
Future Network and MobileSummit 2013 Conference Proceedings
Paul Cunningham and Miriam Cunningham (Eds)
IIMC International Information Management Corporation, 2013
ISBN: 978-1-905824-37-3

Conditioned Pilots for ISI Channels
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Abstract: One of the proposals to increase the spectral efficiency of the DVB-
S2 standard is based on time-frequency packing. This technique causes intersymbol
and interchannel interferences to arise, requiring a significant growth of the number
of pilots used to carry out frequency and phase synchronization. Therefore, a new
pilot design will be introduced and suited optimal and suboptimal reduced-complexity
algorithms derived. We will show that the proposed pilot strategy may outperform the
classical one in terms of bit error rate and spectral efficiency.
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1. Introduction

A satisfactory frequency and phase synchronization is a mandatory requirement for all
kinds of practical wireless systems. Carrier synchronization is often performed through
the aid of some pilot symbols periodically inserted in the transmitted data stream (see,
e.g., the DVB-S2 standard [1]). To gain an insight (far from being exhaustive), the
reader is referred to [2, 3, 4, 5] and references therein. As far as pilot symbols are
concerned, their optimal position inside the data packet has been object of a thorough
study in [6] where it has been shown that, under mild conditions, equally-spaced single
pilots are one of the possible optimal configurations in the sense that they minimize the
Cramér-Rao bound for channel estimation. Moreover, in [3] it is shown that arranging
pilots in clusters induces a substantial performance penalty on a channel with additive
white Gaussian noise (AWGN) and Wiener phase noise.

For any kind of communication system, one of the merit figures that must be reck-
oned with during the system design process is certainly the spectral efficiency (SE).
In a multi-user scenario it has been shown that for linear modulations it is possible to
increase the SE of the system simply giving up the orthogonality condition among users
and packing them in the time and frequency domains [7, 8, 9]. This procedure causes
known inter-symbol interference (ISI) and inter-channel interference (ICI) to arise. The
presence of ISI implies that phase and frequency synchronization must be performed
through clusters of pilots. These clusters must be at least longer than the channel mem-
ory in order to force the channel state. This pilot insertion obviously induces an energy
loss and a spectral efficiency degradation. Moreover, since multiple clusters distributed
all over the data packet allow a more reliable estimation than concentrated pilots [6],
the resulting penalties may be significant.

In this paper, we propose a new design of the pilot symbols aiming at minimizing
the overhead and guaranteeing good performance on ISI linear1channels. The main
idea is to give up on pilot clusters and use instead equally-spaced, time-varying, data-
dependent, isolated pilots, allowing a dramatic reduction of the overhead and of the
consequent wasted energy and bandwidth. The value assumed by each pilot depends

1Nonlinear effetcs, present in satellite channels, will be addressed in future works.
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on the L previous and the L following data symbols, where L is the size of the channel
memory. This dependence causes an increase in the number of possible states and
an expansion of the optimal detector trellis, but permits the receiver to observe, at
sample epochs corresponding to pilots, a known value that can be exploited during the
synchronization process. Since the optimal detector for ISI channels has a complexity
which grows exponentially with the size of the channel memory, in case of severe ISI
it becomes infeasible and a reduced-complexity solution is then proposed. We chose
to adopt the Ungerboeck ISI model [10] because the implementation of the whitening
filter (needed by the Forney ISI model [11]) is critical in several practical scenarios
[12], and for applications when the detector is designed to cope only with a portion of
the existing interference, a receiver working on the matched filter output results to be
more robust to the unmanaged interference [8, 13]. Concerning the pilot definition, the
adoption of the Forney model for pilots entails a dangerous increase in the pilot mean
squared value (MSV), which translates into an energy loss that cannot be avoided, as it
will be shown later. Since the Ungerboeck model appears to greatly reduce this MSV
increase, and since it allows to get rid of the whitening filter, we chose to focus our
analysis on the Ungerboeck model for pilots as well. Moreover, if isolated pilots are
employed, the noise samples corrupting the useful part of the sampled received signal
result to be approximately uncorrelated even though the Ungerboeck pilot model is
adopted, provided that the spacing between two consecutive pilots is large enough.

2. System model

We consider a packet transmission on a linear channel where each packet contains a
sequence of K symbols {ak} belonging to an M-ary alphabet A and a sequence of pilots
{bk}, which may not belong to A, inserted every P − 1 information symbols.2 Focusing
our investigation on linear modulations, the low-pass equivalent of the received signal
reads

r(t) = s(t) + w(t) =
+∞∑

k=−∞

(ak + bk) p(t− kT ) + w(t) (1)

where T is the symbol period, p(t) the shaping pulse (typically, a pulse with root-raised-
cosine-shaped spectrum, denoted by RRC in the following), and w(t) is a complex
circularly-symmetric white Gaussian process with mean zero and variance σ2 = N0 per
component. When k = mP , with m ∈ N+, the symbol amP is fictitious and only the
pilot bmP is transmitted. Conversely, for all other values of the time index k, bk is
fictitious and only the information symbol ak is transmitted. The ISI coefficients are
assumed to be known and in finite number. In order to limit the trellis expansion (as
will be explained in the following), we consider only values of P higher than the duration
of the channel memory. This implies that two consecutive pilots never interfere on each
other. The resulting sufficient statistics [10] {rk} become

rk = sk + nk =

L∑
�=−L

(ak−� + bk−�) g� + nk (2)

where {nk} are samples of a complex circularly-symmetric colored Gaussian process
with mean zero and autocorrelation function Rn(m) = 2σ2gm, and {g�} are the 2L+ 1

2The number of pilots is thus �K/(P − 1)�, where �x� denotes the maximum integer lower than x.
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Ungerboeck ISI coefficients.
We want the useful part of the received samples to have a constant and known value

c at pilot epochs. In other words, for k = mP we define the pilot as

bmP =
1

g0

⎛
⎜⎝c−

L∑
�=−L
� �=0

g�amP−�

⎞
⎟⎠ . (3)

In order to limit the energy increase, we choose to impose

|c|2 = argmin
|c|2≥κ

|Eb − Ea| (4)

where Ea and Eb denote the MSV of the information symbols and of the pilots, respec-
tively. The positive real constant κ is chosen in order to have observed samples with
enough power at pilot epoch to perform reliable estimation.

An alternative design can be obtained by replacing the Ungerboeck pilot definition
in (3) with the Forney pilot definition

bmP =
1

f0

(
c−

L∑
�=1

f�amP−�

)
(5)

where {f�} are the L+ 1 Forney ISI coefficients.

3. Optimal algorithm on expanded trellis

In the following, we denote by a = (a0, . . . , amP−1, 0, amP+1, . . . , aK−1)
T the vector of

the data symbols, and similarly by σ and r the vectors of states3 and received samples,
respectively. The optimal maximum a posteriori probability (MAP) symbol detection
strategy is

âk = argmax
ak

P (ak|r) (6)

where P (ak|r)
4 may be evaluated by marginalizing the joint PMF P (a|r). This latter

PMF can be obtained as P (a|r) ∝ P (a)p(r|a), where ∝ denotes a proportionality
relation, and the last term can be factored as [10, 14]

p (r|a) ∝
K−1∏
k=0

Hk (a) . (7)

In the following we decompose the time index as k = mP +j, with j ∈ [0, P −1]. When
j ∈ [L+ 2, P − 1] or j ∈ [1, L] , factor Hk(a) reads

Hk(a) = exp

⎧⎪⎨
⎪⎩

1

σ2
�

⎡
⎢⎣rka∗k − 1

2
|ak|

2 g0 −
L∑

�=1
� �=j

a∗kak−�g�

⎤
⎥⎦
⎫⎪⎬
⎪⎭ . (8)

When j ∈ [L+ 2, P − 1], the state results to be σk = (ak−1, . . . ak−L). On the contrary,
when j ∈ [1, L], it reads σk = (ak−1, . . . , amP+1, amP−1, . . . amP−L). It is worth noting

3State σk is defined as the set of past symbols needed to completely describe the system, along with symbol
ak, at discrete-time k.

4By p(.) we denote the probability density function (PDF) of a continuous random variable (RV), while by
P (.) we denote the probability mass function (PMF) of a discrete RV.
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that symbols older than ak−L are not directly used in (8), anyway they are present in
the state because a pilot is in the system memory. When j = 0, HmP (a) = 1 and the
state is σmP = (amP−1, . . . , amP−L). Finally, when j = L+ 1, factor Hk(a) becomes

Hk(a) = exp

{
1

σ2
�

[
rka

∗
k −

1

2
|ak|

2 g0 −

L∑
�=1

a∗kak−�g�

]}
·

· exp

⎧⎪⎨
⎪⎩

1

σ2
�

⎡
⎢⎣rmP b

∗
mP −

1

2
|bmP |

2 g0 −

L∑
�=−L
� �=0

b∗mPamP−�g�

⎤
⎥⎦
⎫⎪⎬
⎪⎭ (9)

and the state is σmP+L+1 = (amP+L, . . . , amP+1, amP−1, . . . amP−L). We can now replace
the symbol vector a in all factors {Hk(a)} with the couple (ak, σk).

Since the a posteriori probability (APP) P (ak|r), needed for the MAP symbol de-
tection strategy in (6), can be obtained also marginalizing the joint PMF P (a,σ|r), we
choose to use the factorization P (a,σ|r) ∝ p (r|a,σ)P (σ|a)P (a), where each term
can be further factored as

P (a) =

K−1∏
k=0

P (ak)

P (σ|a) = P (σ0)
K−1∏
k=1

P (σk|σk−1, ak−1) = P (σ0)
K−1∏
k=1

I (σk, σk−1, ak−1)

p (r|a,σ) ∝

K−1∏
k=0

Hk (ak, σk) (10)

being I(.) an indicator function equal to one when σk, σk−1, and ak−1 satisfy the trellis
constraint, and equal to zero otherwise. From (10), it is possible to derive the corre-
sponding factor graph (FG), represented in Fig. 1. Applying the sum-product algorithm
(SPA) to the FG, we will be able to compute the marginal APPs needed for the MAP
symbol detection strategy in (6). In Fig. 1, we denote by Gk = Gk(ak, σk, σk+1) =

amP+3

P (amP−2)P (amP−3) P (amP+2) P (amP+3)

amP+2amP−1amP−2amP−3

σmP−3 σmP−2 σmP−1 σmP σmP+1 σmP+2 σmP+3 σmP+4

GmP−3 GmP−2 GmP−1 GmP GmP+1 GmP+2 GmP+3

amP+1

P (amP+1)P (amP−1)

Figure 1: Factor graph for the optimal algorithm for P > 3.

Hk(ak, σk)I(σk, σk+1, ak). The optimal MAP symbol detector is therefore the classic
Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [15] running on a time-varying trellis. It
can be shown that the factorization (10) and the corresponding FG in Fig. 1 are indepen-
dent of the models (Forney’s or Ungerboeck’s) adopted for pilots and by the detector.
On the contrary, the trellis structure depend on the assumed pilot model. If pilots are
defined according to (5), the number of states varies with k from ML to M2L−1, whereas
with design (3) the cardinality of the state set reaches M2L.
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4. Suboptimal algorithm on reduced trellis

The suboptimal algorithm here derived can be easily extended to other combinations
of ISI and pilot models, all having the same FG and the same trellis structure. In the
following, we denote by �k a hidden variable playing a role similar to that played by
state σk in the derivation of the optimal algorithm5. To avoid the trellis expansion, we
define a new factorization

p(r|a) ∝

K−1∏
k=0

Hk (a) =

K−1∏
k=0

Ck (a)

where all terms depending on bmP are now taken into account in factor CmP (a). When
j ∈ [1, P − 1], the new factor Ck (a) reads

Ck(a) = exp

⎧⎪⎨
⎪⎩

1

σ2
�

⎡
⎢⎣rka∗k − 1

2
|ak|

2 g0 −

L∑
�=1
� �=j

a∗kak−�g�

⎤
⎥⎦
⎫⎪⎬
⎪⎭ (11)

and when j = 0, CmP (a) becomes

CmP (a) = exp

⎧⎪⎨
⎪⎩

1

σ2
�

⎡
⎢⎣rmP b

∗
mP −

1

2
|bmP |

2 g0 −

L∑
�=−L
� �=0

b∗mPamP−�g�

⎤
⎥⎦
⎫⎪⎬
⎪⎭ . (12)

When j ∈ [L + 1, P − 1] (respectively, when j ∈ [1, L]), factor (11) depends on the
L (respectively, L − 1) previous symbols. They can be grouped forming the hidden
variable �k = (ak−1, . . . , ak−L) (respectively, �k = (ak−1, . . . , amP+1, amP−1, . . . , ak−L)).
When j = 0, CmP (a) depends not only on the L previous symbols, grouped in the
present hidden variable �mP = (amP−1, . . . , amP−L), but also on the L next symbols,
which may be grouped in the future hidden variable6 �mP+L+1 = (amP+L, . . . , amP+1).
The hidden variable can take on only ML−1 (when j ∈ [1, L]) or ML (when j /∈ [1, L])
different values. Hence, we can replace the symbol vector a in (11) and (12) with the
couple (ak, �k), when j ∈ [1, P − 1], and with the couple (�mP , �mP+L+1), when j = 0.

Since the APPs {P (ak|r)} needed for the MAP symbol detection strategy in (6)
can be obtained also marginalizing the joint PMF P (a,�|r), we choose to use the new
factorization P (a,�|r) ∝ P (a)P (�|a)p(r|a,�). The first two terms can be factored as
in (10) (replacing σk with �k), whereas the last term can be factored as

p (r|a,�) =

K−1∏
k=0

p (rk|ak, �k) ∝

K−1∏
k=0

k �=mP

Ck (ak, �k)

�K−1

P �∏
m=1

CmP (�mP , �mP+L+1) . (13)

From (13) it is possible to derive the FG of the suboptimal algorithm, presented in

5We define �k as a set of past symbols, different from ak, needed to compute factor Ck(a). We will see
later that �k is not a proper state since the couple (ak, �k) is not enough to perfectly describe the system in any
discrete-time k.

6The future hidden variable definition, found considering CmP (a) in (12), is identical to the present hidden
variable definition that can be obtained considering CmP+L+1(a) in (11). Therefore, the hidden variable is well
defined for every discrete-time k and no conflicts arise.
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Fig. 2, where we defined

Dk =

{
Dk (ak, �k, �k+1) = Ck (ak, �k) I (�k, �k+1, ak) if k �= mP

Dk (�k, �k+1, �k+L+1) = Ck (�k, �k+L+1) I (�k, �k+1, ak) if k = mP .

amP+3

P (amP−1)P (amP−2)P (amP−3) P (amP+1) P (amP+2) P (amP+3)

amP+2amP+1amP−1amP−2amP−3

ζB,mP

ζF,mP+4

DmP−3 DmP−2 DmP−1 DmP DmP+1 DmP+2

�mP−3 �mP−2 �mP−1 �mP �mP+1 �mP+2 �mP+3

DmP+3

�mP+4

Figure 2: Factor graph for the suboptimal algorithm, with L = 3 and P ≥ 4.

The FG on which the suboptimal algorithm runs and the hidden variable dimension
are independent of the pilot design. The dependence of node DmP on future hidden
variable �mP+L+1 introduces cycles in the FG, as shown in Fig. 2. The presence of
cycles yields an approximated computation of the symbol APPs, but since in the cases
of practical interest (i.e., ISI channels with L > 1) the girth of the graph is 2(L+1) > 4,
their convergence to the exact APPs is expected [16].

Since the graph has cycles, the SPA does not have a natural termination but a
proper schedule must be defined. We denote ζF,mP+L+1 and ζB,mP as the messages going
forward and backward (respectively) on the upper branch of the FG and connecting
the function node DmP to the hidden variable �mP+L+1. Since the main structure of
the FG in Fig. 2 is almost identical to the Wiberg graph of the BCJR algorithm [16],
the SPA applied to the FG [16] will produce a slightly modified instance of the BCJR
algorithm. The adopted schedule is therefore the following:

1. forward recursion of the BCJR algorithm; during the forward recursion, when
k = mP + L+ 1 the message ζF,mP+L+1 is computed;

2. backward recursion of the BCJR algorithm; during the backward recursion, when
k = mP the message ζB,mP is computed;

3. update of the messages ζF,mP+L+1;

4. completion of the BCJR algorithm considering also the contribution of messages
ζF,mP+L+1.

Since we consider serially concatenated schemes, we propose to perform a single detector
iteration and then to pass the extrinsic information produced by the detector as a priori
information to the decoder, in order to perform iterative detection and decoding.

5. Numerical results

In all simulations concerning the bit error rate (BER), we use packets of 2000 informa-
tion bits, a spread interleaver, a non-systematic non-recursive convolutional code with
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rate 1/2, polynomial generators [5, 7]8 and four states, a Gray mapper with symbol
MSV Ea = 1, a binary phase-shift keying (BPSK) modulator (i.e. M = 2), a RRC
pulse with roll-off α = 0.2, a maximum of 20 iterations between detector and decoder,
and pilot insertion with period P = 21. In order to determine the ISI coefficients to be
assumed, we compute the induced ISI taps of a time-packed signaling system with a
RRC pulse, roll-off α = 0.2 and τ = 0.5, where τ is the time compression factor7 [17].
Since these coefficients would be too many (theoretically infinite) for the implementa-
tion of the optimal detectors, we keep only the first L+1 = 7 taps of the Forney model.
Moreover, in all the suboptimal detectors we employ σ2 = N0 + NI , where N0 is the
one-sided power spectral density of the AWGN and NI is a parameter, independent of
N0, optimized via numerical simulation aiming at minimizing the BER.8

In order to do some comparisons, we consider also a system employing pilots defined
according to (5), a system without pilots, and two systems which entail pilot insertion
in blocks of pilots. For both Ungerboeck (3) and Forney (5) pilots, we also considered
detectors based on Forney [11] and Ungerboeck [10] ISI models.9 So as to be fair, we
need to make comparisons among systems having the same synchronization capability.
The bottle-neck of the synchronization is the carrier estimation, and being it dependent
on the spacing between pilots [5], we keep constant the number of symbols between two
consecutive pilot insertions. For the systems with pilot blocks, in order to reduce the
overhead, we consider only blocks of size Np = L+1. This is the minimum size allowing
to have one known observed sample to be exploited for synchronization, the previous
L pilots being necessary to force the state of the channel. For the first system with
block pilots, we consider random pilots belonging to the symbol alphabet A. Since the
energy loss caused by the pilot insertion may be important, in the second considered
system with block pilots we choose to set the L state forcing pilots to 0, and to Ea
the (L + 1)-th pilot used for synchronization. The resulting MSVs and mean energies
per symbol are shown in Table 1. Since the constraint Ea = Eb cannot be satisfied, we

Table 1: Pilot MSVs and mean energies per symbol relative to different systems.

For. pilots (5) Ung. pilots (3) bl. pilots ∈ A/no pilots bl. pilots /∈ A
Eb 131.29 2.026 1 0.14
Es 7.204 1.049 1 0.96

arbitrarily set c = 1.
System performance will not be evaluated only in terms of BER but also in terms of

spectral efficiency. This latter can be computed as η = I/(BT ) (bits/s/Hz) where I is
the information rate in bits per channel use and BT is the bandwidth normalized to the
symbol period. The information rate of all systems is evaluated with the simulation-
based technique described in [18] resorting to the corresponding optimal MAP symbol
detector. For what concerns the normalized bandwidth, it is known and equal to BT =
τ(1 + α) for all the considered systems.

7τ is defined as the ratio between the used symbol interval and symbol interval for which the Nyquist
condition for ISI absence is respected.

8NI is a sort of extra noise variance considered only by the detector. It reduces the confidence of the
BCJR algorithm in the computed messages, assuming the channel more noisy than it actually is. Therefore, it
contributes to take into account the suboptimality caused by the cycles in the FG.

9The derivation of the optimal and suboptimal detection algorithms based on Forney ISI model is not shown
for lack of space.
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Figure 3: BER curves of the optimal and suboptimal detectors for Forney and Ungerboeck
pilots, compared with curves of the systems with pilot blocks and without pilots.

The BER performance of all the investigated systems are shown in Fig. 3. In the
legend we denote as “FU” the system using Forney pilots and Ungerboeck detection,
“UU” the system completely based on the Ungerboeck model, “UF” the system with
Ungerboeck pilots and Forney detection, and “FF” the system based on the Forney
model. For both the types of pilots, the suboptimal detector based on the Ungerboeck
model (marked as FU and UU) performs as the optimal one, while the detector based
on the Forney model (marked as FF and UF) shows worse performance at low SNR.
This behavior may be ascribed to the higher sensitivity of Forney detection to the
suboptimality of the detection algorithm, as pointed out in [8].

All systems with Forney pilots present an impressive energy loss with respect to the
system without pilots due to two different contributions. The first one is an obvious
insertion loss due to the presence of pilots (which is also present in the systems with
Ungerboeck pilots), while the second and predominant is a penalty due to the difference

between the symbol and pilot MSVs. Since for the chosen channel Ea < E
(U)
b 	 E

(F )
b as

shown in Table 1, the transmitter has to employ a lot of energy to transmit a Forney
pilot. However, systems with Ungerboeck pilots outperform the traditional system with
block pilots belonging to A. On the other hand, the loss with respect to the system
with block pilots not belonging to A is caused by the different mean energy per symbol
Es, as can be shown in Table 1.

The SE of systems with block pilots is heavily reduced, as reported in Fig. 4. It
can be seen that the proposed systems greatly outperform systems with block pilots.
If compared to the SE of the system without pilots, a loss due to the pilot insertion
can be noticed. This loss may be reduced only by increasing the spacing between the
consecutive pilots, which entails a reduction in the synchronization capability of the
receiver.

6. Conclusions

We have proposed a new design for pilot symbols to be used for synchronization over
channels with known ISI. Our pilots are time-varying, data-dependent, isolated, and
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Figure 4: Spectral efficiencies of the systems with Forney pilots, Ungerboeck pilots, block
pilots, and without pilots.

properly defined in order to make the detector receive, at pilot epochs, a known and
constant value. For these pilots we derived the optimal MAP symbol detection al-
gorithm, which turned out to run over a time-varying trellis with an extremely high
number of states. Hence, we proposed a suboptimal reduced-complexity algorithm,
whose BER performance is as good as the optimal one when Ungerboeck detection is
adopted (a small penalty at low SNR may be seen when Forney detection is used).
The remarkable complexity reduction has been obtained without resorting to any kind
of modification of the joint PMF, but just rearranging factors in a proper way. With
respect to the traditional pilots inserted in blocks, the proposed detectors gain in terms
of BER and SE, and the choice of the design (Forney’s or Ungerboeck’s) entails great
differences in the performance of the systems. Particularly, those with Ungerboeck pi-
lots outperform the system with block pilots both in terms of BER and SE, and exhibit
the appealing absence of whitening filters, often critical to design.
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