently, an architecture using only the phase information of the received samples was proposed. In this paper several optimization in algo-rithm/architecture are proposed, leading to better performance and reduced hardware complexity. For an SNR of-3 dB, the probability of miss detection of the header detector is reduced from 0.7 down to 0.52 for a constant false alarm probability of 10 −6

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Iterative carrier synchronization in the absence of distributed pilots for low SNR applications

    Get PDF
    We consider the advanced modulation and coding schemes used in CCSDS (Consultative Committee for Space Data Systems) standards for deep space telemetry and telecommand. They are based on a powerful turbo or low-density parity check (LDPC) outer code and binary modulation formats that, for those schemes foreseen to be employed at the lowest baud rates, may contain an unsuppressed carrier to help synchronization. In this paper, we face the problem of carrier phase synchronization for these modulation and coding schemes
    • …
    corecore