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Finitisation in Bounded Arithmetic

Soren Riis*
BRICS

June 1994

Abstract

I prove various results concerning undecidability in weak fragments of Arith-
metic. All results are concerned with S3 C T} C §2 C T C .... a hierarchy of
theories which have already been intensively studied in the literature. Ideally
one would like to separate these systems. However this is generally expected
to be a very deep problem, closely related to some of the most famous open
problems in complexity theory.

In order to throw some light on the separation problems, I consider the
case where the underlying language is enriched by extra relations and function
symbols. The paper introduces a new type of results. These state that the first
three levels in the hierarchy (i.e. 53,74 and S%) are never able to distinguish
(in a precise sense) the “finite” from the “infinite”. The fourth level (i.e. T%) in
some cases can make such a distinction. More precisely, elementary principles
from finitistical combinatorics (when expressed solely by the extra relation and
function symbols) are only provable on the first three levels if they are valid
when considered as principles of general (infinitistical) combinatorics. I show
that this does not hold for the fourth level.

All results are proved by forcing.

1 Bounded Arithmetic

The discovery of abstract set theory was like the discovery of the outer space. Set
theory provides us with a telescope and has undoubtly affected the general view of

the mathematical universe.

*This work was initiated in Oxford University England.

TBasic Research in Computer Science, Centre of the Danish National Research Foundation.



I view Systems of Bounded Arithmetic as a promising framework of studying the
mathematical microcosm. I suggest that questions in complexity theory reside out-
side the macro-world of ordinary mathematics. I belive that most deeper questions
in complexity theory in a strong sense require refined “perception”. Many principles
which reside deep down in most mathematical arguments, appear equivalent from the
normal perspective. (Example: Many elementary counting principles, e.g. the differ-
ent versions of the elementary pigeon-hole principle). Through a microscope things
are perceived quite different. Certain powerful extensions of Bounded Arithmetic

could provide such a microscope!

Consistency, not truth, is the right starting point when we consider universal prob-
lems. What matters must be deductive powerful viewpoints. Certain extensions of
subsystems of Bounded Arithmetic seems to provide a very promising basis for this.
This paper is the first in series of planed papers. In these my intension is to iso-
late more and more powerful, (but unsound) systems of Bounded Arithmetic. Notice
that if a universal statement (or more generally a Ag-statement) v is proved from a
collection of “false” (in the standard universe N) axioms, which are consistent with
Bounded Arithmetic, then we know a priori that ¢» must actually be true. Because
if b ware false this would be witnessed in the standard part of each model M of
Bounded Arithmetic, and so according to Godels completeness theorem this would
contradict the consistency assumption. This observation also seems to apply to the
conjecture P # NP. To see this recall that P # NP is equivalent to the statement
that “for all programs P, for all k£ € N, there exists an input x, such that (a) P uses
less than | z |¥-steps, and either (b1) accept = but x does not satisfies 3-SAT or (h2)
‘P does not accept z, but z is an instance of 3-SAT”. Now if the existential quantifier
in “there exists an input z” is bounded by some term ¢, we obtain a Agp-formula ©
which implies P # NP. According to the previous remark, if a (consistent) system of
Bounded Arithmetic (however unsound) proves O, then actually P # NP.

The idea of renouncing central and “obvious” axioms is certainly not new. We
recall that there are models in which the self evident parallel postulate of Euclidian
Geometry fails, and the wrong principle that each line has many parallel lines-hold

true.

2 Making infinite structures finite

We are interested in constructing consistent (but unsound) systems of Bounded Arith-
metic. In this paper I show that there are fragments of Bounded Arithmetic which

have models M in which any countable structure S (up to elementarily equivalence)



can be elementarily embedded as a “finite” (in the sense of M!) structure.

In this section I will illustrate the basic method of this type of result. Consider the
impossible ideal that any consistent theory ¥ has always a finite model. I show that
there exists a world in which this ideal is realised. In this world the usual induction

axioms only hold for purely existentially defined sets.

Construction: According to the completeness theorem, there is a countable struc-
ture Ml non-isomorphic, but elementarily equivalent to N, so the same set of L-
expressible sentences holds in the two structures. There must be an initial segment of
M isomorphic to (and identified with) N. Usually the elements in N are called stan-
dard numbers while the numbers in M\ N are the so-called “non-standard” numbers.

From an observers perspective outside M (i.e. from our perspective) there exist
“numbers” n € M which are infinitely large (i.e {1,2,....,n}) contains infinitely many
numbers). However observers inside Ml would either not be able to express this, or
if we allow them to quantify over second order objects (definable in M) they would
disagree. These observers of M would believe that {1,2,....,n} was finite simply
because it would be finite in their universe M, where they have fewer functions and
therefore think more sets are finite! So far all have been folklore. Now the basic part
of the argument runs along lines, similar to those in the proof of Theorem 21 in [12].

Suppose ¢ states that there exists a bijection from some interval {1,2,..,n} to
the universe M. From our outside view {1,2,....,n} contains infinitely (countable)
many numbers, and so our universe must contain a bijection f from {1,2,...,n} to M.
Suppose now that we actually add a such a map f which maps {1,2,....n} bijectively
to M. Suppose also that we extend the language [ with an extra function symbol
f referring to this f. Also assume that we add names for each of the countable
many elements in ML Let us call this new language Lf. Clearly it is not possible for
the model (M, f) to satisfy the principle of induction. However if f is constructed
carefully it turns out that we can force the model to satisfy some amount of induction!

In this example [ want to show that one can ensure that (M, f) satisfies induction
for sets which can be existentially defined by L ;-formulas. First take an outside view.
The model M is countable so there are only countably many existentially defined sets
S1, 59, .. defined by formulas (), ¥2(x), .... of one free-variable. List these formulas
such that each formula appears infinitely many times in the list. At the &*-step in

the construction consider the formula vy (2), which as an example could be

Ju f(e+13) =2 u.

Suppose that in the previous step f has already been defined on a finite set A C
{1,2,...,n} with values in B C M.



We want the least number principle to be true for the formula ¢ (2). This is done
by “forcing” 1x(a) to be true for the smallest possible a, i.e. by letting f(a + 13) be
even for the smallest value a where this is consistent with the fact that f is a 1-1 map.
The conditions a has to satisfy can be expressed in the language [ without reference
to f. So in M we are able to search for such an a by a simple search procedure,
which only depends on how f has already been defined on A. From an outside view
“<” does not well order M|, so for a moment we take a look at things from inside ML
From this perspective “<” is a well ordering (this is possible because there are fewer
sets in M than in the real universe). So the search procedure must terminate with
some output a. Observers whether inside or outside M, always agree on first order
properties, in this case, whether a actually is the smallest such element.

Now go back to the real world outside Ml and proceed to the next step where the
formula tp41(x) is considered. Again we force ty11(a) to be true for the smallest
possible a. Alternatively if we cannot force ¢;41(a) to be true for any a we know it
will never be true (even at doomsday when f is constructed for all formulas).

We must ensure that f eventually defines the required bijection. In the present
construction this automatically happens. For instance, for each a € {1,2,...,n} the
formula ¥ (x) := Jy f(x) = y A = a eventually forces a to belong to {1,2,...,n} (if
it does not already do so). The other properties follow for similar reasons.

Now let ¥ be any consistent theory. According to Skolem-Lowenheims theorem, X
has a countable model S. If this model is infinite we assume that N is the underlying
set. If we in the above construction start off by choosing a countable non-standard
model (M Sur) elementarily equivalent to (N, 5), we get a model of existential induc-

tion in which ¥ has a finite (in the sense of M) model. Thus we have shown:

Proposition 2.0.1 Any consistent theory ¥ has a model S, which is embedded as a
finite (=bounded) set in some model M.

Actually suppose that L is a countable language which extend the language of
arithmetic, and suppose that L contains undefined relation and function symbols for
the language of . Then the model M can be chosen such that it satisfies the induction

scheme for existential L-formulas.

This shows that any structure S, for example structures of strong systems like set
theory, can be embedded as “finite” sets in some super-structure. It also shows that
we can always assume that a given mathematical domain is “finite” given that our
meta-theory (falsely) believes that all sets (and maps etc) in the universe are purely
existentially defined.

As the pigeon-hole principle fails for infinite sets, as a corollary we obtain theorem

21 [12):



Corollary 2.0.2 (A.Wilkie, J.Paris) The system [3(f) does not prove that [ sat-
isfies the pigeon-hole principle.

The results in this paper resemble the ideas just described. However we need to be
more careful.

It follows from the main results that countable structures can always be assumed to
be (up to elementarily equivalence) finite in certain fragments of Bounded Arithmetic.
As we have already indicated this phenomenon is closely related to the fact that the
pigeon-hole principle fails heavily in these fragments. And it illustrates the microscope

metaphor. One just has to look through the microscope from the right end!

3 Prelims

First let me recall some basic notations and facts, essentially all from [4]. Let BASIC
denote a finite set of quantifier free formulas relating constants, functions and relations
in the first order language L = L(0,1,+,-,| - |4, [5],<,=). Here § denotes the
function given by atb = 214l where |a| = [log,(a + 1)]. An example of a proper
choice of BASIC (without coding functions) can be found in [4]. It is convenient
to add other functions to the language. We will assume that a function (w), which
takes the value of the " element in the sequence coded by w is part of the language.
As long as additional functions are polynomially time computable, the results in this
section can be stated with no change.

In the first order case atomic formulas are of the form ¢ = s or t < s where s,1 are
terms in L, while in the (monadic) second order case additionally, atomic formulas
can be of the form ¢t € X or X =, Y. (Where “=,” denotes equality between second
order variables.)

A first (second) order formula is bounded if all its quantifiers are of the form
LV < toor L dx <t Second order quantifiers are not allowed in bounded
formulas. Atomic formulas X =, Y are not allowed because they smuggle in an
unbounded first order quantifier (Extensionality axiom below).

A first (second) order formula is sharply bounded if it is bounded and all quantifiers
are of the form ...Va <| ¢t | ... or .32 <[ 1] ...

The class of bounded formulas can be stratified as follows: Let ¥} = TI§ be the
set of sharply bounded formulas (first or second order formulas depending on the
context). Let X0, (I’,; ) ;i > 0 be the smallest class of formulas which contains
IT? ( 2% ) and is closed under A, V, sharply bounded quantification, and bounded



existential quantification (bounded universal quantification). Notice that, except for
minor syntactical changes, any bounded formula belongs to some X! and to some IIC.

Finally let strict-X? ; C X2, denote the set of £ -formulas which are of the
form dy; < t1dy, < 5.3y, < t, ¢ where ¢ € H?. Similarly, let strict—H?_I_l - H?_H
denote the set of Hi?_l_l—formulas which are of the form Vy; < t;Vy, < 45..Vy, < 1, ¢
where ¢ € 3.

3.1 The first order theories

Let Si denote the first order theory consisting of BASIC, together with the following
“polynomial time” induction scheme, ©(0) A Va(o([5]) = ¢(z)) = Yap(x)), where
¢ € X2 This scheme is usually denoted by Y2-PIND.

Let Ti denote the first order theory consisting of BASIC together with the X! in-
duction scheme, ©(0) A Va(p(z) = ¢(z + 1)) = Vap(z), where ¢ € P, This scheme
is usually denoted by X!-IND.

3.2 The second order theories

The (monadic) second order versions of these theories Si(a) (T5(a)) consist of BA-

SIC, X2-PIND (X!-IND) together with the extensionality axiom
EXT: VX, Y(X =Y e Ve(ee X 2 eY)).

We do not allow the full comprehension axiom, but follow [6] and equip Si(a) (Ti(a))

with the following “NP N co-NP”comprehension axiom-scheme: (A}-comprehension)
Vae(p(x,2,7) & (2,2, 7)) = IXVz (v € X & o(z, 7, 7))

where o, 7 € X5,

The underlying logic of these theories is second order predicate logic with second
order equality =5. It is easy to prove that no deductive strength is lost if X =5 YV
is taken to be short-hand notation for Vz(z € X « z € V), and if EXT and the

equality axioms in the underlying logic are dropped.

3.3 Models of second order theories

A model of a second order theory T is a pair (M, ]%), where R C P(M), the power
set of M, and where M is a model for the first order part of 1. The satisfaction
relation = is defined inductively such that second order variables are taken to be the

subsets of M which are in R. The well known main advantage of using this notion of
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a model, without requiring that R= P(M), is that the Compactness Theorem, the
Completeness Theorem and Skolem-Lowenheims Theorems hold with minor changes.
These facts follow easily (pointed out by A.J.Wilkie in Personal communication) from

the natural isomorphism:

Observation 3.3.1 (Transitive collapse) Let M® = M2, U M, be a first order
model which contains two kinds of elements. One kind(x,y,z,...) denotes numbers and
belongs to M2, the other kind(X,Y,Z,...) denotes “sets” and belongs to Mfet. If €

is a binary relation on M®, with domain M2, and range I\\/JISAet such that
M® = (X =Y & Ve(2€X & 2€Y))

then the map Yooiapse : X — {z € M2, M2 |= "2€X"} maps M5, bijectively
onto a class S of subsets of M2, .
Furthermore (M, S) = (Mfum,;/)couapse”l\\/ﬂfet) is isomorphic to M.

From this we get the following version of the Completeness Theorem.

Proposition 3.3.2 T' U EXT is consistent if and only if T has a model.
TUEXT F ¢ if and only if (M, S’) = ¢ for all models (M, §) E=T.

3.4 Some special results for Si(a)

Now I prove that the second order theories Si(a) are conservative over the corre-
sponding first order theories, in the sense that any model M |= S has an expansion
to a model (M, S) |= Si(a). A similar result holds for the theories T%. I prove a
slightly more general result. Let W be a set of formulas (), which might contain

free second order variables and free first order variables other than z.

Definition 3.4.1 By a WU-substitution scheme Y we will understand a first order
formula fy, with no second order variables, which contains meta-variables £, F5, ..., F}.
To each meta-variable Fj is associated a term t;. A substitution instance X((x)), o €
U is obtained by replacing each Fj in 8y, with ¢(¢;). &

Example 3.4.2 Y%(a)-PIND and X2(a)-IND are both X2(«a)-substitution schemes.

Definition 3.4.3 In the following let T'(z) = ¥ + BASIC 4+ EXT, where ¥ is a Z?—
substitution scheme. In T'(z), BASIC could be any set of first order formulas. &

Proposition 3.4.4 If (I\\/JI,]%) = T(2) there is an expansion S D R such that

(M, S) = T(i) + A% — comprehension.



Proof: Assume that (M, R) |= T(7) is a given model. Let
§={SCM: (= ti(e, X1, Xs,... X)) €55, i=1,2
AJR:, Ry, ..,Rs € R

(l‘ esSe ¢1($,R1,R27 ,Rk) = _‘77Z)2($,R1,R2, ,Rk))}

I claim that (M,S) = T(i) + A}-comprehension. According to proposition 3.3.2
EXT holds in all second order models, in particular (M, S) BASIC holds in (M, S)
because it is a set of first order formulas. It remains to be shown that (M, S) £ ¥
and to show (M, S) £ Al-comprehension.

Sub claim 1: (M,g) = Y(¢p(x)) for all i» € b, Notice that if 1 (z, Sy, Se, ..., Sk) is
a Y2—formula with set parameters from 5’7 there is a Y —formula n(z, Ry, Ry, ..., R))

with set parameters from R, such that for all ¢ € M
(M, g) |: @Z)(C, S1,92, .., Sk) = 77(0, Ry, R, ..., R[)

Here 7 is obtained from 1 by the following. First, by replacing each appearance of
S; with either o (x, Ry, Ra, ..., R,) or —s(x, Ry, Ry, ..., R,) according to whether S;
appears positively or negatively. Second, by bringing it in a "prenex like” form if

convenient. Now sub claim 1 follows by noticing that
M, 9) EE(@) & MS)ESMH & (MR)ES(m)

and that (M, ]%) = Y(n) is part of the assumption.

Sub claim 2: (M, §) = Ab—comprehension. Let 1,15 € X% be given and assume
that for some given a € M, (M,g) E Ve < a(r(x) & —ha(x)). Consider S = {x |
Yy(x, S1, 5, ..., 5%)} where S1,5,,..., 5, € S. As we have already noticed, there are
¥t —formulas nl(x,é) and 772(:1;,]%) equivalent to ¢y and ¥y, S = {x: 771(:1;,]%)} =
{x: —ma(x,R)} € 5. 0

Corollary 3.4.5 Every model of first order Si, © > 1 has an expansion to a model
of Si(a).

More generally if Uy, Us, ..., U, are unary relation symbols added to L, then every
model of Sy(Uy,Us, ...,U,), has an expansion to a model of Si(a)

Proof: The first part of the corollary is just the special case where r = 0. If
r>01let R = {x € M: M E Ufa)} and let R := {Ry, Ry, ..., R,}. Notice
(I\\/JI,]%) = Si(a) — Ab-comprehension, and use proposition 3.4.4 with ¥ as the %%-
substitution scheme Y-PIND. O

Notice that Corollary 3.4.5 remains valid if the theories S} are replaced by T for
i > 1.



3.5 Some conservation results

In [5] S.Buss gave a precise characterisation of the Si-provable Y.!-definable functions.
Actually one of the major justification for dealing with S¢ lies in this characterisation.
Let me make an observation in this connection. According to a general argument by
G.Kreisel the class of provable total recursive functions is always insensitive to the
addition of extra universal axioms.

The same argument applies to the class of ¥!-definable functions of a theory. The
class is insensitive to addition of I1%-axioms (as long they remain consistent with S3).

This is because for a theory T' in general:
T+ Ve ()} FVaedyb(z,y) = T F Vaedyb(x,y)V —(y)

which does not produce any new provable total function if 6(x,y) V = (y) still is

provable equivalent to a Y¢-formula. Thus we have

Observation 3.5.1 The class of provable X.2-definable functions of a theory T is

immune with respect to the underlying 112-theory.

The following immediately gives us the inclusions
Sy(a) C T a) C Si(a) CTHa) C .....
Proposition 3.5.2 (S.Buss) Sit'(a) F Ti(a) for all i > 0.

Proof: Fix an arbitrary (M, ) |= Sit'(a). First notice that if X < b is a Xb-
definable set in M the convex closure Y = conv(X) := {z < b | Jv € X v <
e AJu e X < ul}isalso a Xi-definable set in M. Let “dist(Y,Y*) < d” be the
V() formula ¢y(d) = v,y < b(y—ax < dAy € Y Az € Y). By considering
the point |3 |obviously ST R) F oy(d( [2D)F) = éu(d([3])F) so by X2, - PIND
“dist(Y,Y) < b" = “dist(Y,Y*°) < b( L%J)'M 7 and by modus ponens and the fact the
So(a) Fb( L%J)'M =1 “dist(Y,Y°) <17. As Y is convex, Y has a smallest element in
M, and then by definition X has a smallest element. As X2-LNP < Y2 IND we are
done. O

In some later examples I will use one of the deeper theorems in the subject:
Theorem 3.5.3 (S.Buss) Fori > 1, Sit'(a) is VX!, -conservative over Ti(a).

Proof: Suppose that S5+ VIVX3z < HT) (2, Z,)?) where ¢ € II%. It suffices to
show that Ti(R) F 32 < (%) (7,2, R), for o e IIL.
This follows again by relativising the proof of S.Buss’ theorem stating that for

any i >0 Syt!is V%t -conservative over T3, [7] [5]. O
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4 Some finitisation principles

One of our aims is to show that there is a fundamental difference between S3(a)
and levels in the hierarchy which are at least as strong as T3(a). There is a general
feeling amongst those working in Bounded Arithmetic that a proof of the non-finite
axiomatisability of the first order theory Sy (= T%) would be of great importance. An
important step in that direction would be to separate Ty, S and T3. These theories
are only known to be different under an additional hypothesis from complexity theory.

In [9] 7% and Sit', i > 1 were conditionally separated under the conjectural
assumption that the polynomial hierarchy (in complexity theory) does not collapse
on level i + 2. In [8] S and T3 were conditionally separated under the conjectural
assumption Logspace™ # A5. However both these assumptions (generally believed
to be true) are far beyond current techniques. They both imply P # NP.

The relativised cases S3(«) and Tj(«) were first separated in [8]. T present new
proofs for these relativised cases. This is done by proving the following finitisation

principle:

Theorem 4.0.4 [f ¢ has an infinite model (in the real world), there are structures
of T} («) in which ¢ has a finite (=bounded) model.

I also get the following principle.

Theorem 4.0.5 Suppose that 0§ := A (A, R) is a second order existential state-
ment. Suppose also that 0 is expressed solely by unspecified function and relation
symbols. Suppose that 0 has an infinite model (in the real world) where the existential
quantifier is not witnessed by any finite set. Then there are structures of T} (a), in
which 6 has a finite model {1,2,...,n} where the existential quantifier is not witnessed

by any set A of size < log(n).

Since an understanding of the relativised cases, seems to precede an understanding
of the unrelativised cases these two results could perhaps be useful in separating T
from T} unconditionally.

Finally I prove a finitisation principle which can be used to separate the theories

Sy (a) and Ty ().

Theorem 4.0.6 Suppose that (<, R) is a first order statement which is expressed
solely by unspecified function and relation symbols. Suppose that in the real world
(=<, R) holds in an infinite model, where < defines a total linear ordering. Then
there are structures of S3(«) in which (=<, R) holds in a finite (=bounded) model

and where < is the restriction of the order relation <.
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These theorems show that when we pass from the real universe to an universe which
only contains “feasible” sets, we have the heuristic translations, countable — finite,

finite — poly-logarithmic.

4.1 Further definitions and assumptions

Let L2(0,1,4, -, frasts fsiow, =, <) be a second order language where through some
basic axioms fy,s and fy,, are ensured to define functions such that fy, is fast-
growing, and that fg,, is slow growing. Further it is assumed that fg,, is slower
than fres is fast (1). More precisely assume:

(1) fstow, [rast arve increasing.

(2) ffast > x?.

(3) For any fixed k, for all sufficiently large n fslow(f}];)st(n)) < n, where

f®=fofo..of.
—
Definition 4.1.1 A formula ¢ € Ly is sharply bounded if each quantifier appears in
the context dx < fyou(t) or Vo < foow(t), where t € Termy. A formula ¢ € Ly is
bounded if each quantifier appears in a context dx <t or Va < ¢, where ¢t € Termy,.
The class of ¥} formulas and the class of II? formulas are defined similar to the

earlier definition. &

Definition 4.1.2 T'(«) denotes the second order theory consisting of a proper base
theory Basic together with EXT + Al{—comprehension + ZZ{—IND. &

Given some additional relations E we define the first order theory Tl(é) in the obvious
way. Notice that if fras(< 2,y >) := afy and foew(2) := |z|, for a proper choice of
BASIC T'(a) becomes Ty («a). Furthermore notice that in this case

ffast(n) < ffast(< n,n >) — 2(|n|2)

and therefore | fslow(f}];)st(n)) | <| fslow(fj(c];)st(< n,n>))|=|n |2k . Clearly for any
fixed k and non-standard n, | n |2k< n so the consideration below applies to the

theory T, ().

Definition 4.1.3 Let < 2y, 23,..., 7 > be a natural code of the k-tuple. For each
k we introduce quantifiers V* and 3* such that Q*z ¢ () is shorthand notation for

Qu1Qxs..Qry (< 1, ...,2 >) where @ =Vor @ =3. &

11



Definition 4.1.4 Let Q*z < t... be short-hand notation for Qz; < t..Qz; < t,
when < @y,29,...,25 >= x. Let §(Z) be a formula in some relational language
L(Ry, Ry, ..., R;). For a relation symbol S, the formula #5(#) denotes the formula
which appears if each quantifier in 6 is restricted to S. By 6.,(7) we understand the
formula which appears by restricting each quantifier in 6 to [0, «). &

4.2 A version of the completeness theorem

As I have already pointed out, in the real mathematical universe it is not true that
any finite consistent set of first-order sentences has a finite model. But there are

T}{a)-universes where such a strong form of the completeness theorem holds.

—

Theorem 4.2.1 (Finitisation principle) Let 8(R) be a first order property ex-
pressed in some relational language L = L(é) Suppose that n(n) is an arith-
metical first order property expressible in the language L of arithmetic and sup-
pose that n(n) holds for arbitrary large n. If (9(]%) has a model then the theory
Tl(é) + 3dn n(n) A 0<n(é) has a model.

First we shall make some preparation for the proof. Let L and (9(]%) be given as in

the theorem. We can assume that all relations are r-ary. (9(]%) is assumed to have
an infinite model, so by Skolem-Lowenheims Theorem, we can assume (9(]%) has an
infinite countable model S,; on a subset of the natural numbers. Furthermore, we can
assume S, is a model with an underlying co-countable set, and if convenient, that an
extra unary relation symbol denoting membership of S, is added to the language.

Let (M, S) be a countable non-standard model for the language L(R) := L U L
which is elementarily equivalent to the standard model (N, S;). Use overspill to pick
a non-standard number n such that M = n(n).

Fix a non-standard number by < n such that b} < n for each standard number
k, and such that fslow(f}];)st(n)) < by for every standard number k. Use overspill to
pick ¢ € M non-standard such that f..(¢) < by and such that ¢ > fj(c];)st(n) for all

standard numbers &.

Definition 4.2.2 Let Py, k € w, be the set of all partial (1-1)-maps a which have
dom(a) C {1,2,...,¢} and ran(a) C M such that | dom(a) |< %, and such that «
maps points in [0,n) to S, and maps points in {n 4+ 1,n 4+ 2,...,c} to M\ S.

Let P = Uge,Pr and let (P, C) be P ordered under inclusion. &
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4.3 Generic maps

Let us now make a few basic definitions:

Definition 4.3.1 D C P is called dense if Yoo € P33 € D such that 5 D «.
A subset S C M is quasi-definable in M if there is 6(x) € L(R,) such that
S={xeM: (Mw) E 0(x)} where R, is interpreted by w. We allow 8 to contain

parameters from ML &

Notice that in [1] the similar notion (just called definable) is S = {z € M | dn €
R, 8(x,n)}, which would not work in our case because we cannot force formulas
in general to be equivalent to existential formulas. It should also be noticed that
any extension of the notion of quasi-definability which does not produce uncountably

many quasi-definable dense subsets of P, would work.

Example 4.3.2 The set P is quasi-definable. The initial segment [0,bY) is quasi-
definable.

Definition 4.3.3 G C P is a generic filter if

(1) Vo,3eGIveGyDanyDp.
(2) VaoegGVpePaDdf=pBeqg.
(3) GND £ for each quasi-definable dense set D C P. &

Lemma 4.3.4 For every ag € P AG C P generic such that ag € G.

Proof: M is assumed to be countable so that there is at most countably many quasi-
definable sets D C P. List those as Dy, D;, D3, .... Pick a1 O ag such that ay € Dy,
pick ag 2 a; such that ag € Dy, etc. and let G:={p e P|Jjcw [ Ca;}. Itis
straightforward to check that G is generic. O

Definition 4.3.5 & C M is generic if there is a generic G C P such that & = U,ega.
&

4.4 Sketch of proof

Now let me sketch the proof. We are given a non-standard model (M, S) =, (N, Sy)
in which the “structure” S we want to miniaturise is a part. We can assume that the
language contains the language of arithmetic together with extra relations, denoting

the relations in S.
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First, it is shown that some (actually any) generic & is a bijection from [0, ¢) to
M, mapping [0,n) onto S. At this stage we also have to show certain lemmas about
the forcing relation in order to ensure it behaves well.

Second, it is shown that for some (actually any) generic map &, (M,a) [
F*—LNP, where 3*-LNP denotes the least number principle for formulas in which
all quantifiers are either existential (positive appearance) or are restricted to [0, by).
This part of the argument is based on the same idea as the proof of theorem 21 in
[12] (see also the introduction).

Third, it is noticed that the constants, relations and functions in the miniaturised
structure S, := &~ 1(S) are 3N V-definable in the generic model (M, &).

Fourth, it is shown that each formula expressing a %%- property about the minia-
turised model and numbers in [0,¢), can be translated into an F*-formula. This
ensures that LNP holds for ¥}-formulas with parameters in [0, c).

Finally a concrete model M* is constructed as the smallest initial segment of [0, ¢)

which contains [0,n) and is closed under fyqs.

4.5 The forcing relation

First we need to show some basic fact about generic maps. For simplicity we reduce
logical constants. So suppose that V := —d— and A := =V —=. Extend the language
with names for the elements in M. Also extend the language INJ(R) by an extra binary
relation symbol a&. For sentences in this language f/(é,@) we define the forcing

relation inductively as follows:

a |F 9 if ¢ does not contain «, is atomic and true.
a |k ala,b) iff ala) is defined and equals b.
alFyvy iff alFyYoralbn.

a |F Jz (x) iff for some a € M« |F (a).

The forcing relation for negation satisfies:

a |k = iff forno 82, BE€ P B |F .

4.6 Soundness of the forcing relation

We have to make sure that the forcing relation satisfies certain key properties. FExcept
for lemma 4.6.4 below, the reader who is familiar with forcing techniques could ignore

this section.
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Definition 4.6.1 Let Y(bg) be the set of formulas where all quantifiers are restricted
to [0, bo) &

Notice fsiow(c) < by and therefore in the final model all sharply bounded quantifiers

are restricted to [0, by).

Lemma 4.6.2 (Forcing lemma) The forcing relation has the following properties:
FExtension property: If a |F ¢ and 2O « then 8 |F
Consistency: For no o € P and for no ¢, does both o |F ¢ and a |- =1 hold.
Completeness: For each generic set G C P, and for each i there is o € G such
that o |F 4 or i |F =),
Soundness 1: If for a generic map &, (M, &) |= 4, there is a € G such that « | 1.
Soundness 2: If o |- then (M, &) = ¢ for any generic & 2 a.

Proof: Extension property: First notice that the claim holds for atomic formulas.
Clearly the extension lemma holds if ¢» = g V ¢y, or if ¢ = Jyiho(y). Suppose
b = by, a |F ¥, and S O «ais given. By definition for no o/ 2 «, o 1. The
ordering 2O of the forcing conditions P is transitive for no o' 2 3, o |F 1. By
definition /3 |F .
Consistency: Direct by the inductive definition.
Completeness: Let D :={a: a |- ¢V —}. Notice D is quasi-definable and dense
so there is ag € G N D.
By definition either aq |F % or ag |F —2).
Soundness 1 4+ 2: Both claims are proved simultaneously using induction on the
number of logical constants in ¢. The case where % is atomic is straightforward, and
so is the case where ¢ = g V 1 or ¢ = Jy o(y).

If (M,a) | =, by induction there cannot be o € G such that « |F 3. By
completeness there is o € G such that o |F —).

If a |[F =% but (M, &) = ¢ for some generic map & 2 «, there is § € G such
that 8 |F «. By definition o and  have a common extension in P. By use of the

extension and the consistency property we get a contradiction. a

Corollary 4.6.3 Any generic & is a bijection from [0, ¢) to M,which maps [0,n) onto
S.

Proof: Let a € [0, ¢] be an arbitrary element. Notice that D, := {a: «a(a) is defined}
is both dense and quasi-definable. By definition there is ag € DN G.
As a9 C & this shows that & has domain [0,¢). The other properties are proved

by a similar argument. O
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Lemma 4.6.4 For each (&) € X(by) there is k € w which does not depend on the
parameters in (%) and M-definable maps ¥ — VP and ¥ — VI such that

(1) Card(VY) < by, Card(VF) < b

(2) For all o € P with Dom(a) 2 V¥ and Ran(a) 2 VZ.
a |F (@) or a |F —p(D).
(3) Forall a € P, aypyyr |- ¢(7) if a |k o ().

Proof: If ¢(x) is atomic and is of the form a(u,v),a(z,v),a(u,z) or a(xg,xy) let
VP = {u}, VP = {u}, VP = {v} or = {21}, and similar let V? := {v},
= {v} VE:={v}and VI := {25}
If;/; = 1pg V 1y let VP = vPouvPl, and let V& .= VIO U v If ¢ = Ju
bo o(u, T) let VP := Uu<to Vquo and VI = = U<ty Vul’, and notice that Card( D/R)
bo - b = b for some k € w. If 1 = wo let VP/IH = yPIRO,
Now we prove (2) and (3) by induction on the number of logical constants in ().
If (%) is atomic it is easy to check (2) and (3). Suppose « |- Jx < by ¢(x) where
Y € X(bp).
We need to show that oy |F =3z < by 9(x). Conversely suppose that for some
B2 ay, B |- Jz < by p(x). By definition for some a < by, 3 |- ¥(a), and by

induction Byouvr |F (a). Now as aypuvr = Byoovr auoovr |F 3o < by ()

731 sT2

<
<

and then by the extension lemma oy |- J2 < by (), which is in contradiction to
the assumption « [ 3o < by () . O

4.7 Some properties of the generic objects

We have already defined 3* to be the set of formulas in which all quantifiers are
either existential which appear positively or are restricted to [0, b) (Sharply bounded
quantifiers). According to our plan in order to prove the main theorem we have to
prove that some (any) generic & satisfies the 3* -LNP scheme. Let 3%, be the
set of formulas 37y (Z), where b € Y(by) and where there are no restrictions on the

parameters in . First we prove that:
Lemma 4.7.1 For any generic map &, (M, &) satisfies the 3%,,..,-LNP scheme.
Proof: Let ¢(2) = 37y (Z, 2) be given. (1 € X(by)). Let ag € Py be given such

that ag |F ¢(a) for some a € M. Let ag € M be the smallest element such that for
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some 3 2 ap with 8 € Piy, (for suitable r), and some ¥y, B |F (&0, a0). This
definition makes sense because the forcing relation is definable for X(bg)-formulas.
(By lemma 4.6.4). Let D be the set of 3’ € P which are either incompatible to aq or
extensions of a  with the property just mentioned above. D is quasi-definable and
dense so there is « € DNG. Clearly o |F t(ag). All that remains is to check that if r
is chosen properly (lemma 4.6.4) there is no a1 < ag and o O « with o/ |F ¢(ay). O

4.8 A minor problem

Now we want to prove that for some (any) generic &, (M, &) actually satisfies the
F*-LNP scheme. It should be noticed that because of the presence of the generic
object & it is not entirely clear why any F*-formula should be equivalent to an 3%, .,
formula.

Let ¢(z) be a given IF*-formula. Let us try to follow the same strategy as in the

proof of lemma 4.7.1 above. Without loss of generality we can assume that

Y(z) = JaoVug < by Vuy < by...Ja (7, d, 2)

where 6 € ¥(by). Find smallest zg such that there are ag,a1,0, a1, ..., @1,
and az,0,0,42,0,1, -+, 02,0 AN A2,1,0, G211, 2,125 -5 A2,1,bg -5 A2bg,bg» -
con kb bo,. o
—— ——
k bés

and 3 O «ag in Pyy, such that for any choice ug < by, uy < bo, ... up < by

6 ||_ 0(@0, al,u07 a2,uo,u17 ceey ak7u07~~~7uk—1 ,Ugy Uty oo Uf—1, ZO)

Again if there is any zp satisfying the condition, there is also a smallest such z.
This holds for each choice of r € w. As a minor technical problem we need to
show (what might be obvious to the reader) that if § is chosen as above, for no
B 2 3 we can have 3’ |F 1(z1) for some z; < z. Now in general (M, &) has more
definable functions on [0,by) than M. This is because for each formula 0(x, ) and
each generic map &, a could be eliminated (i.e. there was a formula ¢(x) such that
Vo € [0,by) O(x, ) & (x) in the case where fyo,(2) := log(x)), then induction
would hold up to by > log(c) and therefore up to ¢, which would be a contradiction.
Essentially we have to check that t(z1) can not have a sequence of witnesses which
was not definable in M. In the case where t(x) was a 3%,,,,-formula there was no
such problem because the search in M was only a search for standard finitely many

witnesses. We have to show that there cannot be such a z;. This is essentially done
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by showing that in the case of 3*-formulas for any generic & there is an M definable
sequence of witnesses.

For § € 3* we make the following definition:

Definition 4.8.1 « |FP Vo < b 0(x) iff Va < by a |FP ().
alFP Fz0(z) iff Ix o |FP (=)
alFP ==0 iff o |FP 0. &

Notice that for § € 3* if o [FP 0 for each extension (not necessarily a generic exten-
sion!) & of a then (M, &) | 6.

Observation 4.8.2 For each ag € P, each k € w and each b € I* the set {< a,ax >:
adagha€PpAal|FP (x)} is definable in M.

The problem we are concerned with at this stage is whether it is possible for given
ag and 0 € Y(by) to have o 2 ap with a |F Va < b3y 0(x,y) but for no 5 2 ag, €
Po: B|FP Vo <b3y 0(x,y) ?
Assume that there is a O ag such that o |F Va < by 0(x,y).

Claim: There is an extension a; 2 « such that Yo < body oy |F 0(x,y). Pick for
each j < by, o such that o C o’ C a! C ...a% = a; and such that «; |- Fy0(5,y).
Furthermore by lemma 4.6.4 each extension can be chosen to be of size < b}, for some
fixed [ € w (I can be chosen to be the number of “Va < by” quantifiers in 8). So ay

b5 extension of a. By lemma 4.6.4 for each x < by and witness y(z) there is

1sa <
a set Vi () with cardinality < bé for some fixed standard [. Let V := Us<ty Veu(e)-
Notice that Card(V) < 65" and that Va < by3y ay v |F(x,y). Let = (aq)v and
notice that 3 |FP Va < byy 0(x,y). We have just proved the first part of the next

lemmas:

Lemma 4.8.3 Let ¢(z) =Va < by 0(x,y, z) where § € X(by). There is r € w such
that if B 2 «ag is the b-extension of ag with the smallest zy such that

ﬂ ||_D \V/l' S bOEIy (9(1’,?},20)

then for any generic model (M, &) with & 2 o (M, &) |=¢(20) A V2 < 29 —2p(2).

More generally Let ¢(z) = JaogVug < boFaeVur < bg....Jay, 0(u, 7, 2) where § €
Y(bo). Then there is a standard number r which does not depend on the parameters
in v such that iof B O «g is the bi-extension of ag with the smallest zoy satisfying
B |FP 1p(z0) then for any generic model (M, &) with & 2 aq

(M, &) = ¥(z0) A Vz < 29 2tp(2).
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Proof: Let ag be given. Assume that for some a O «y
« ||_ \V/l'l S boflyl‘v’xg S bozll’k 0(1_;, 3])

but that for no 3 2 ag, B € P, B |FP Va; < byJyr...0(%, ). There is o/ O a such
that Vay < bodyr o |F Vag < bodys....0(Z, 7). By induction on k, we can assume

that we have already proved that if for some fixed z1 and ¥, 2O «, § |F Vay <

b5 =1 extension, where I is the number of

k+{-2
b

boTys...0(Z, ), B can be chosen to be an

V-quantifiers in §. There is o” O o' (making b2 -extensions of '), such that

\V/l'l S boflyl‘v’xg S bozlyz Oé// ||_ \V/l'g S 600(5, 3])

Continuing like this, after k steps we obtain a* O « such that a* |FP <. We can not
use a* as 8 in the lemma, because a (and therefore o*) could be too large. But by
lemma 4.6.4, there are b’g sets Vi y(e1) s y(ws),zry(zy) €ach with < bé elements where

[ can be taken to be the number of V-quantifiers in §. Let

l’lgbo l’ggbo l’ksbo

Notice that Card(V) < b Let 8 := ajy and notice that 3 |FP <. This contradicts

the assumption. a

Corollary 4.8.4 For any generic map & (M, &) = 3*~LNP

Proof: Let & be an arbitrary generic map. We need to show that (M, &) | Jz¢(z) =
Jdrg < aVz < 2o (x0) A =90(z). Suppose (M, &) | ¢(a) for some a € M (otherwise
there is nothing to prove). According to the completeness property there is g C &
such that ap € P and ag |F ¢(a). Assume ag € Py. Consider D C P defined by
Di={alaZa V (a2agAJzalFP () AVy <z(Va' D ad P ¥(y)))}.
From what has already been proved it follows that D is well defined, dense and quasi-
definable. For any generic G C P there are a; € D N G. By lemma 4.8.3 for any
B3Da (in particular & ) (M,B) E Jaey(x) = Jrg < aVz < xg (a0) A 2p(2). As

a1 € & we are done. O

4.9 Proof of the first finitisation principle

The previous section has given us a “generic model” (M, &) which satisfies the 3*-LNP
scheme. Clearly & induces a miniaturised version of S on [0,n). Constants, relations
and functions on S correspond to constants, relations and functions on [0,n). Now |
prove the important fact that all the miniaturised relations etc. are 3 N V-definable

in (M, &).
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For each relation R C S” (with quantifier-free definition in M), we define the

corresponding miniaturised relation R,,;,; “existentially” by:

{(x1, 29, .., 2,) | F21, 22, ey 20 NiZE a(x, z) N R(z1, 22, 0000 20) )
Notice that R,,;,; also has a “universal” definition:

{21, Tay ey t0) | V21, 20y ey 20 N0 a4, 2) = R(21, 22,000 20) }-

Add the miniaturised relations to the language. Consider the sub-language Lini

which contains L and names for the miniaturised constants, relations and functions.

Lemma 4.9.1 [f1)(z) € Lo s a X} -formula with all quantifiers restricted to [0, c),
there is a I*-formula *(x) such that:

{r<c: Ma)Ey@)}={r<e: (Ma) P (e)}

Proof: Let 1)(z) € Lyin be a given X% property. Replace each appearance of a
"miniaturised” relation R,,;,; by either the 3-definition or the V-definition according
to whether the R,,;,; appears positively or negatively in ¢ (x). Notice that this gives
an F*-formula ¢*(x) which satisfies the lemma. O

Now we are ready to construct a model of T, («) in which there is a bounded
sub-structure S,,;,; on [0,n) where n(n) such that S, | 0<n(§). We have already
got a countable model M of true arithmetic in which a possibly unbounded model of
(9(]%) is coded. We have n, by, c € M as above. Let & be an arbitrary generic map, as

described earlier. Let
M ={e<c¢: dkew a< fs(fo)w(n)}

Let R be the set of all Lpini-definable relations on [0,n). It follows from what has
already been proved that (M, ]%) [= X2-IND scheme, hence because of corollary 3.4.5
there is an expansion of R to S O R such that (M,S) = T'(a). As second order
existence statements are absolute with respect to expansions, we have proved the

main theorem in the Tl(oz)—case.

Corollary 4.9.2 Let S be a countable mathematical structure which can be encoded
in a non-standard model Ml which satisfies true arithmetic. There is a model of T3 ()

in which S appears as a bounded set.

Notice that our results hold in the special case where T'(«) is the second order
theory which consists of
1) Induction for existential formulas.

2) The V N 3-comprehension axiom scheme.
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5 Separating T)(a) and S3(a)

In the process as a by-product we have obtained a new proof of the separation of the

theories Ty (a) and S3(«).

Theorem 5.0.3 For any generic map & (M3, 5’&) E Ty ().
If S defines two disjoint infinile sets, then for any generic map & (Mg, S) [~
Sa).

Proof: The first part of the theorem has already been proven. It follows from the
examples below that the second part holds at least for some constructions (i.e. for
some S). To prove the second part let U(x) be a new unary predicate symbol which
holds exactly in one component of S. Let U,,;,; denote the corresponding predicate

i Lini. Put foow =] | and fres = z!*l. Consider the formula
A(z) = Fuy < ug <nug —ug >0 Va € [ur, ug) Unpini(@).

Clearly A(k) is valid for all standard & and hence, by overspill, A(z) holds for some
non-standard z (and z <|n |). But this is a contradiction as for any given interval of
length < 6 the set of a € P such that o maps an element of S\ U into it, is dense
and quasi-definable.

According to [5] ¥5-PIND is sufficient to ensure the validity of ¥3-LMAX principle
which in turn implies the validity of the ¥5-overspill just used. a

Notice that if S is an infinite (co-countable) set with no additional structure then
(M, S5) = Sy(e). This shows that the second part of the theorem becomes false if

there is no condition on S.
Corollary 5.0.4 T)(a) # S3 ().

This is a new proof of the result which was first proved in [8].

6 Some examples

Example 6.0.5 Fixp > 2. There is an infinite model A where “R defines a partition

—

of A into disjoint p-subsets”. Let n(n) n is not divisible by p’.

According to the first principle T*(«) I/ Count(p).

In [2] and [16] it is shown that this holds for much stronger theories.
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Example 6.0.6 According to the first principle:

(1) T' )t/ "every linear ordering R (of a finite set) has an isolated point”.

(2) T )t/ "every linear ordering R (of a finite set) is discrete”.

(3) T' )t/ "every linear ordering R (of a finite set) is a well ordering”.
By the results below in all cases T (a) can be replaced by S3 (o).

Notice that example 6.0.6 shows (using Ty (a) = WOA, Proposition 8.0.9) that the
well ordering axiom for arbitrary linear orderings (WOA*) R does not follow from

WOA.

7 Another principle

The second finitisation principle says that for any given r € N if some second order
existential relational property P = P(E,X) is only witnessed by infinite sets (in
the real universe), there are models of Ty («) in which there is an n and relations
RC [0,7) such that no subset X C [0,n) with size < logj(n) witness P(E,X).

Theorem 7.0.7 (Finitisation principle) Let 6 = ElX@/)(é,X) be a second order
existential formula where ¥ is a first order formula in the language L(ﬁ, X,=). Let
k € N be a given natural number. In general (1) implies (2):

(1) There is a countable model S of the language L(é,:), such that for no finite
set X C S, S E¢(R,X).

(2)  THa)+ “InVX[0,n) Card(X) < (log(n))* = —'L/J<H(R),X)” has a model.

This principle states that if a second order existential property has (in the real
universe) a countable model where the existential quantifier is not finitely witnessed
then it is consistent with T3 («) (and by the results below S3(«)) that there is a finite

model where the existential quantifiers is not “polylog”-witnessed.

Example 7.0.8 In the real world there is a binary tree with no finite branch. By the
second finitisation principle T, is consistent with the existence of a tree T C [0,n),
which has no branch (coded by a number) of length < logh(n)”.

In the real word there is a vector space over Zy with no finite basis, so by the

second principle there exists a model of T) () in which there exists a vector space
V C[0,n) with no basic (coded by a number) of size < logk(n)”.

Proof: Proved by a construction very similar to the proof of the first finitisation

principle. Pick S according to (1). Choose S as a countable model in the standard
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model on say the even numbers. Extend the standard model to an elementary equiva-
lent countable non-standard model. Pick non-standard numbers by < n < ¢ as above.
Consider the same set of forcing conditions (P, C) as above. The forcing conditions
ensure that each generic & maps small (i.e. < bf points) M-definable sets to “small”
M-definable sets. The map & induces a miniaturised structure .S,,;,; with underlying
set [0,n). For each M-definable subset B C [0,n), A := & !(B) can not witness
;/)(é, A) because the set A has cardinality < b} which is finite in the model M. As in
the proof of the first principle without any complications we construct a model Ty («)
where ¢<n(é, X)) is not witnessed by any set A of size < b. O

8 The well ordering axiom in S,.
The well ordering axiom (WOA) is the principle:
WOA VX(XZ£0=Fyye XAVz<y z¢&X))

WOA says that “<” well orders any set X, and should not be confused with the
stronger principle WOA™ stating that any linear ordering of a bounded set is a well

ordering.

Proposition 8.0.9 (Suggested by A.J.Wilkie) WOA is equivalent to T)(a) in
models of S5(«)

Proof: Tj(a) = WOA: To reach a contradiction let (M,ﬁ) E Ty(a) + “WOA.
There is R € S such that R # ) and such that (M, S) = Vy(y € R = 32 <y z € R).
As R # 0 there is ug € R such that:

(%) (M, S) EVy <u(y e R=32<y €R).

Let Y ={zeM: 32€ R z<xAz<ug} CM Notice that Y is X}-definable in
M with set parameter R (Y is not required to belong to 5’) As Y2 LNP & Y- IND,
and as Y is non-empty, there is a minimal ¢ € Y. By definition of Y there is z < xg
such that z € R. By (%) this contradicts the minimality of .

WOA = Tl(a) : Let (M,S) = Si(a) + WOA be an arbitrary model. Let ¢ €
Y% (=1I}) be an arbitrary formula with possible set variables Z eS8 Ttis enough
to prove that the Y¢-definable set Y := {z € M : 3z < #(2) ¢(x,z,2)} C M has a

smallest element if it is not empty. Pick ug € Y. To this end consider

H(w) = Fwy < wpFwy < up w = wy - ug + w2 A P(wy, wa; Z)
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As ¢ € A' Ry :={w < b| d(w)} € S for any b,u € M. Choose b such that for
each pair (z, z) with z < #(x) and * < wg, (2,2) < b. According to WOA R, ., has a
smallest element wy. Let yo be the unique element with yo - ug < wo < (yo + 1) - wo,
and notice that M |= yo = min(Y). We used the fact that strict-$-LNP is equivalent
to X5-IND over Si(a) . So to prove Proposition 8.0.9 all that remains is to prove
this, and the equivalence of X2-IND and strict-X5-LNP over S1(a). Both these facts
follow from [4],[7]. O

8.1 A finitisation principle for S}(«)

As already proved Ty («a) is equivalent to the well ordering axiom WOA over the
theory S (). In this section I show that S3(«a) does not prove this axiom, and thus
as a corollary we get a new proof of the separation result S;(a) # Ty (). Parts of
the argument are very similar to the proof of the two previous principles so 1 only

emphasise the new ideas in the construction.

Theorem 8.1.1 (Finitisation principle for S3(«)) Let ¥)(<, R) be a sentence in
the first order language L(=<, R,=). Suppose that (<, R) has an infinite model S
where < defines a total linear ordering. Then InIU C [1,n] Yu(<, R) holds in some
models of S3(a).

Proof: I put the emphasis on the new ideas. Let (N, Sy, Ry) be an expansion of
the standard model N to an infinite model of 5, where R C S”, and where ¢ (<, R)
holds. Let (M, Siarge, Fiarge) be an elementary equivalent (in a language expanded by
relation symbols for Rjyge and Siage) non-standard model. Let n € M be a non-
standard number, and let I* C M be the initial sequent defined by

I":={meM: 3ttermm < t(n)}.

A X3 (I*)formula 0, is a ¥°-formula where all parameters belong to I*. Notice that
all quantifiers in such a @ also are restricted to I*. Choose by such that [* < 2% and
such that ¢ < n. Notice that sharply bounded quantifiers in a X!(7*)-formula are
bound by bg.

We want to construct U C [1,n] and R C U” such that (<, R) is forced true,
and such that the polynomial induction scheme

(0(0) A ¥a(6(|5) = 6(x))) = Vab(x)

is forced true for all ¥5(I*)-formulas 0. Let < 0,(x),a; >,< 0,a9 >,.... be an
enumeration of the countably many pairs < 0;(z),a; > where 0;(z) is a X°(I*)-

formula with one free variable (namely ), and where a; € I*.
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Let Uy = Wy = Ry = 0. Choose dy < ¢g € M with eg — do > b, and eg < % Let
Jo=10.

In general after stage j we have constructed U;, W; C [1,n] and R; C U7, such
that U; N W; = 0. The map f; maps U; bijectively onto a subset of Sage, such
that < uy,..,u, >€ R; precisely when Riapee(f(u1), ..., f(u,)). Furthermore, we have
| U; |<j-bo, | W, |< 7+ bo, and [d}, e;] such that e; —d; > b5. The points in U; are
very sparsely distributed in the sense that Vuy # uy € U; | uz — uq |> e;.

Now consider < 8;41(x),a;41 >. Our aim is to force

0,1(0) AV (15]) = Ops1(2) = 13 (a10)

true. Let aly, = aj41,....,a7f] = La%lj,... for r < [log(a;41)]. Now for each

u € [d;, e;] define the number [(u) € M as the largest number (< log(a;41)) such that

there are extensions U}, 2 U;, Wi, D Wj, and R, | D R;, such that

(1) (Ui, R,,) are isomorphic by an extension fi,; D f; to a subset of Sjarge.
(2)  The elements in U7, has pairwise distance > u
3) | U;+1 <G +1)-bo
(@) Wi < G+1) b
(5) At least I(u) of the ¥%(I*)-formulas 0(alyy)s s G(a][ff(aj+1)]) are forced true.
Now because [ takes less than by values, there must be an interval [d;41,€;4+1] C [d;, €]
such that / is constant on this interval, and such that e;41 —d; 41 > b§. Choose such an
interval, and extend U;, W; and R; by letting U;q := Ul ,, Wiy := Wi, R =
R
Proceed with the construction in this way:

Let U := Ujg, U;j and let R = U;e, R; and notice £ C U”. It is not hard to show

that f = Uje, f; defines a bijection from the miniaturised model U on [1,n] to the

and f;y1 := f},, where these extensions correspond to the case where u = €.

large model Siage. This ensures that (<, R) holds in the generic model.
The X5(7*) polynomial induction schema is forced true. To see this suppose

contrarily that for some £ € w in the generic model we have
T
01(0) A ‘v’x(@k(tgj) = O(x)) A 0k ag).

In stage k in the construction we have forced a maximum number of the X} (7%)-
formulas 0y.(ay.), Ox(a), .., Gk(ai), ., 0(0) true. As obviously 6y (ax) cannot have been
forced true, there must be j < [log(ay)] such that Gk(af—l) is already forced true
(after stage k) while 0j(a]) is not forced true at this stage (here we are using that
the search procedure, for fixed u € [dy, ex], is M-definable). Could it be that Gk(ai)
get forced true at a later stage &' > k7 No, because if this were the case for some

u € [dg,e], [ would take a larger value than [(eg), which would be a contradiction.
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Corollary 8.1.2 There are models of Sy(a) in which WOA fails.

Proof: Let ¢)(<) :=Vady y < «. This sentence holds in an infinite model (in the real
world), so by theorem 8.1.1 the sentence Va € UJy € U y < x holds in some models
of S3(a). O

This gives a new proof of the separation first proved in [10]

Corollary 8.1.3 S3(a) # Ty (a).

9 Lifting the finitisation principles

Now I show that both finitisation principles for Ty («) hold for the theory S3(«) but
both fail to hold for 7} («). This, in particular separates the theories S3(«a) and T3 («).
In this I rely heavily on a proof sketch ed by J.Krajicek (personal communication).

The proof relies again strongly on S.Buss’ result [5], that Sit' (a) is VX2, | -conservative
over Ti(a).

Theorem 9.0.4 The first finitisation principle holds if T'(«) is replaced by S;()

Proof: To get a contradiction assume that §(R) = Vay3yr...Vardy, é(:i", U, R) (é
is quantifier free) does have an infinite model, but S3(a) F Vn ((n) = VR <

n =0.,(R)). Consider the skolemisation

0(1’1,Fl(l’l),l'z,FQ(l’l,l’Q), ...,l’k,Fk(l’l,l’Q, ,$k>, R)

of §(R). By the first finitisation principle 73 () + 3In (n(n) A IR < nIFy, .3, <n
Vi<n é(:z;l,Fl(xl)....; R)) is consistent.

Add an extra constant 7, extra function symbols Fy, I, .., Fi and an extra re-
lational symbol R to the language. Call this language Ly. The first order theory
TYn, Fy, ..., Fry R) + Vo <n é(:z;l,Fl(xl), <oy Fi(%); R) is consistent.

Now by theorem 3.5.3 S2(n, Fy,...., Iy, R) + Vo < n é(:z;l,Fl(xl), s F(); R) is
consistent. As a skolemisation of # implies 6 (even in pure predicate logic) this
contradicts our initial assumption about S3(«a). O

This give us the following:

—

Corollary 9.0.5 Let 0(R) be any first order property in some relational language
L= L(é) Then the following are equivalent:

(a) Predicate logic F (9(]%)
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(b) T'(a) F ¥ 0..(R)

(c) S2(a) F Vn 0., (R).

Proof: Let T be T'(a) or S3(a). Assume that (9(]%) Assume that 7" does not prove
Vn 0<n(§). There exists a non-standard model M* of T in which —|(9<n(é) holds in
some initial segment [0,n), so ([O,n),é) = —ﬂ(ﬁ), But then by the completeness

theorem 0(R) is not provable in predicate logic.

s

Contrarily if predicate logic does not prove §(R) there is a model S of —ﬂ(ﬁ), If

—

S is finite certainly Vn 0.,(R) does not have a T-proof (because T is consistent). If
S is infinite, by the finitisation principle dn —|(9<n(é) is consistent with T O

10 Separating S;(a) and T5(«)

Theorem 10.0.6 The statement “Every linear ordering of an interval has a smallest
element” is provable in TF(a), but not provable in S3(a).
The statement “There is no dense linear ordering of an interval of length > 27 is

provable in T; () but not provable in S3(«).

Proof: The second part of the claim follows from the finitisation principle for S3(a).
To prove the first part let (M, S) = T7(«) be an arbitrary model. Assume that R is

an M-definable linear ordering of an interval [0,n) for some n € M. Let
Y={be[0,n): Jag < WVa <baxRay = = = ap}.

Notice that Y is Zg—deﬁnable andthat 0 ¢ Yand bcY =b+1c Y for b<n. As
(M, S’) = X5 —IND, (n—1) € Y. By definition of Y, R has a smallest element. The
second part follows from the first part. a

This gives us a new proof of
Corollary 10.0.7 S3(a) # T3 (a).

The following were proved in [10]. Above we have obtained a new proof of the

second part of the theorem.

Theorem 10.0.8 The weak pigeon-hole principle (WPHP ) is provable in T} (), but
not provable in S3(a).

Proof: The second part of the theorem has already been proved. The first part
follows from the fact that S3(a) is VX4-conservative over T2(a), that WPHP is a

V¥t -formula and from the following sub claim:
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Lemma 10.0.9 WPHP is provable in S3(a).

Proof: A careful analysis of the Sy-proof in [12] (see also [8]) of WPHP shows that
the proof is actually a SJ(R)-proof. O

11 Lifting the second principle

For the sake of completeness let me sketch how the second finitisation principle can

be lifted to S3(«).

Theorem 11.0.10 Let § = dX ;/)(]%,X) be a second order existential formula where
Y can be any first order formula in the relational language L(é,:). Let k € N be a
given natural number. In general (1) implies (2):

(1) There is a countable model S of the language L(é, =), such that for no finite
set X C S, S = 0(R,X).

(2)  S2(a) + “InVX C[0,n) Card(X) < (log(n))F — ﬁ0<n(é,X)” has a model.

Proof:(sketch) Essentially we lift the result as we did for the first finitisation principle.
Suppose that S3(a) b VYV R C [0,n)3b @/}<n(é, Seq(b)) where ., = Va; < ndzy <
n..dey. < n é(:i", n, é, Seq(b)) with 0 quantifier free.

We have already proved the theorem in the T3 («a)-case, so

— —

Ty (a) + V7 < n‘v’b—'é(:zjl,Fl(xl),xg, ooy Frum, R, Seq (b))

is consistent, where the language is extended by extra relation symbols n, é, Fy, ... F,.
By S.Buss’ conservation result, (theorem 3.5.3), which also works in this case where

we have added extra function symbols to the language
S2(a) 4+ YT < nV¥b —0(x1, Fi(x1), ..., n, R, Seq(b))

is consistent in this extended language. Clearly this contradicts our initial assumption.
O

Notice the following phenomenon:

Corollary 11.0.11 If
3X C [0,n) Card(X) < (log(n))* A 0., (R, X)

holds in the real world for some constant ky but does not hold for some other constant

ky < ki, S3(a) does not prove the formula for any constant k.

28



12 Some applications

By use of the second finitisation principle we get the following theorem. The last case

(3) shows that the theorem is not entirely a curiosity.

Theorem 12.0.12 If k is a natural number, then S3(«) does not prove any of the
following statements:
(1) “Every vector space V C [0,n) over Zy has a basis of size < log"(n)”.
(2)  “Every binary tree T C [0,n) has a branch of length < log®(n)”.
(3)  “Fvery total irreflexively oriented graph on [0,n) has a dominating set of size
< logF(n)”.

On the other hand T3 («) proves (1)-(2).

At present, it is not known whether T3(a) F (3). A proof of even Sy(a) F (3) would
have interesting consequences. (See [13] and [10] for more details).
Proof: The first part of the theorem follows from the second finitisation principle (in
case (1) from a slightly modified version of the principle) and the facts:

There is an (infinite) vector space with no finite basic.

There is an (infinite) binary tree with no finite branch.

There is an (infinite) irreflexively oriented graph with no finite dominating set.

To prove the last part of the theorem, assume V' is a vector space on [0,n) with
no coded basic. Pick independent vectors vy, v, ..., V|10g2n)|+1 and get a Al{—deﬁnable
injective map from [0, 2n) to [0,n). This violates WPHP which are provable in T3 («)
by (4] (or [3]).

Finally T7(«) proves that every tree T' C [0,n) has a coded branch. Let 7™ :=
{z €T : 3bbcodes a path of length < [log(n)|+1 from the root to =}. Notice that
T~ also have the I1}-definition: T* := {z € T : Vb b codes a path from the root to z
and the length of the path is < [log(n)| + 1}. Define a A}-relation by F(x) = y iff
Vb b codes a path x4, xs,..., 2, from the root to x, and bit(y,7) = 1 < x; is a right
son. Again we get a contradiction to the WPHP in [11]. O
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