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Finitisation in Bounded Arithmetic

S�ren Riis�

BRICSy

June ����

Abstract

I prove various results concerning undecidability in weak fragments of Arith�

metic� All results are concerned with S�
� � T �

� � S�
� � T �

� � ���� a hierarchy of

theories which have already been intensively studied in the literature� Ideally

one would like to separate these systems� However this is generally expected

to be a very deep problem� closely related to some of the most famous open

problems in complexity theory�

In order to throw some light on the separation problems� I consider the

case where the underlying language is enriched by extra relations and function

symbols� The paper introduces a new type of results� These state that the �rst

three levels in the hierarchy �i�e� S�
� � T

�
� and S�

�� are never able to distinguish

�in a precise sense� the ��nite	 from the �in�nite	� The fourth level �i�e� T �
� � in

some cases can make such a distinction� More precisely� elementary principles

from �nitistical combinatorics �when expressed solely by the extra relation and

function symbols� are only provable on the �rst three levels if they are valid

when considered as principles of general �in�nitistical� combinatorics� I show

that this does not hold for the fourth level�

All results are proved by forcing�

� Bounded Arithmetic

The discovery of abstract set theory was like the discovery of the outer space� Set

theory provides us with a telescope and has undoubtly a�ected the general view of

the mathematical universe�

�This work was initiated in Oxford University England�
yBasic Research in Computer Science� Centre of the Danish National Research Foundation�
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I view Systems of Bounded Arithmetic as a promising framework of studying the

mathematical microcosm� I suggest that questions in complexity theory reside out�

side the macro�world of ordinary mathematics� I belive that most deeper questions

in complexity theory in a strong sense require re�ned �perception�� Many principles

which reside deep down in most mathematical arguments	 appear equivalent from the

normal perspective� 
Example� Many elementary counting principles	 e�g� the di�er�

ent versions of the elementary pigeon�hole principle�� Through a microscope things

are perceived quite di�erent� Certain powerful extensions of Bounded Arithmetic

could provide such a microscope


Consistency	 not truth	 is the right starting point when we consider universal prob�

lems� What matters must be deductive powerful viewpoints� Certain extensions of

subsystems of Bounded Arithmetic seems to provide a very promising basis for this�

This paper is the �rst in series of planed papers� In these my intension is to iso�

late more and more powerful	 
but unsound� systems of Bounded Arithmetic� Notice

that if a universal statement 
or more generally a ���statement� � is proved from a

collection of �false� 
in the standard universe N� axioms	 which are consistent with

Bounded Arithmetic	 then we know a priori that � must actually be true� Because

if � ware false this would be witnessed in the standard part of each model M of

Bounded Arithmetic	 and so according to G�odels completeness theorem this would

contradict the consistency assumption� This observation also seems to apply to the

conjecture P �� NP� To see this recall that P �� NP is equivalent to the statement

that �for all programs P	 for all k � N	 there exists an input x	 such that 
a� P uses

less than j x jk�steps	 and either 
b�� accept x but x does not satis�es ��SAT or 
b��

P does not accept x	 but x is an instance of ��SAT�� Now if the existential quanti�er

in �there exists an input x� is bounded by some term t	 we obtain a ���formula �

which implies P �� NP� According to the previous remark	 if a 
consistent� system of

Bounded Arithmetic 
however unsound� proves �	 then actually P �� NP�

The idea of renouncing central and �obvious� axioms is certainly not new� We

recall that there are models in which the self evident parallel postulate of Euclidian

Geometry fails	 and the wrong principle that each line has many parallel lines�hold

true�

� Making in�nite structures �nite

We are interested in constructing consistent 
but unsound� systems of Bounded Arith�

metic� In this paper I show that there are fragments of Bounded Arithmetic which

have models M in which any countable structure S 
up to elementarily equivalence�
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can be elementarily embedded as a ��nite� 
in the sense of M 
� structure�

In this section I will illustrate the basic method of this type of result� Consider the

impossible ideal that any consistent theory � has always a �nite model� I show that

there exists a world in which this ideal is realised� In this world the usual induction

axioms only hold for purely existentially de�ned sets�

Construction� According to the completeness theorem	 there is a countable struc�

ture M non�isomorphic	 but elementarily equivalent to N	 so the same set of L�

expressible sentences holds in the two structures� There must be an initial segment of

M isomorphic to 
and identi�ed with� N� Usually the elements in N are called stan�

dard numbers while the numbers in M nN are the so�called �non�standard� numbers�

From an observers perspective outside M 
i�e� from our perspective� there exist

�numbers� n � M which are in�nitely large 
i�e f�� �� ����� ng� contains in�nitely many

numbers�� However observers inside M would either not be able to express this	 or

if we allow them to quantify over second order objects 
de�nable in M � they would

disagree� These observers of M would believe that f�� �� ���� ng was �nite simply

because it would be �nite in their universe M 	 where they have fewer functions and

therefore think more sets are �nite
 So far all have been folklore� Now the basic part

of the argument runs along lines	 similar to those in the proof of Theorem �� in �����

Suppose � states that there exists a bijection from some interval f�� �� ��� ng to

the universe M � From our outside view f�� �� ����� ng contains in�nitely 
countable�

many numbers	 and so our universe must contain a bijection f from f�� �� ���� ng to M �

Suppose now that we actually add a such a map f which maps f�� �� ���� ng bijectively

to M � Suppose also that we extend the language L with an extra function symbol
�f referring to this f � Also assume that we add names for each of the countable

many elements in M � Let us call this new language L �f � Clearly it is not possible for

the model 
M � f � to satisfy the principle of induction� However if f is constructed

carefully it turns out that we can force the model to satisfy some amount of induction


In this example I want to show that one can ensure that 
M � f � satis�es induction

for sets which can be existentially de�ned by L �f �formulas� First take an outside view�

The model M is countable so there are only countably many existentially de�ned sets

S�� S�� �� de�ned by formulas ��
x�� ��
x�� ���� of one free�variable� List these formulas

such that each formula appears in�nitely many times in the list� At the kth�step in

the construction consider the formula �k
x�	 which as an example could be

�u �f 
x� ��� � � � u�

Suppose that in the previous step f has already been de�ned on a �nite set A �

f�� �� ���� ng with values in B � M �

�



We want the least number principle to be true for the formula �k
x�� This is done

by �forcing� �k
a� to be true for the smallest possible a	 i�e� by letting f
a� ��� be

even for the smallest value a where this is consistent with the fact that f is a ��� map�

The conditions a has to satisfy can be expressed in the language L without reference

to �f � So in M we are able to search for such an a by a simple search procedure	

which only depends on how f has already been de�ned on A� From an outside view

��� does not well order M 	 so for a moment we take a look at things from inside M �

From this perspective ��� is a well ordering 
this is possible because there are fewer

sets in M than in the real universe�� So the search procedure must terminate with

some output a� Observers whether inside or outside M 	 always agree on �rst order

properties	 in this case	 whether a actually is the smallest such element�

Now go back to the real world outside M and proceed to the next step where the

formula �k��
x� is considered� Again we force �k��
a� to be true for the smallest

possible a� Alternatively if we cannot force �k��
a� to be true for any a we know it

will never be true 
even at doomsday when f is constructed for all formulas��

We must ensure that f eventually de�nes the required bijection� In the present

construction this automatically happens� For instance	 for each a � f�� �� ���� ng the

formula �
x� �� �y �f
x� � y � x � a eventually forces a to belong to f�� �� ���� ng 
if

it does not already do so�� The other properties follow for similar reasons�

Now let � be any consistent theory� According to Skolem�L�owenheims theorem	 �

has a countable model S� If this model is in�nite we assume that N is the underlying

set� If we in the above construction start o� by choosing a countable non�standard

model 
M � SM � elementarily equivalent to 
N� S�	 we get a model of existential induc�

tion in which � has a �nite 
in the sense of M � model� Thus we have shown�

Proposition ����� Any consistent theory � has a model S� which is embedded as a

�nite ��bounded� set in some model M �

Actually suppose that L is a countable language which extend the language of

arithmetic� and suppose that L contains unde�ned relation and function symbols for

the language of �� Then the model M can be chosen such that it satis�es the induction

scheme for existential L�formulas�

This shows that any structure S	 for example structures of strong systems like set

theory	 can be embedded as ��nite� sets in some super�structure� It also shows that

we can always assume that a given mathematical domain is ��nite� given that our

meta�theory 
falsely� believes that all sets 
and maps etc� in the universe are purely

existentially de�ned�

As the pigeon�hole principle fails for in�nite sets	 as a corollary we obtain theorem

�� �����
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Corollary ����� �A�Wilkie� J�Paris	 The system I�
f� does not prove that f sat�

is�es the pigeon�hole principle�

The results in this paper resemble the ideas just described� However we need to be

more careful�

It follows from the main results that countable structures can always be assumed to

be 
up to elementarily equivalence� �nite in certain fragments of Bounded Arithmetic�

As we have already indicated this phenomenon is closely related to the fact that the

pigeon�hole principle fails heavily in these fragments� And it illustrates the microscope

metaphor� One just has to look through the microscope from the right end


� Prelims

First let me recall some basic notations and facts	 essentially all from ���� Let BASIC

denote a �nite set of quanti�er free formulas relating constants	 functions and relations

in the �rst order language L � L
�� ���� �� j � j� �� bx�c������ Here � denotes the

function given by a�b � �jaj�jbj where jaj � dlog�
a � ��e� An example of a proper

choice of BASIC 
without coding functions� can be found in ���� It is convenient

to add other functions to the language� We will assume that a function 
w�x which

takes the value of the xth element in the sequence coded by w is part of the language�

As long as additional functions are polynomially time computable	 the results in this

section can be stated with no change�

In the �rst order case atomic formulas are of the form t � s or t � s where s� t are

terms in L	 while in the 
monadic� second order case additionally	 atomic formulas

can be of the form t � X or X �� Y � 
Where ���� denotes equality between second

order variables��

A �rst 
second� order formula is bounded if all its quanti�ers are of the form

�����x � t��� or �����x � t����� Second order quanti�ers are not allowed in bounded

formulas� Atomic formulas X �� Y are not allowed because they smuggle in an

unbounded �rst order quanti�er 
Extensionality axiom below��

A �rst 
second� order formula is sharply bounded if it is bounded and all quanti�ers

are of the form �����x�j t j ��� or �����x �j t j ����

The class of bounded formulas can be strati�ed as follows� Let �b
� � �b

� be the

set of sharply bounded formulas 
�rst or second order formulas depending on the

context�� Let �b
i�� 
 �b

i�� � � i 	 � be the smallest class of formulas which contains

�b
i 
 �b

i � and is closed under �	 
	 sharply bounded quanti�cation	 and bounded

�



existential quanti�cation 
bounded universal quanti�cation�� Notice that	 except for

minor syntactical changes	 any bounded formula belongs to some �b
i and to some �b

i�

Finally let strict��b
i�� � �b

i�� denote the set of �b
i���formulas which are of the

form �y� � t��y� � t�����yr � tr � where � � �b
i � Similarly	 let strict��b

i�� � �b
i��

denote the set of �b
i���formulas which are of the form �y� � t��y� � t�����yr � tr �

where � � �b
i �

��� The �rst order theories

Let Si
� denote the �rst order theory consisting of BASIC	 together with the following

�polynomial time� induction scheme	 �
�� � �x
�
bx
�
c� � �
x�� � �x�
x��	 where

� � �b
i � This scheme is usually denoted by �b

i �PIND�

Let T i
� denote the �rst order theory consisting of BASIC together with the �b

i in�

duction scheme	 �
�� � �x
�
x�� �
x� ���� �x�
x�	 where � � �b
i � This scheme

is usually denoted by �b
i �IND�

��� The second order theories

The 
monadic� second order versions of these theories Si
�
�� 
T i

�
��� consist of BA


SIC	 �b
i �PIND 
�b

i �IND� together with the extensionality axiom

EXT � �X�Y 
X �� Y � �x
x � X � x � Y ���

We do not allow the full comprehension axiom	 but follow ��� and equip Si
�
�� 
T i

�
���

with the following �NP 
 co�NP�comprehension axiom�scheme� 
�b
��comprehension�

�x
�
x� 	z� 	Z�� �

x� 	z� 	Z��� �X�x 
x � X � �
x� 	z� 	Z��

where �� 
 � �b
��

The underlying logic of these theories is second order predicate logic with second

order equality ��� It is easy to prove that no deductive strength is lost if X �� Y

is taken to be short�hand notation for �z
z � X � z � Y �	 and if EXT and the

equality axioms in the underlying logic are dropped�

��� Models of second order theories

A model of a second order theory T is a pair 
M � �R�	 where �R � P 
M �� the power

set of M 	 and where M is a model for the �rst order part of T � The satisfaction

relation j� is de�ned inductively such that second order variables are taken to be the

subsets of M which are in �R� The well known main advantage of using this notion of

�



a model	 without requiring that �R � P 
M �� is that the Compactness Theorem	 the

Completeness Theorem and Skolem�L�owenheims Theorems hold with minor changes�

These facts follow easily 
pointed out by A�J�Wilkie in Personal communication� from

the natural isomorphism�

Observation ����� �Transitive collapse	 Let M � � M
�
num � M �

setbe a �rst order

model which contains two kinds of elements� One kind�x�y�z����� denotes numbers and

belongs to M �
num � the other kind�X�Y�Z����� denotes 	sets	 and belongs to M �

set � If  �

is a binary relation on M � � with domain M �
num and range M �

set such that

M
� j� 
X � Y � �x
x �X � x �Y ��

then the map �collapse � X �� fx � M �
num � M

� j� �x �X�g maps M �
set bijectively

onto a class �S of subsets of M �
num �

Furthermore 
M � �S � �� 
M �
num � �collapse�M

�
set� is isomorphic to M � �

From this we get the following version of the Completeness Theorem�

Proposition ����� T � EXT is consistent if and only if T has a model�

T � EXT � � if and only if 
M � �S � j� � for all models 
M � �S � j� T�

��� Some special results for Si

����

Now I prove that the second order theories Si
�
�� are conservative over the corre�

sponding �rst order theories	 in the sense that any model M j� Si
� has an expansion

to a model 
M �  S � j� Si
�
��� A similar result holds for the theories T i

�� I prove a

slightly more general result� Let ! be a set of formulas �
x�	 which might contain

free second order variables and free �rst order variables other than x�

De�nition ��
�� By a !�substitution scheme � we will understand a �rst order

formula �� with no second order variables	 which contains meta�variables F�� F�� ���� Fl�

To eachmeta�variable Fj is associated a term tj� A substitution instance �
�
x��� � �

! is obtained by replacing each Fj in �� with �
tj�� �

Example ��
�� �b
i
���PIND and �b

i
���IND are both �b
i
���substitution schemes�

De�nition ��
�� In the following let T 
i� � � � BASIC� EXT	 where � is a �b
i �

substitution scheme� In T 
i�	 BASIC could be any set of �rst order formulas� �

Proposition ��
�
 If 
M � �R� j� T 
i� there is an expansion �S � �R such that


M � �S � j� T 
i� � �b
� � comprehension�

"



Proof� Assume that 
M � �R� j� T 
i� is a given model� Let

�S � fS � M � ��i
� �i
x�X��X�� ����Xk�� � �b
�� i � �� �

��R�� R�� ���� Rk � �R


x � S � ��
x�R�� R�� ���� Rk�� ���
x�R�� R�� ���� Rk��g

I claim that 
M � �S � j� T 
i� � �b
��comprehension� According to proposition �����

EXT holds in all second order models	 in particular 
M � �S �� BASIC holds in 
M � �S �

because it is a set of �rst order formulas� It remains to be shown that 
M � �S � j� �

and to show 
M � �S � j� �b
��comprehension�

Sub claim �� 
M � �S� j� �
�
x�� for all � � �b
i � Notice that if �
x� S�� S�� ���� Sk� is

a �b
i�formula with set parameters from �S	 there is a �b

i�formula 

x�R�� R�� ���� Rl�

with set parameters from �R	 such that for all c � M


M � �S � j� �
c� S�� S�� ���� Sk�� 

c�R�� R�� ���� Rl��

Here 
 is obtained from � by the following� First	 by replacing each appearance of

Si with either ��
x�R�� R�� ���� Rr� or ���
x�R�� R�� ���� Rr� according to whether Si

appears positively or negatively� Second	 by bringing it in a �prenex like� form if

convenient� Now sub claim � follows by noticing that


M � �S � j� �
�� � 
M � �S � j� �

� � 
M � �R� j� �

�

and that 
M � �R� j� �

� is part of the assumption�

Sub claim �� 
M � �S � j� �b
��comprehension� Let ��� �� � �b

� be given and assume

that for some given a � M 	 
M � �S� j� �x � a
��
x� � ���
x��� Consider S � fx j

��
x� S�� S�� ���� Sk�g where S�� S�� ���� Sk � �S� As we have already noticed	 there are

�b
��formulas 
�
x� 	R� and 
�
x� 	R� equivalent to �� and ��	 S � fx � 
�
x� 	R�g �

fx � �
�
x� 	R�g � �S� �

Corollary ��
�� Every model of �rst order Si
�� i 	 � has an expansion to a model

of Si
�
���

More generally if U�� U�� ���� Ur are unary relation symbols added to L� then every

model of Si
�
U�� U�� ���� Ur�� has an expansion to a model of Si

�
��

Proof� The �rst part of the corollary is just the special case where r � �� If

r � � let Ri �� fx � M � M j� Ui
x�g and let �R �� fR�� R�� ���� Rrg� Notice


M � �R� j� Si
�
�� � �b

��comprehension	 and use proposition ����� with � as the �b
i �

substitution scheme �b
i �PIND� �

Notice that Corollary ����� remains valid if the theories Si
� are replaced by T i

� for

i 	 ��

#



��� Some conservation results

In ��� S�Buss gave a precise characterisation of the Si
��provable �

b
i �de�nable functions�

Actually one of the major justi�cation for dealing with Si
� lies in this characterisation�

Let me make an observation in this connection� According to a general argument by

G�Kreisel the class of provable total recursive functions is always insensitive to the

addition of extra universal axioms�

The same argument applies to the class of �b
i �de�nable functions of a theory� The

class is insensitive to addition of �b
i�axioms 
as long they remain consistent with Si

���

This is because for a theory T in general�

T � f�x�
x�g � �x�y�
x� y�� T � �x�y�
x� y�
 ��
y�

which does not produce any new provable total function if �
x� y� 
 ��
y� still is

provable equivalent to a �b
i �formula� Thus we have

Observation ����� The class of provable �b
i �de�nable functions of a theory T is

immune with respect to the underlying �b
i�theory�

The following immediately gives us the inclusions

S�
�
�� � T �

� 
�� � S�
�
�� � T �

� 
�� � �����

Proposition ����� �S�Buss	 Si��
� 
�� � T i

�
�� for all i 	 ��

Proof� Fix an arbitrary 
M � �S � j� Si��
� 
��� First notice that if X � b is a �b

i �

de�nable set in M the convex closure Y � conv
X� �� fx � b j �v � X v �

x � �u � X x � ug is also a �b
i �de�nable set in M � Let �dist
Y� Y c� � d� be the

�b
�
�

b
i��formula �b
d� � �x� y � b 
y � x � d � y � Y � x �� Y �� By considering

the point bx�y� cobviously Si��
� 
R� � �b
d
b

�
�
c�k� � �b
d
b

�
�
c�k��� so by �b

i�� � PIND

�dist
Y� Y c� � b �� � �dist
Y� Y c� � b
b�
�c�

jbj � and by modus ponens and the fact the

S�
�
�� � b
b�

�
c�jbj � � �dist
Y� Y c� � � �� As Y is convex	 Y has a smallest element in

M 	 and then by de�nition X has a smallest element� As �b
i �LNP � �b

i �IND we are

done� �

In some later examples I will use one of the deeper theorems in the subject�

Theorem ����� �S�Buss	 For i 	 �� Si��
� 
�� is ��b

i���conservative over T i
�
���

Proof� Suppose that Si��
� � �	x� 	X�	z � t
	x� �
	x� 	z� 	X� where � � �b

i� It su$ces to

show that T i
�
	R� � �	z � t
	x� �
	x� 	z� 	R�� for � � �b

i�

This follows again by relativising the proof of S�Buss% theorem stating that for

any i 	 � Si��
� is �nd�b

i���conservative over T i
�� �"� ���� �

&



� Some �nitisation principles

One of our aims is to show that there is a fundamental di�erence between S�
�
��

and levels in the hierarchy which are at least as strong as T �
� 
��� There is a general

feeling amongst those working in Bounded Arithmetic that a proof of the non��nite

axiomatisability of the �rst order theory S� 
� T�� would be of great importance� An

important step in that direction would be to separate T �
� � S

�
� and T �

� � These theories

are only known to be di�erent under an additional hypothesis from complexity theory�

In �&� T i
� and Si��

� � i 	 � were conditionally separated under the conjectural

assumption that the polynomial hierarchy 
in complexity theory� does not collapse

on level i � �� In �#� S�
� and T �

� were conditionally separated under the conjectural

assumption Logspace�
p
� �� �p

�� However both these assumptions 
generally believed

to be true� are far beyond current techniques� They both imply P �� NP�

The relativised cases S�
�
�� and T �

� 
�� were �rst separated in �#�� I present new

proofs for these relativised cases� This is done by proving the following �nitisation

principle�

Theorem 
���
 If � has an in�nite model �in the real world�� there are structures

of T �
� 
�� in which � has a �nite ��bounded� model�

I also get the following principle�

Theorem 
���� Suppose that � �� �A �
A�R� is a second order existential state�

ment� Suppose also that � is expressed solely by unspeci�ed function and relation

symbols� Suppose that � has an in�nite model �in the real world� where the existential

quanti�er is not witnessed by any �nite set� Then there are structures of T �
� 
��� in

which � has a �nite model f�� �� ���� ng where the existential quanti�er is not witnessed

by any set A of size � log
n��

Since an understanding of the relativised cases	 seems to precede an understanding

of the unrelativised cases these two results could perhaps be useful in separating T �
�

from T �
� unconditionally�

Finally I prove a �nitisation principle which can be used to separate the theories

S�
�
�� and T �

� 
���

Theorem 
���� Suppose that �
�� R� is a �rst order statement which is expressed

solely by unspeci�ed function and relation symbols� Suppose that in the real world

�
�� R� holds in an in�nite model� where � de�nes a total linear ordering� Then

there are structures of S�
�
�� in which �
�� R� holds in a �nite ��bounded� model

and where � is the restriction of the order relation ��

��



These theorems show that when we pass from the real universe to an universe which

only contains �feasible� sets	 we have the heuristic translations	 countable � �nite�

�nite � poly�logarithmic�

��� Further de�nitions and assumptions

Let L�
�� ���� �� ffast� fslow����� be a second order language where through some

basic axioms ffast and fslow are ensured to de�ne functions such that ffast is fast�

growing	 and that fslow is slow growing� Further it is assumed that fslow is slower

than ffast is fast 

�� More precisely assume�



 � fslow� ffast are increasing�


� � ffast 	 x��


� � For any �xed k	 for all su$ciently large n fslow
f
�k	
fast
n�� � n	 where

f �k	 � f � f � ��� � f� �z �
k

�

De�nition 
���� A formula � � L� is sharply bounded if each quanti�er appears in

the context �x � fslow
t� or �x � fslow
t�	 where t � TermL� A formula � � L� is

bounded if each quanti�er appears in a context �x � t or �x � t	 where t � TermL�

The class of �b
i formulas and the class of �b

i formulas are de�ned similar to the

earlier de�nition� �

De�nition 
���� T �
�� denotes the second order theory consisting of a proper base

theory Basic together with EXT ��b
��comprehension� �b

��IND� �

Given some additional relations 	R we de�ne the �rst order theory T �
	R� in the obvious

way� Notice that if ffast
� x� y �� �� x�y and fslow
x� �� jxj� for a proper choice of

BASIC T �
�� becomes T �
� 
��� Furthermore notice that in this case

ffast
n� � ffast
� n� n �� � ��jnj
�	

and therefore j fslow
f
�k	
fast
n�� j � j fslow
f

�k	
fast
� n� n ��� j � j n j�

k

� Clearly for any

�xed k and non�standard n	 j n j�
k

� n so the consideration below applies to the

theory T �
� 
���

De�nition 
���� Let � x�� x�� ���� xk � be a natural code of the k�tuple� For each

k we introduce quanti�ers �k and �k such that Qkx �
x� is shorthand notation for

Qx�Qx����Qxk �
� x�� ���� xk �� where Q � � or Q � �� �

��



De�nition 
���
 Let Qkx � t��� be short�hand notation for Qx� � t���Qxk � t	

when � x�� x�� ���� xk �� x� Let �
	x� be a formula in some relational language

L
R�� R�� ���� Rl�� For a relation symbol S	 the formula �S
	x� denotes the formula

which appears if each quanti�er in � is restricted to S� By ��a
	x� we understand the

formula which appears by restricting each quanti�er in � to ��� a�� �

��� A version of the completeness theorem

As I have already pointed out	 in the real mathematical universe it is not true that

any �nite consistent set of �rst�order sentences has a �nite model� But there are

T �
� 
���universes where such a strong form of the completeness theorem holds�

Theorem 
���� �Finitisation principle	 Let �
	R� be a �rst order property ex�

pressed in some relational language  L � L
	R�� Suppose that 

n� is an arith�

metical �rst order property expressible in the language L of arithmetic and sup�

pose that 

n� holds for arbitrary large n� If �
	R� has a model then the theory

T �
	R� � �n 

n� � ��n
	R� has a model�

First we shall make some preparation for the proof� Let  L and �
	R� be given as in

the theorem� We can assume that all relations are r�ary� �
	R� is assumed to have

an in�nite model	 so by Skolem�L�owenheims Theorem	 we can assume �
	R� has an

in�nite countable model Sst on a subset of the natural numbers� Furthermore	 we can

assume Sst is a model with an underlying co�countable set	 and if convenient	 that an

extra unary relation symbol denoting membership of Sst is added to the language�

Let 
M � S� be a countable non�standard model for the language  L
R� �� L �  L

which is elementarily equivalent to the standard model 
N� Sst�� Use overspill to pick

a non�standard number n such that M j� 

n��

Fix a non�standard number b� � n such that bk� � n for each standard number

k	 and such that fslow
f
�k	
fast
n�� � b� for every standard number k� Use overspill to

pick c � M non�standard such that fslow
c� � b� and such that c � f
�k	
fast
n� for all

standard numbers k�

De�nition 
���� Let Pk� k � 
� be the set of all partial 
�����maps � which have

dom
�� � f�� �� ���� cg and ran
�� � M such that j dom
�� j� bk�	 and such that �

maps points in ��� n� to S	 and maps points in fn � �� n� �� ���� cg to M n S�

Let P � �k��Pk and let 
P��� be P ordered under inclusion� �

��



��� Generic maps

Let us now make a few basic de�nitions�

De�nition 
���� D � P is called dense if �� � P�� � D such that � � ��

A subset S � M is quasi�de�nable in M if there is �
x� � L
R�� such that

S � fx � M � 
M � 
� j� �
x�g where Rw is interpreted by 
� We allow � to contain

parameters from M � �

Notice that in ��� the similar notion 
just called de�nable� is S � fx � M j �n �

Rw �
x� n�g	 which would not work in our case because we cannot force formulas

in general to be equivalent to existential formulas� It should also be noticed that

any extension of the notion of quasi�de�nability which does not produce uncountably

many quasi�de�nable dense subsets of P	 would work�

Example 
���� The set P is quasi�de�nable� The initial segment ��� b�� � is quasi�

de�nable�

De�nition 
���� G � P is a generic �lter if


�� ��� � � G �� � G � � � � � � ��


�� �� � G �� � P � � � � � � G�


�� G 
 D �� � for each quasi�de�nable dense set D � P� �

Lemma 
���
 For every �� � P �G � P generic such that �� � G�

Proof� M is assumed to be countable so that there is at most countably many quasi�

de�nable sets D � P� List those as D��D��D�� ���� Pick �� � �� such that �� � D�	

pick �� � �� such that �� � D�	 etc� and let G �� f� � P j �j � 
 � � �jg� It is

straightforward to check that G is generic� �

De�nition 
����  � � M is generic if there is a generic G � P such that  � � ���G��

�

��� Sketch of proof

Now let me sketch the proof� We are given a non�standard model 
M � S� �e 
N� Sst�

in which the �structure� S we want to miniaturise is a part� We can assume that the

language contains the language of arithmetic together with extra relations	 denoting

the relations in S�

��



First	 it is shown that some 
actually any� generic  � is a bijection from ��� c� to

M 	 mapping ��� n� onto S� At this stage we also have to show certain lemmas about

the forcing relation in order to ensure it behaves well�

Second	 it is shown that for some 
actually any� generic map  �	 
M �  �� j�

���LNP� where ���LNP denotes the least number principle for formulas in which

all quanti�ers are either existential 
positive appearance� or are restricted to ��� b���

This part of the argument is based on the same idea as the proof of theorem �� in

���� 
see also the introduction��

Third	 it is noticed that the constants	 relations and functions in the miniaturised

structure Smini ��  ���
S� are � 
 ��de�nable in the generic model 
M �  ���

Fourth	 it is shown that each formula expressing a �b
�� property about the minia�

turised model and numbers in ��� c�	 can be translated into an ���formula� This

ensures that LNP holds for �b
��formulas with parameters in ��� c��

Finally a concrete model M � is constructed as the smallest initial segment of ��� c�

which contains ��� n� and is closed under ffast�

��� The forcing relation

First we need to show some basic fact about generic maps� For simplicity we reduce

logical constants� So suppose that � �� ��� and � �� � 
 �� Extend the language

with names for the elements in M � Also extend the language  L
R� by an extra binary

relation symbol ��� For sentences in this language  L
	R� ��� we de�ne the forcing

relation inductively as follows�

� j� � if � does not contain ��� is atomic and true�

� j� ��
a� b� i� �
a� is de�ned and equals b�

� j� � 
 
 i� � j� � or � j� 
�

� j� �x �
x� i� for some a � M � j� �
a��

The forcing relation for negation satis�es�

� j� �� i� for no � � �� � � P � j� ��

��� Soundness of the forcing relation

We have to make sure that the forcing relation satis�es certain key properties� Except

for lemma ����� below	 the reader who is familiar with forcing techniques could ignore

this section�

��



De�nition 
���� Let �
b�� be the set of formulas where all quanti�ers are restricted

to ��� b��� �

Notice fslow
c� � b� and therefore in the �nal model all sharply bounded quanti�ers

are restricted to ��� b���

Lemma 
���� �Forcing lemma	 The forcing relation has the following properties


Extension property
 If � j� � and � � � then � j� �

Consistency
 For no � � P and for no �� does both � j� � and � j� �� hold�

Completeness
 For each generic set G � P� and for each � there is � � G such

that � j� � or � j� ���

Soundness 

 If for a generic map  �� 
M �  �� j� �� there is � � G such that � j� ��

Soundness �
 If � j� � then 
M �  �� j� � for any generic  � � ��

Proof� Extension property� First notice that the claim holds for atomic formulas�

Clearly the extension lemma holds if � � �� 
 ��	 or if � � �y��
y�� Suppose

� � ���	 � j� �	 and � � � is given� By de�nition for no �� � �	 �� � ��� The

ordering � of the forcing conditions P is transitive for no �� � �	 �� j� ��� By

de�nition � j� ��

Consistency� Direct by the inductive de�nition�

Completeness� Let D �� f� � � j� � 
 ��g� Notice D is quasi�de�nable and dense

so there is �� � G 
 D�

By de�nition either �� j� � or �� j� ���

Soundness � � �� Both claims are proved simultaneously using induction on the

number of logical constants in �� The case where � is atomic is straightforward	 and

so is the case where � � �� 
 �� or � � �y ��
y��

If 
M �  �� j� ��	 by induction there cannot be � � G such that � j� �� By

completeness there is � � G such that � j� ���

If � j� �� but 
M �  �� j� � for some generic map  � � �	 there is � � G such

that � j� �� By de�nition � and � have a common extension in P� By use of the

extension and the consistency property we get a contradiction� �

Corollary 
���� Any generic  � is a bijection from ��� c� to M �which maps ��� n� onto

S�

Proof� Let a � ��� c� be an arbitrary element� Notice that Da �� f� � �
a� is de�nedg

is both dense and quasi�de�nable� By de�nition there is �� � D 
 G�

As �� �  � this shows that  � has domain ��� c�� The other properties are proved

by a similar argument� �

��



Lemma 
���
 For each �
	x� � �
b�� there is k � 
 which does not depend on the

parameters in �
	x� and M �de�nable maps 	x �� V D
�x and 	x �� V R

�x such that


�� Card
V D
�x � � bk�� Card
V R

�x � � bk��


�� For all � � P with Dom
�� � V D
�x and Ran
�� � V R

�x �

� j� �
	x� or � j� ��
	x��


�� For all � � P� �jVD
�x
�V R

�x
j� �
	x� if � j� �
	x��

Proof� If �
x� is atomic and is of the form �
u� v�� �
x� v�� �
u� x� or �
x�� x�� let

V D
x �� fug� V D

x �� fug� V D
x �� fvg or V D

x��x�
�� fx�g	 and similar let V R

x �� fvg	

V R
x �� fvg	 V R

x �� fvg and V R
x��x�

�� fx�g�

If � � �� 
 �� let V D
�x �� V D��

�x � V D��
�x 	 and let V R

�x �� V R��
�x � V R��

�x � If � � �u �

b� ��
u� 	x� let V
D
�x ��

S
u	b� V

D��
u��x and V R

�x ��
S
u	b� V

R��
u��x and notice that Card
V

D�R
�x � �

b� � bk� � bk��� for some k � 
� If � � ��� letV
D�R
�x �� V

D�R��
�x �

Now we prove 
�� and 
�� by induction on the number of logical constants in �
	x��

If �
	x� is atomic it is easy to check 
�� and 
��� Suppose � �j� �x � b� �
x� where

� � �
b���

We need to show that �jV j� ��x � b� �
x�� Conversely suppose that for some

� � �jV 	 � j� �x � b� �
x�� By de�nition for some a � b�� � j� �
a�	 and by

induction �jVD
a �V R

a
j� �
a�� Now as �jVD

a �VR
a

� �jVD
a �V R

a
�jV D

a �V R
a
j� �x � b� �
x�

and then by the extension lemma �jV j� �x � b� �
x�	 which is in contradiction to

the assumption � �j� �x � b� �
x� � �

��	 Some properties of the generic objects

We have already de�ned �� to be the set of formulas in which all quanti�ers are

either existential which appear positively or are restricted to ��� b�� 
Sharply bounded

quanti�ers�� According to our plan in order to prove the main theorem we have to

prove that some 
any� generic  � satis�es the �� �LNP scheme� Let ��Strict be the

set of formulas �	x�
	x�	 where � � �
b�� and where there are no restrictions on the

parameters in �� First we prove that�

Lemma 
���� For any generic map  �� 
M �  �� satis�es the ��Strict�LNP scheme�

Proof� Let �
z� � �	x��
	x� z� be given� 
�� � �
b���� Let �� � Pk be given such

that �� j� �
a� for some a � M � Let a� � M be the smallest element such that for

��



some � � �� with � � Pk�r 
for suitable r�	 and some 	x�	 � j� ��
	x�� a��� This

de�nition makes sense because the forcing relation is de�nable for �
b���formulas�


By lemma ������� Let D be the set of �� � P which are either incompatible to �� or

extensions of a � with the property just mentioned above� D is quasi�de�nable and

dense so there is � � D
G� Clearly � j� �
a��� All that remains is to check that if r

is chosen properly 
lemma ������ there is no a� � a� and �� � � with �� j� �
a��� �

��
 A minor problem

Now we want to prove that for some 
any� generic  �	 
M �  �� actually satis�es the

���LNP scheme� It should be noticed that because of the presence of the generic

object  � it is not entirely clear why any ���formula should be equivalent to an ��Strict
formula�

Let �
z� be a given ���formula� Let us try to follow the same strategy as in the

proof of lemma ��"�� above� Without loss of generality we can assume that

�
z� � �x��u� � b��x��u� � b�����xk�
	x� 	u� z�

where � � �
b��� Find smallest z� such that there are a�	a���� a���� ���� a��b	

and a������ a������ ����� a����b� and a������ a������ a������ ���� a����b� ���� a��b��b�	 ���

��� ak�b��b�����b�� �z �
k b�

�
s

and � � �� in Pk�r such that for any choice u� � b�� u� � b�� ��� uk � b�

� j� �
a�� a��u�� a��u��u�� ���� ak�u������uk��� u�� u�� ���uk��� z��

Again if there is any z� satisfying the condition	 there is also a smallest such z��

This holds for each choice of r � 
� As a minor technical problem we need to

show 
what might be obvious to the reader� that if � is chosen as above	 for no

�� � � we can have �� j� �
z�� for some z� � z�� Now in general 
M �  �� has more

de�nable functions on ��� b�� than M � This is because for each formula �
x� �� and

each generic map  �	 � could be eliminated 
i�e� there was a formula �
x� such that

�x � ��� b�� �
x� �� � �
x� in the case where fslow
x� �� log
x��	 then induction

would hold up to b� 	 log
c� and therefore up to c	 which would be a contradiction�

Essentially we have to check that �
z�� can not have a sequence of witnesses which

was not de�nable in M � In the case where �
x� was a ��Strict�formula there was no

such problem because the search in M was only a search for standard �nitely many

witnesses� We have to show that there cannot be such a z�� This is essentially done

�"



by showing that in the case of ���formulas for any generic  � there is an M de�nable

sequence of witnesses�

For � � �� we make the following de�nition�

De�nition 
���� � j�D �x � b� �
x� i� �x � b� � j�D �
x��

� j�D �x�
x� i� �x � j�D �
x�

� j�D ��� i� � j�D �� �

Notice that for � � �� if � j�D � for each extension 
not necessarily a generic exten�

sion
�  � of � then 
M �  �� j� ��

Observation 
���� For each �� � P� each k � 
 and each � � �� the set f� �� x ��

� � �� � � � Pk � � j�D �
x�g is de�nable in M �

The problem we are concerned with at this stage is whether it is possible for given

�� and � � �
b�� to have � � �� with � j� �x � b�y �
x� y� but for no � � ��� � �

Pr � � j�D �x � b�y �
x� y� '

Assume that there is � � �� such that � j� �x � b��y �
x� y��

Claim� There is an extension �� � � such that �x � b��y �� j� �
x� y�� Pick for

each j � b�� �
j such that � � �� � �� � ����b� � �� and such that �j j� �y�
j� y��

Furthermore by lemma ����� each extension can be chosen to be of size � bl� for some

�xed l � 
 
l can be chosen to be the number of ��x � b�� quanti�ers in ��� So ��

is a � bl��� extension of �� By lemma ����� for each x � b� and witness y
x� there is

a set Vx�y�x	 with cardinality � bl� for some �xed standard l� Let V ��
S
x	b� Vx�y�x	�

Notice that Card
V � � bl��� and that �x � b��y ���jV j� �
x� y�� Let � � 
���jV and

notice that � j�D �x � b��y �
x� y�� We have just proved the �rst part of the next

lemma�

Lemma 
���� Let �
z� � �x � b��y �
x� y� z� where � � �
b��� There is r � 
 such

that if � � �� is the br��extension of �� with the smallest z� such that

� j�D �x � b��y �
x� y� z��

then for any generic model 
M �  �� with  � � �� 
M �  �� j� �
z�� � �z � z� ��
z��

More generally Let �
z� � �x��u� � b��x��u� � b������xk �
	u� 	x� z� where � �

�
b��� Then there is a standard number r which does not depend on the parameters

in � such that if � � �� is the br��extension of �� with the smallest z� satisfying

� j�D �
z�� then for any generic model 
M �  �� with  � � ��


M �  �� j� �
z�� � �z � z� ��
z��

�#



Proof� Let �� be given� Assume that for some � � ��

� j� �x� � b��y��x� � b�����xk �
	x� 	y�

but that for no � � ��� � � Pr � j�D �x� � b��y�����
	x� 	y�� There is �� � � such

that �x� � b��y� �� j� �x� � b��y������
	x� 	y�� By induction on k	 we can assume

that we have already proved that if for some �xed x� and y�� � � �� � j� �x� �

b��y�����
	x� 	y�� � can be chosen to be an bl�k��� �extension	 where l is the number of

��quanti�ers in �� There is ��� � �� 
making b�� bk�l��� �extensions of ���	 such that

�x� � b��y��x� � b��y� �
�� j� �x� � b�����
	x� 	y�

Continuing like this	 after k steps we obtain �� � � such that �� j�D �� We can not

use �� as � in the lemma	 because � 
and therefore ��� could be too large� But by

lemma �����	 there are bk� sets Vx��y�x�	�x��y�x�	�����xk�y�xk	 each with � bl� elements where

l can be taken to be the number of ��quanti�ers in �� Let

V ��
�

x�	b�

�

x�	b�

���
�

xk	b�

Vx��y�x�	�����xk�y�xk	�

Notice that Card
V � � bk�l� � Let � �� ��
jV and notice that � j�D �� This contradicts

the assumption� �

Corollary 
���
 For any generic map  � 
M �  �� j� ���LNP

Proof� Let  � be an arbitrary generic map� We need to show that 
M �  �� j� �x�
x��

�x� � x�z � x� �
x�� � ��
z�� Suppose 
M �  �� j� �
a� for some a � M 
otherwise

there is nothing to prove�� According to the completeness property there is �� �  �

such that �� � P and �� j� �
a�� Assume �� � Pk� Consider D � P de�ned by

D �� f� j � �� �� 
 
� � �� � �x � j�D �
x� � �y � x
��� � � �� �j�D �
y���g�

From what has already been proved it follows that D is well de�ned	 dense and quasi�

de�nable� For any generic G � P there are �� � D 
 G� By lemma ��#�� for any
 � � � 
in particular  � � 
M �  �� j� �x�
x� � �x� � x�z � x� �
x�� � ��
z�� As

�� �  � we are done� �

��� Proof of the �rst �nitisation principle

The previous section has given us a �generic model� 
M �  �� which satis�es the ���LNP

scheme� Clearly  � induces a miniaturised version of S on ��� n�� Constants	 relations

and functions on S correspond to constants	 relations and functions on ��� n�� Now I

prove the important fact that all the miniaturised relations etc� are � 
 ��de�nable

in 
M �  ���

�&



For each relation R � Sr 
with quanti�er�free de�nition in M �	 we de�ne the

corresponding miniaturised relation Rmini �existentially� by�

f
x�� x�� ���� xr� j �z�� z�� ���� zr �
i
r
i
�  �
xi� zi� �R
z�� z�� ���� zr�g�

Notice that Rmini also has a �universal� de�nition�

f
x�� x�� ���� xr� j �z�� z�� ���� zr �
i
r
i
�  �
xi� zi�� R
z�� z�� ���� zr�g�

Add the miniaturised relations to the language� Consider the sub�language Lmini

which contains L and names for the miniaturised constants	 relations and functions�

Lemma 
���� If �
x� � Lmini is a �b
��formula with all quanti�ers restricted to ��� c��

there is a ���formula ��
x� such that


fx � c � 
M �  �� j� �
x�g � fx � c � 
M �  �� j� ��
x�g�

Proof� Let �
x� � Lmini be a given �b
� property� Replace each appearance of a

�miniaturised� relation Rmini by either the ��de�nition or the ��de�nition according

to whether the Rmini appears positively or negatively in �
x�� Notice that this gives

an ���formula ��
x� which satis�es the lemma� �

Now we are ready to construct a model of T �
� 
�� in which there is a bounded

sub�structure Smini on ��� n� where 

n� such that Smini j� ��n
	R�� We have already

got a countable model M of true arithmetic in which a possibly unbounded model of

�
	R� is coded� We have n� b�� c � M as above� Let  � be an arbitrary generic map	 as

described earlier� Let

M
�
�� � fx � c � �k � 
 x � f

�k	
slow
n�g�

Let �R be the set of all Lmini�de�nable relations on ��� n�� It follows from what has

already been proved that 
M � �R� j� �b
��IND scheme	 hence because of corollary �����

there is an expansion of �R to �S � �R such that 
M � �S � j� T �
��� As second order

existence statements are absolute with respect to expansions	 we have proved the

main theorem in the T �
���case�

Corollary 
���� Let S be a countable mathematical structure which can be encoded

in a non�standard model M which satis�es true arithmetic� There is a model of T �
� 
��

in which S appears as a bounded set�

Notice that our results hold in the special case where T �
�� is the second order

theory which consists of

�� Induction for existential formulas�

�� The � 
 ��comprehension axiom scheme�

��



� Separating T
�
� ��� and S

�
����

In the process as a by�product we have obtained a new proof of the separation of the

theories T �
� 
�� and S�

�
���

Theorem ����� For any generic map  � 
M �
���

 S��� j� T �
� 
���

If S de�nes two disjoint in�nite sets� then for any generic map  � 
M �
�� �

 S��� �j�

S�
�
���

Proof� The �rst part of the theorem has already been proven� It follows from the

examples below that the second part holds at least for some constructions 
i�e� for

some S�� To prove the second part let U
x� be a new unary predicate symbol which

holds exactly in one component of S� Let Umini denote the corresponding predicate

in Lmini� Put fslow ��j x j and ffast �� xjxj� Consider the formula

A
z� �� �u� � u� � n u� � u� 	 bz �x � �u�� u�� Umini
x��

Clearly A
k� is valid for all standard k and hence	 by overspill	 A
z� holds for some

non�standard z 
and z �j n j�� But this is a contradiction as for any given interval of

length � b� the set of � � P such that � maps an element of S n U into it	 is dense

and quasi�de�nable�

According to ��� �b
��PIND is su$cient to ensure the validity of �b

��LMAX principle

which in turn implies the validity of the �b
��overspill just used� �

Notice that if S is an in�nite 
co�countable� set with no additional structure then


M �
�� �

 S��� j� S�
��� This shows that the second part of the theorem becomes false if

there is no condition on S�

Corollary ����
 T �
� 
�� �� S�

�
���

This is a new proof of the result which was �rst proved in �#��

� Some examples

Example ����� Fix p 	 �� There is an in�nite model A where �R de�nes a partition

of A into disjoint p�subsets	� Let 

n� � �n is not divisible by p��

According to the �rst principle T �
�� �� Count�p��

In ��� and ���� it is shown that this holds for much stronger theories�

��



Example ����� According to the �rst principle



�� T �
�� �� 	every linear ordering R �of a �nite set� has an isolated point	�


�� T �
�� �� 	every linear ordering R �of a �nite set� is discrete	�


�� T �
�� �� 	every linear ordering R �of a �nite set� is a well ordering	�

By the results below in all cases T �
�� can be replaced by S�
�
���

Notice that example ����� shows 
using T �
� 
�� � WOA	 Proposition #���&� that the

well ordering axiom for arbitrary linear orderings 
WOA�� R does not follow from

WOA�

� Another principle

The second �nitisation principle says that for any given r � N if some second order

existential relational property  P � P 
	R�X� is only witnessed by in�nite sets 
in

the real universe�	 there are models of T �
� 
�� in which there is an n and relations

	R � ��� n� such that no subset X � ��� n� with size � logr�
n� witness P 
	R�X��

Theorem ����� �Finitisation principle	 Let � � �X�
	R�X� be a second order

existential formula where � is a �rst order formula in the language L
	R�X���� Let

k � N be a given natural number� In general �
� implies ���



�� There is a countable model S of the language L
	R���� such that for no �nite

set X � S� S j� �
	R�X��


�� T �
�� � ��n�X��� n� Card
X� � 
log
n��k � ���n
	R�X�	 has a model�

This principle states that if a second order existential property has 
in the real

universe� a countable model where the existential quanti�er is not �nitely witnessed

then it is consistent with T �
� 
�� 
and by the results below S�

�
��� that there is a �nite

model where the existential quanti�ers is not �polylog��witnessed�

Example ����� In the real world there is a binary tree with no �nite branch� By the

second �nitisation principle T �
� is consistent with the existence of a tree T � ��� n��

which has no branch �coded by a number� of length � logk�
n���

In the real word there is a vector space over Z� with no �nite basis� so by the

second principle there exists a model of T �
� 
�� in which there exists a vector space

V � ��� n� with no basic �coded by a number� of size � logk�
n�	�

Proof� Proved by a construction very similar to the proof of the �rst �nitisation

principle� Pick S according to 
��� Choose S as a countable model in the standard

��



model on say the even numbers� Extend the standard model to an elementary equiva�

lent countable non�standard model� Pick non�standard numbers b� � n � c as above�

Consider the same set of forcing conditions 
P��� as above� The forcing conditions

ensure that each generic  � maps small 
i�e� � bk� points� M �de�nable sets to �small�

M �de�nable sets� The map  � induces a miniaturised structure Smini with underlying

set ��� n�� For each M �de�nable subset B � ��� n�� A ��  ���
B� can not witness

�
	R�A� because the set A has cardinality � bk� which is �nite in the model M � As in

the proof of the �rst principle without any complications we construct a model T �
� 
��

where ��n
	R�X� is not witnessed by any set A of size � b�� � �

	 The well ordering axiom in S
�
� 


The well ordering axiom 
WOA� is the principle�

WOA �X
X �� � � �y
y � X � �z � y z �� X��

WOA says that ��� well orders any set X	 and should not be confused with the

stronger principle WOA� stating that any linear ordering of a bounded set is a well

ordering�

Proposition ����� �Suggested by A�J�Wilkie	 WOA is equivalent to T �
� 
�� in

models of S�
�
��

Proof� T �
� 
�� � WOA� To reach a contradiction let 
M � �S � j� T �

� 
�� � �WOA�

There is R � �S such that R �� � and such that 
M � �S � j� �y
y � R� �z � y z � R��

As R �� � there is u� � R such that�


�� 
M � �S � j� �y � u�
y � R� �z � y � R��

Let Y � fx � M � �z � R z � x � x � u�g � M � Notice that Y is �b
��de�nable in

M with set parameter R 
Y is not required to belong to  S�� As �b
��LNP � �b

�� IND	

and as Y is non�empty	 there is a minimal x� � Y � By de�nition of Y there is z � x�

such that z � R� By 
�� this contradicts the minimality of x��

WOA � T �
� 
�� � Let 
M � �S� j� S�

�
�� � WOA be an arbitrary model� Let � �

�b
� 
� �b

�� be an arbitrary formula with possible set variables 	Z � �S� It is enough

to prove that the �b
��de�nable set Y �� fx � M � �z � t
x� �
x� z� 	Z�g � M has a

smallest element if it is not empty� Pick u� � Y � To this end consider

�
w� �� �w� � u��w� � u� w � w� � u� � w� � �
w�� w�� 	Z��

��



As � � �b
� Rb�u� �� fw � b j �
w�g � �S for any b� u � M � Choose b such that for

each pair 
x� z� with z � t
x� and x � u�� 
x� z� � b� According to WOA Rb�u� has a

smallest element w�� Let y� be the unique element with y� � u� � w� � 
y� � �� � u�	

and notice that M j� y� � min
Y �� We used the fact that strict��b
��LNP is equivalent

to �b
��IND over S�

�
�� � So to prove Proposition #���& all that remains is to prove

this	 and the equivalence of �b
��IND and strict��b

��LNP over S�
�
��� Both these facts

follow from ���	�"�� �


�� A �nitisation principle for S�
����

As already proved T �
� 
�� is equivalent to the well ordering axiom WOA over the

theory S�
�
��� In this section I show that S�

�
�� does not prove this axiom	 and thus

as a corollary we get a new proof of the separation result S�
�
�� �� T �

� 
��� Parts of

the argument are very similar to the proof of the two previous principles so I only

emphasise the new ideas in the construction�

Theorem ����� �Finitisation principle for S�
�
��	 Let �
�� R� be a sentence in

the �rst order language L
�� R���� Suppose that �
�� R� has an in�nite model S

where � de�nes a total linear ordering� Then �n�U � ��� n� �U
��R� holds in some

models of S�
�
���

Proof� I put the emphasis on the new ideas� Let 
N� SN � RN � be an expansion of

the standard model N to an in�nite model of S	 where R � Sr	 and where �
�� R�

holds� Let 
M � Slarge� Rlarge� be an elementary equivalent 
in a language expanded by

relation symbols for Rlarge and Slarge� non�standard model� Let n � M be a non�

standard number	 and let I� � M be the initial sequent de�ned by

I� �� fm � M � �t term m � t
n�g�

A �b
�
I

���formula �	 is a �b
��formula where all parameters belong to I�� Notice that

all quanti�ers in such a � also are restricted to I�� Choose b� such that I� � �b� 	 and

such that b�� � n� Notice that sharply bounded quanti�ers in a �b
�
I

���formula are

bound by b��

We want to construct U � ��� n� and R � U r such that �U
��R� is forced true	

and such that the polynomial induction scheme


�
�� � �x
�
b
x

�
c�� �
x���� �x�
x�

is forced true for all �b
�
I

���formulas �� Let � ��
x�� a� ��� ��� a� �� ���� be an

enumeration of the countably many pairs � �j
x�� aj � where �j
x� is a �b
�
I

���

formula with one free variable 
namely x�	 and where aj � I��

��



Let U� � W� � R� � �� Choose d� � e� � M with e� � d� � b�� 	 and e� �
n
b�
� Let

f� � ��

In general after stage j we have constructed Uj�Wj � ��� n� and Rj � U r
j 	 such

that Uj 
 Wj � �� The map fj maps Uj bijectively onto a subset of Slarge	 such

that � u�� ��� ur �� Rj precisely when Rlarge
f
u��� ���� f
ur��� Furthermore	 we have

j Uj j� j � b�	 j Wj j� j � b�	 and �dj� ej� such that ej � dj � b�� � The points in Uj are

very sparsely distributed in the sense that �u� �� u� � Uj j u� � u� j	 ej�

Now consider � �j��
x�� aj�� �� Our aim is to force

�j��
�� � �x
�j��
b
x

�
c�� �j��
x��� �j��
aj���

true� Let a�j�� �� aj��� ����� a
r��
j�� �� b

arj��
�
c� ��� for r � dlog
aj���e� Now for each

u � �dj� ej� de�ne the number l
u� � M as the largest number 
� log
aj���� such that

there are extensions U �
j�� � Uj� W

�
j�� � Wj	 and R�

j�� � Rj	 such that


�� 
U �
j��� R

�
j��� are isomorphic by an extension f �j�� � fj to a subset of Slarge�


�� The elements in U �
j�� has pairwise distance 	 u


�� j U �
j�� j� 
j � �� � b�


�� j W �
j�� j� 
j � �� � b��


�� At least l
u� of the �b
�
I

���formulas �
a�j���� ���� �
a
dlog�aj��	e
j�� � are forced true�

Now because l takes less than b� values	 there must be an interval �dj��� ej��� � �dj � ej�

such that l is constant on this interval	 and such that ej���dj�� � b�� � Choose such an

interval	 and extend Uj �Wj and Rj by letting Uj�� �� U �
j��� Wj�� �� W �

j��� Rj�� ��

R�
j��	 and fj�� �� f �j�� where these extensions correspond to the case where u � ej���

Proceed with the construction in this way�

Let U �� �j�� Uj and let R � �j�� Rj and notice R � U r� It is not hard to show

that f � �j�� fj de�nes a bijection from the miniaturised model U on ��� n� to the

large model Slarge� This ensures that �U
��R� holds in the generic model�

The �b
�
I

�� polynomial induction schema is forced true� To see this suppose

contrarily that for some k � 
 in the generic model we have

�k
�� � �x
�k
b
x

�
c�� �k
x�� � ��k
ak��

In stage k in the construction we have forced a maximum number of the �b
�
I

���

formulas �k
a
�
k�� �k
a

�
k�� ��� �k
a

j
k�� ��� �k
�� true� As obviously �k
ak� cannot have been

forced true	 there must be j � dlog
ak�e such that �k
a
j��
k � is already forced true


after stage k� while �k
a
j
k� is not forced true at this stage 
here we are using that

the search procedure	 for �xed u � �dk� ek�	 is M �de�nable�� Could it be that �k
a
j
k�

get forced true at a later stage k� � k' No	 because if this were the case for some

u � �dk� ek�� l would take a larger value than l
ek�	 which would be a contradiction�

��



�

Corollary ����� There are models of S�
�
�� in which WOA fails�

Proof� Let �
�� �� �x�y y � x� This sentence holds in an in�nite model 
in the real

world�	 so by theorem #���� the sentence �x � U�y � U y � x holds in some models

of S�
�
��� �

This gives a new proof of the separation �rst proved in ����

Corollary ����� S�
�
�� �� T �

� 
���

� Lifting the �nitisation principles

Now I show that both �nitisation principles for T �
� 
�� hold for the theory S�

�
�� but

both fail to hold for T �
� 
��� This	 in particular separates the theories S�

�
�� and T
�
� 
���

In this I rely heavily on a proof sketch ed by J�Krajicek 
personal communication��

The proof relies again strongly on S�Buss% result ���	 that Si��
� 
�� is ��b

i���conservative

over T i
�
���

Theorem ����
 The �rst �nitisation principle holds if T �
�� is replaced by S�
�
��

Proof� To get a contradiction assume that �
R� � �x��y������xk�yk  �
	x� 	y�R� 
 �

is quanti�er free� does have an in�nite model	 but S�
�
�� � �n 


n� � �R �

n ���n
R��� Consider the skolemisation

 �
x�� F�
x��� x�� F�
x�� x��� ���� xk� Fk
x�� x�� ���� xk��R�

of �
R�� By the �rst �nitisation principle T �
� 
�� � �n 


n� � �R � n�F�� ���Fk � n

�	x � n  �
x�� F�
x�������R�� is consistent�

Add an extra constant �n	 extra function symbols �F�� �F�� ��� �Fk and an extra re�

lational symbol �R to the language� Call this language  L�� The �rst order theory

T �
� 
�n� �F�� ���� �Fk� �R� � �x � �n  �
x�� �F�
x��� ���� �Fk
	x�� �R� is consistent�

Now by theorem ����� S�
�
�n� �F�� ����� �Fk� �R� � �x � �n  �
x�� �F�
x��� ���� �Fk
	x�� �R� is

consistent� As a skolemisation of � implies � 
even in pure predicate logic� this

contradicts our initial assumption about S�
�
��� �

This give us the following�

Corollary ����� Let �
	R� be any �rst order property in some relational language
 L �� L
	R�� Then the following are equivalent



a� Predicate logic � �
	R�

��




b� T �
�� � �n ��n
	R�


c� S�
�
�� � �n ��n
	R��

Proof� Let T be T �
�� or S�
�
��� Assume that �
	R�� Assume that T does not prove

�n ��n
	R�� There exists a non�standard model M � of T in which ���n
	R� holds in

some initial segment ��� n�	 so 
��� n�� 	R� j� ��
	R�� But then by the completeness

theorem �
	R� is not provable in predicate logic�

Contrarily if predicate logic does not prove �
	R� there is a model S of ��
	R�� If

S is �nite certainly �n ��n
	R� does not have a T �proof 
because T is consistent�� If

S is in�nite	 by the �nitisation principle �n ���n
	R� is consistent with T � �

�� Separating S
�
���� and T

�
� ���

Theorem ������ The statement �Every linear ordering of an interval has a smallest

element	 is provable in T �
� 
��� but not provable in S�

�
���

The statement �There is no dense linear ordering of an interval of length 	 �	 is

provable in T �
� 
�� but not provable in S�

�
���

Proof� The second part of the claim follows from the �nitisation principle for S�
�
���

To prove the �rst part let 
M � �S� j� T �
� 
�� be an arbitrary model� Assume that R is

an M �de�nable linear ordering of an interval ��� n� for some n �M � Let

Y � fb � ��� n� � �a� � b�x � b xRa� � x � a�g�

Notice that Y is �b
��de�nable and that � � Y and b � Y � b� � � Y for b � n� As


M � �S � j� �b
�� IND� 
n� �� � Y � By de�nition of Y 	 R has a smallest element� The

second part follows from the �rst part� �

This gives us a new proof of

Corollary ������ S�
�
�� �� T �

� 
���

The following were proved in ����� Above we have obtained a new proof of the

second part of the theorem�

Theorem ������ The weak pigeon�hole principle �WPHP� is provable in T �
� 
��� but

not provable in S�
�
���

Proof� The second part of the theorem has already been proved� The �rst part

follows from the fact that S�
�
�� is ��b

��conservative over T �
� 
��	 that WPHP is a

��b
��formula and from the following sub claim�

�"



Lemma ������ WPHP is provable in S�
�
���

Proof� A careful analysis of the S��proof in ���� 
see also �#�� of WPHP shows that

the proof is actually a S�
�
R��proof� �

�� Lifting the second principle

For the sake of completeness let me sketch how the second �nitisation principle can

be lifted to S�
�
���

Theorem ������� Let � � �X �
	R�X� be a second order existential formula where

� can be any �rst order formula in the relational language L
	R���� Let k � N be a

given natural number� In general �
� implies ���



�� There is a countable model S of the language L
	R���� such that for no �nite

set X � S� S j� �
	R�X��


�� S�
�
�� � ��n�X � ��� n� Card
X� � 
log
n��k � ���n
	R�X�	 has a model�

Proof�
sketch� Essentially we lift the result as we did for the �rst �nitisation principle�

Suppose that S�
�
�� � �n�	R � ��� n��b ��n
	R�Seq
b�� where ��n � �x� � n�x� �

n����x�r � n  �
	x� n� 	R�Seq
b�� with  � quanti�er free�

We have already proved the theorem in the T �
� 
���case	 so

T �
� 
�� � �	x � n�b� �
x�� �F�
x��� x�� ����� �Fr� n� 	R�Seq
b��

is consistent	 where the language is extended by extra relation symbols �n� 	R� �F�� ���� �Fr�

By S�Buss% conservation result	 
theorem ������	 which also works in this case where

we have added extra function symbols to the language

S�
�
�� � �	x � �n�b � �
x�� �F�
x��� ����� �n� 	R�Seq
b��

is consistent in this extended language� Clearly this contradicts our initial assumption�

�

Notice the following phenomenon�

Corollary ������� If

�X � ��� n� Card
X� � 
log
n��k� � ��n
	R�X�

holds in the real world for some constant k� but does not hold for some other constant

k� � k�� S�
�
�� does not prove the formula for any constant k�

�#



�� Some applications

By use of the second �nitisation principle we get the following theorem� The last case


�� shows that the theorem is not entirely a curiosity�

Theorem ������� If k is a natural number� then S�
�
�� does not prove any of the

following statements



�� �Every vector space V � ��� n� over Z� has a basis of size � logk
n���


�� �Every binary tree T � ��� n� has a branch of length � logk
n�	�


�� �Every total irre�exively oriented graph on ��� n� has a dominating set of size

� logk
n�	�

On the other hand T �
� 
�� proves �
������

At present	 it is not known whether T �
� 
�� � 
��� A proof of even S�
�� � 
�� would

have interesting consequences� 
See ���� and ���� for more details��

Proof� The �rst part of the theorem follows from the second �nitisation principle 
in

case 
�� from a slightly modi�ed version of the principle� and the facts�

There is an 
in�nite� vector space with no �nite basic�

There is an 
in�nite� binary tree with no �nite branch�

There is an 
in�nite� irre(exively oriented graph with no �nite dominating set�

To prove the last part of the theorem	 assume V is a vector space on ��� n� with

no coded basic� Pick independent vectors v�� v�� ���� vblog��n	c�� and get a �b
��de�nable

injective map from ��� �n� to ��� n�� This violates WPHP which are provable in T �
� 
��

by ��� 
or �#���

Finally T �
� 
�� proves that every tree T � ��� n� has a coded branch� Let T � ��

fx � T � �b b codes a path of length � blog
n�c�� from the root to xg� Notice that

T � also have the �b
��de�nition� T

� �� fx � T � �b b codes a path from the root to x

and the length of the path is � blog
n�c � �g� De�ne a �b
��relation by F 
x� � y i�

�b b codes a path x�� x�� ���� xr from the root to x	 and bit
y� j� � � � xj is a right

son� Again we get a contradiction to the WPHP in ����� �
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