23 research outputs found

    A functional interpretation for nonstandard arithmetic

    Get PDF
    We introduce constructive and classical systems for nonstandard arithmetic and show how variants of the functional interpretations due to Goedel and Shoenfield can be used to rewrite proofs performed in these systems into standard ones. These functional interpretations show in particular that our nonstandard systems are conservative extensions of extensional Heyting and Peano arithmetic in all finite types, strengthening earlier results by Moerdijk, Palmgren, Avigad and Helzner. We will also indicate how our rewriting algorithm can be used for term extraction purposes. To conclude the paper, we will point out some open problems and directions for future research and mention some initial results on saturation principles

    Algebraic combinatorics in bounded induction

    Get PDF
    In this paper, new methods for analyzing models of weak subsystems of Peano Arithmetic are proposed. The focus will be on the study of algebro-combinatoric properties of certain definable cuts. Their relationship with segments that satisfy more induction, with those limited by the standard powers/roots of an element, and also with definable sets in Bounded Induction is studied. As a consequence, some considerations on the Π1-interpretability of IΔ0 in weak theories, as well as some alternative axiomatizations, are reviewed. Some of the results of the paper are obtained by immersing Bounded Induction models in its Stone-Cech Compactification, once it is endowed with a topology.Ministerio de Ciencia, Innovación y Universidades PID2019-109152GB-I0

    Finitisation in Bounded Arithmetic

    Get PDF
    I prove various results concerning un-decidability in weak fragments of Arithmetic. All results are concerned with S^{1}_{2} \subseteq T^{1}_{2} \subseteq S^{2}_{2} \subseteq T^{2}_{2} \subseteq.... a hierarchy of theories which have already been intensively studied in the literature. Ideally one would like to separate these systems. However this is generally expected to be a very deep problem, closely related to some of the most famous and open problems in complexity theory. In order to throw some light on the separation problems, I consider the case where the underlying language is enriched by extra relation and function symbols. The paper introduces a new type of results. These state that the first three levels in the hierarchy (i.e. S^{1}_{2}, T^{1}_{2} and S^{2}_{2}) are never able to distinguish (in a precise sense) the "finite'' from the "infinite''. The fourth level (i.e. T^{2}_{2}) in some cases can make such a distinction. More precisely, elementary principles from finitistical combinatorics (when expressed solely by the extra relation and function symbols) are only provable on the first three levels if they are valid when considered as principles of general (infinitistical) combinatorics. I show that this does not hold for the fourth level. All results are proved by forcing

    Fragments of Arithmetic and true sentences

    Get PDF
    By a theorem of R. Kaye, J. Paris and C. Dimitracopoulos, the class of the ¦n+1–sentences true in the standard model is the only (up to deductive equivalence) consistent ¦n+1–theory which extends the scheme of induction for parameter free ¦n+1–formulas. Motivated by this result, we present a systematic study of extensions of bounded quantifier complexity of fragments of first–order Peano Arithmetic. Here, we improve that result and show that this property describes a general phenomenon valid for parameter free schemes. As a consequence, we obtain results on the quantifier complexity, (non)finite axiomatizability and relative strength of schemes for ¢n+1–formulas.Junta de Andalucía TIC-13

    Initial segments and end-extensions of models of arithmetic

    Get PDF
    This thesis is organized into two independent parts. In the first part, we extend the recent work on generic cuts by Kaye and the author. The focus here is the properties of the pairs (M, I) where I is a generic cut of a model M. Amongst other results, we characterize the theory of such pairs, and prove that they are existentially closed in a natural category. In the second part, we construct end-extensions of models of arithmetic that are at least as strong as ATR0_0. Two new constructions are presented. The first one uses a variant of Fodor’s Lemma in ATR0_0 to build an internally rather classless model. The second one uses some weak versions of the Galvin–Prikry Theorem in adjoining an ideal set to a model of second-order arithmetic

    Envelopes, indicators and conservativeness

    Get PDF
    A well known theorem proved (independently) by J. Paris and H. Friedman states that BΣn +1 (the fragment of Arithmetic given by the collection scheme restricted to Σn +1‐formulas) is a Πn +2‐conservative extension of IΣn (the fragment given by the induction scheme restricted to Σn ‐formulas). In this paper, as a continuation of our previous work on collection schemes for Δn +1(T )‐formulas (see [4]), we study a general version of this theorem and characterize theories T such that T + BΣn +1 is a Πn +2‐conservative extension of T . We prove that this conservativeness property is equivalent to a model‐theoretic property relating Πn ‐envelopes and Πn ‐indicators for T . The analysis of Σn +1‐collection we develop here is also applied to Σn +1‐induction using Parsons' conservativeness theorem instead of Friedman‐Paris' theorem. As a corollary, our work provides new model‐theoretic proofs of two theorems of R. Kaye, J. Paris and C. Dimitracopoulos (see [8]): BΣn +1 and IΣn +1 are Σn +3‐conservative extensions of their parameter free versions, BΣ–n +1 and IΣ–n +1.Junta de Andalucía TIC-13

    Induction, minimization and collection for Δ n+1 (T)–formulas

    Get PDF
    For a theory T, we study relationships among IΔ n +1 (T), LΔ n+1 (T) and B * Δ n+1 (T). These theories are obtained restricting the schemes of induction, minimization and (a version of) collection to Δ n+1 (T) formulas. We obtain conditions on T (T is an extension of B * Δ n+1 (T) or Δ n+1 (T) is closed (in T) under bounded quantification) under which IΔ n+1 (T) and LΔ n+1 (T) are equivalent. These conditions depend on Th Πn +2 (T), the Π n+2 –consequences of T. The first condition is connected with descriptions of Th Πn +2 (T) as IΣ n plus a class of nondecreasing total Π n –functions, and the second one is related with the equivalence between Δ n+1 (T)–formulas and bounded formulas (of a language extending the language of Arithmetic). This last property is closely tied to a general version of a well known theorem of R. Parikh. Using what we call Π n –envelopes we give uniform descriptions of the previous classes of nondecreasing total Π n –functions. Π n –envelopes are a generalization of envelopes (see [10]) and are closely related to indicators (see [12]). Finally, we study the hierarchy of theories IΔ n+1 (IΣ m ), m≥n, and prove a hierarchy theorem.Ministerio de Educación y Cultura DGES PB96-134

    Mechanised metamathematics : an investigation of first-order logic and set theory in constructive type theory

    Get PDF
    In this thesis, we investigate several key results in the canon of metamathematics, applying the contemporary perspective of formalisation in constructive type theory and mechanisation in the Coq proof assistant. Concretely, we consider the central completeness, undecidability, and incompleteness theorems of first-order logic as well as properties of the axiom of choice and the continuum hypothesis in axiomatic set theory. Due to their fundamental role in the foundations of mathematics and their technical intricacies, these results have a long tradition in the codification as standard literature and, in more recent investigations, increasingly serve as a benchmark for computer mechanisation. With the present thesis, we continue this tradition by uniformly analysing the aforementioned cornerstones of metamathematics in the formal framework of constructive type theory. This programme offers novel insights into the constructive content of completeness, a synthetic approach to undecidability and incompleteness that largely eliminates the notorious tedium obscuring the essence of their proofs, as well as natural representations of set theory in the form of a second-order axiomatisation and of a fully type-theoretic account. The mechanisation concerning first-order logic is organised as a comprehensive Coq library open to usage and contribution by external users.In dieser Doktorarbeit werden einige Schlüsselergebnisse aus dem Kanon der Metamathematik untersucht, unter Verwendung der zeitgenössischen Perspektive von Formalisierung in konstruktiver Typtheorie und Mechanisierung mit Hilfe des Beweisassistenten Coq. Konkret werden die zentralen Vollständigkeits-, Unentscheidbarkeits- und Unvollständigkeitsergebnisse der Logik erster Ordnung sowie Eigenschaften des Auswahlaxioms und der Kontinuumshypothese in axiomatischer Mengenlehre betrachtet. Aufgrund ihrer fundamentalen Rolle in der Fundierung der Mathematik und ihrer technischen Schwierigkeiten, besitzen diese Ergebnisse eine lange Tradition der Kodifizierung als Standardliteratur und, besonders in jüngeren Untersuchungen, eine zunehmende Bedeutung als Maßstab für Mechanisierung mit Computern. Mit der vorliegenden Doktorarbeit wird diese Tradition fortgeführt, indem die zuvorgenannten Grundpfeiler der Methamatematik uniform im formalen Rahmen der konstruktiven Typtheorie analysiert werden. Dieses Programm ermöglicht neue Einsichten in den konstruktiven Gehalt von Vollständigkeit, einen synthetischen Ansatz für Unentscheidbarkeit und Unvollständigkeit, der großteils den berüchtigten, die Essenz der Beweise verdeckenden, technischen Aufwand eliminiert, sowie natürliche Repräsentationen von Mengentheorie in Form einer Axiomatisierung zweiter Ordnung und einer vollkommen typtheoretischen Darstellung. Die Mechanisierung zur Logik erster Ordnung ist als eine umfassende Coq-Bibliothek organisiert, die offen für Nutzung und Beiträge externer Anwender ist
    corecore