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Abstract. For a theory T, we study relationships among IA,1(T), LA,4+1(T) and
B*A,+1(T). These theories are obtained restricting the schemes of induction, mini-
mization and (a version of) collection to Ay41(T) formulas. We obtain conditions on T
(T is an extension of B*A,4+1(T) or A,11(T) is closed (in T) under bounded quantifi-
cation) under which IA, 11(T) and LA, 4+1(T) are equivalent.

These conditions depend on Th,, ., (T), the II,+2—consequences of T. The first con-
dition is connected with descriptions of Thm,, ,(T) as IX, plus a class of nondecreasing
total IT,,—functions, and the second one is related with the equivalence between A, 41 (T)—
formulas and bounded formulas (of a language extending the language of Arithmetic).
This last property is closely tied to a general version of a well known theorem of R.
Parikh.

Using what we call II,,—envelopes we give uniform descriptions of the previous classes
of nondecreasing total II,—functions. II,—envelopes are a generalization of envelopes (see
[10]) and are closely related to indicators (see [12]). Finally, we study the hierarchy of
theories IA,+1(IX,,), m > n, and prove a hierarchy theorem.

1. Introduction

This paper is devoted to the study of two main topics: the relationship between in-
duction and minimization, and the description of the class of Il, s consequences of a

The first one is on Fragments of Arithmetic obtained restricting the schemes of in-
duction, minimization and collection to A, ;—formulas. These schemes for >, and I,
formulas have been thoroughly studied by J. Paris, L. Kirby and others (see [17] or [12]).
The parameter free versions of those schemes have been studied by R. Kaye, J. Paris and
C. Dimitracopoulos (see [11] and [14]). However, the relationships between those schemes
for A, 41 formulas are not well known. About 1985, H. Friedman claimed that LA, and
IA, ;1 are equivalent (see [10] pg. 398), but in [6] that equivalence appears as an open
problem (problem 34) and it is credited to J. Paris. Here that equivalence will be called

the Paris—Friedman’s Conjecture. In [19], T. Slaman proves it for n > 1.
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In sections 2 and 6, we study those schemes restricted to A, 41 (T) formulas. If ¢ € ¥,
and ¢ € Il,,41 then ¢ < 9 is a 1I,4o formula. So, the second topic is related to the first
one. In sections 3-5, we analyse the class of Il,,;2 consequences of a theory using a class
of II,—functions and extensions of the language of Arithmetic related to that class of
functions.

Now we present the main results obtained on these topics in this paper.

Part I: Induction and minimization for A, ;(T) formulas.

In order to get a better insight on the Paris—Friedman’s Conjecture we consider the
theories IA,+1(T), LA,+1(T) and B*A,4+1(T), where

Apy1(T) = {p(x, V) € ¥4 : there exists Y(z, V) € Uy, TE @« P}

The idea is to change the semantic part of the axioms schemes on A, 1 formulas by a
syntactic condition: the equivalence between a 3, 1 formula and a 1,41 formula is proved
in a theory. Thus we obtain a relativization of Paris—Friedman’s Conjecture. We study
the following problem:

(*)  Under which conditions on T does LA, 4+1(T) <= IA,41(T) hold?

We first observe that = always holds. In the other way, let us notice that the usual
proof of I¥, 1 = L3, leans upon the closure of ¥, under bounded quantification
(this property is granted by the collection schemes, B, 7). In fact, the closure under
bounded quantification of the class of A,,11—formulas is the main obstacle in order to adapt
the refered proof to obtain that IA, ;1 = LA, ;1. So, to answer problem (*) the above re-
marks suggest two natural properties: T has A,,;1—collection (that is, T = B*A,1(T)),
and T is A, 1—closed (that is, A,41(T) is closed in T under bounded quantification). We
prove that if T satisfies one of the above conditions then LA, 41(T) <= IA,11(T), see
theorem 1.4.

We also study relationships among the above schemes, for distinct theories. The fol-
lowing theorem sums up the results obtained.

Theorem 1.1 (see 2.1, 2.10, 2.17, 2.18, 6.12, 6.13, 6.14). For alln € w

I, < LAn+1(IEn) < IAn+1(IEn) < B*An+1(12n)
Iy ) t
an+1’ IHn+1 } <= LAn+1(IEn+1) < IAn+1(IEn+1) #:> B*An+1(12n+1)
IAn+1» B2n+1
Iy ) t
Iy ) t
>, o= N
- BZEH — LA,+1(PA) <= IA,+1(PA) = B*A,t1(PA)
n+1’ n+1
Iy ) t
B2n+1 <=
I, <~ LA, +1(N) <= IA+1(N) = B*A,41(N)
BX, ==
) )
IE»,L+1 ‘:> B2n+1

(Some of those relations for parameter free schemes follow from results in [9], see also
[7] and [15]).



Part II: II,,,5 consequences of a theory.

Properties considered in part I (T has A, ;1—collection, T is A, ;1—closed and others
that we call A, ;—properties) depend on Thyy, ,(T), the class of 1,2 consequences of
T. Here we give characterizations of these properties in a “functional” way. The idea is
to describe Thyy, +2(T) using IY,, and a class of II,,—functions. To this end we introduce
the concepts of II,—functional class (which provides a characterization of the theories hav-
ing A,,+1—collection) and IT,,—Parikh pair (which corresponds with A,,;1—closed theories).
Essentially, a IT,,—functional class is a set of nondecreasing II,,—functions. The concept of
I1,,—Parikh pair is suggested by the following well known result.

Theorem 1.2 (Parikh). Let ¢o(x,y) € 1. If IAg - Vo Iy o(x,y) then there exists t(x) €
Term(L) such that IAg F Vr Iy < t(x) p(x,y).

As a consequence of this result (see 3.27) each A;(IAp) formula is equivalent (in IAg)
to a Ag—formula. So, Aj(IAp) is closed (in IAg) under bounded quantification. We give a
general version of this fact. If T is A,11—closed, then there is a conservative extension of
Thy,, ,,(T) (in a language extending the language of Arithmetic) in which each A, 1(T)
formula is equivalent to a bounded formula. In particular, if T has A, 1—collection then
a strong II,—functional class provides such an extension.

One crutial result that relates the schemes of induction and collection is the Friedman—
Paris’ conservativeness theorem (see [10] or [12]):

Theorem 1.3. For all n € w, Thy, ,(I¥,) = Thy, ,,(BX,11).

Here we study a similar II,,; s—conservativeness property, closely tied to A,,41—collection:
Thy, ,,(T) = Thy,,,(T + BX,11). This property plays a central role in the study of
II,,—envelopes that will be developed in section 5. Roughly speaking, a II,,—envelope is a
IT,,—functional class given in an uniform way and generalizes the concept of envelope (see
[10]). In section 6 we use results of sections 4 and 5 to separate the fragments IA,, 1 (I¥,,),
m > n (see theorem 1.1). The following theorem sums up, for a consistent theory, T, the
relationships among the concepts introduced.

Theorem 1.4. (see 2.10, 2.11, 3.8, 3.11, 3.28, 4.18, 5.11, 5.21)

T is Ap4+1-PF T has Ay 41-min. T is strong I, -funct. T has IT,,-s-env.
f ¢ 8 g
T is Apyi1-closed <= T has Ajp41-coll. <= T is II,,-funct. <:>§ T has I1,-env.
(s ¢ (5]
. . T has Ap41-ind. . B
T is I1,,—Parikh { T is A1 -closed T is Hn+2-conserv.

Where: =1 holds if T is 11, axiomatizable; <=2 holds if the I1,,—envelope is given by
a Il,, formula; and =3 holds if T is recursively axiomatizable, and, for n = 0, T F exp.

In order to simplify the statement of the above theorem we have used there the fol-
lowing notation: T has II,,—envelope (II,—s—envelope) means that there exists a II,—
envelope (strong IT,~envelope) of T in IX,; and T is IIB, ,—conservative if Thyy, ,,(T) =
Thy,, (T + BX,41).



The analysis of theories IA,1(T) and B*A,,+1(T) that we develop in this paper is
related with the work of L. D. Beklemishev in [2], [3] and [4], on induction and collection
as inference rules. Some results in those papers, proved there using Proof Theoretic
techniques, are similar to those given here for schemes on A, ;(T)-formulas. Now we
give a more precise description of the relationship between Beklemishev’s work and ours.

In the papers cited above, Beklemishev study the schemes of induction and collection
as inference rules. The induction rule for a formula p(z) is:

©(0), Vo (p(z) — p(z + 1))
Va p(x)

If I" is a class of formulas, then I'-IR is the class of induction rules for each formula
in I'. Given a theory T, let T 4 ,,11-IR be the closure of T under first order logic and
applications of ¥,,11-IR. We also denote by [T, ¥,,+1-IR] the closure of T under first order
logic and unnested applications of >, 1—-IR; that is, the rule of induction can be applied
only if the hypothesis of the rule are theorems of T (in first order logic). The rule of
collection for a formula p(z,y) is:

Y 3y o(z,y)
Vz3uVe < z3y <uep(x,y)

Theories T + %,,41-CR and [T, X,+1-CR] are defined as for the induction rule. In
[4] it is also considered the induction rule for A, ; formulas: for each ¢(x) € 3,41 and

Y(z) € My

Vo (p(x) < ¢(2))

I,

As we shall see in 2.19, a theory T (extension of IA() has A, j—collection if and only
if T is closed under ¥,,11—CR (that is, [T, 3,4+1-CR] <= T). For induction we have that
T has A, 41-induction if and only if T is closed under A, ;;-IR.

Our analysis of theories with A, 41—collection using Il,—functional classes is also very
similar (for n = 0) to the one given by Beklemishev in [2] using what he call monotone
formulas. In this way theorem 3.5 can be considered a generalization of theorem 5.4 of [2]
(and it is linked with theorem 4.2 of [3]). Nevertheless, we must observe that one of the
aims of Beklemishev’s work in [3] is to obtain a proof of Friedman-Paris’ conservativeness
theorem. On the other hand, our analysis goes in a reverse direction, since we take that
result as basic (due to its easy model theoretic proof) and relate it with a characterization
of II,,—envelopes using indicators (II,—IND property, see theorem 5.6).

The relationship of ¥, 1—-IR with the work developed here is not so obvious. But, as
Beklemishev has noted (personal communication),

1A i1 (ISy1) <= IAg + Spsq-IR.
This fact is closely tied to a conservativeness theorem of Parsons (see [18])
':[‘h]‘[nJr2 (Izn+1) — 1Ay + Yn+1-1R.

These results are more deeply studied in [8] in connection with axiomatization properties
of the theories IA, 1 (T).

An_t'_l*IR .

We conclude this section with some basic results and notation that we use through
this paper. We work in the first-order language of Arithmetic, £ = {0,1,+,-, <} and N
denotes the standard model of £ whose universe is the set of the natural numbers, w. As
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usual, bounded quantifiers are denoted by Vo <t p(z) and 3z < t p(z) (where x does not
occur in t). Ay = X = Il is the class of bounded formulas and, for each n € w,
Yot1 ={3Ze(Z) : o(Z) € II,,} and 11,41 = {VZ (%) : (%) € E,,}.

Let ¢(x,v) be a formula of £. We shall denote p(x,v) A Yy < x —~¢(y, V) by ¢, .(z,7).
If A = ¢,z (a, b) then we write A = a = (ux)[¢(z, b)]. If there is no danger of misunder-
standing we omit the subscript « and the parameters ¢ and we shall write ¢, (z).

We denote by P~ a finite set of II; axioms such that if 2 = P~ then 2 is the nonnegative
part of a commutative discretely ordered ring (see [12]).

Let ¢(z,¥) be a formula. The induction and the least number principle axioms for
o(x, V) with respect to x are, respectively, the following formulas

I%x(U) = 90(07 17) AV [QO(‘T’U) - 90(33 + 1777)] — Vz 30(33717)’
L, . (V) = 3z ¢(z, V) — Jx @, (2, D).
Let ¢(x,y,v) be a formula. The collection axiom and the strong collection axiom for ¢
with respect to x,y are, respectively, the formulas
Bso,:my(za U) =Va S Zzly (10($a Y, U) — JuVz S Zay é Ug@(l’,y,ﬁ),
S¢7$7y(z’?7) = JuVz <z [Ely(p(x7yaﬁ) - ay < U(p(l’,@/,ﬁ)]
As usual, we write I, instead of I, , and similarly we use Ly, B, and S,,. If I' is a class
of formulas of £, then II' = P~ + {L, : ¢ € I'}. The theory LI is defined similarly using
L, instead of I,. For collection, BI' = IAg + {B, : ¢ € I'} and using S, instead of B,
we obtain SI'. Peano Arithmetic is the theory PA =P~ + {I, : ¢ formula}.

Now we consider schemes for parameter free formulas. Let I' be a class of formulas. We
write o(z1,...,2,) € I'7 if ¢ € T" and z1,...,z, are all the variables that occur free in
¢. Then I'™ =P~ +{I,, : ¢(x) € '} (similarly for LI'") and BI'™ = 1A, +{B_
o(z,y) € I'"}, where

B,y =Vrdye(z,y) — VzTJuVe < 23y <up(z,y).

The parameter free version of the strong collection scheme for ¥, formulas is equivalent
to SX,.

One of the basic functions used to describe metamathematical properties in the language
of Arithmetic, such as truth predicates, is the exponential function. Let E(z,y, z) be a
Ag—formula that defines in the standard model the exponential function, IAy proves its
basic properties and I¥; proves that it is total (see [10] for details). We shall usually write
x¥ = z instead of E(x,y, z) and shall denote by exp the IIs sentence Va Vy 3z E(x,y, 2).

We shall write: T = T, if T is an extension of T'; T =< T’, if T is not an extension
of T; T T/, if T == T and T === T; T < T’, if T and T’ are equivalent; and
T = T, if T is a proper extension of T’.

We recall some definitions and results which are important in the study of the above
schemes. Let A =P, n € wand X C 2. Then K, (2, X) (if X is the empty set, we write
Kn(20)) is the substructure of 2 whose universe is {b € 2 : b is 3,, definable in (2, X)}.
Z, (2, X) is the initial segment of A determined by /C,,(2(, X'). It holds the following results.

Theorem 1.5. (1) Let 2 =13, be nonstandard. Then for all X C 2
(a) Knt1(A, X) <pt1 A and K1 (A, X) = I5,.
(b) Kn1(A, X) <61 Tnpa (A, X) <5 A (C° and C® mean cofinal and initial
substructure, respectively).



(c) If Kpt1 (A, X) is not cofinal in A then Z, 11 (A, X) = BXp41.
(2) Let 2 |=1I%,,4+1 be nonstandard such that IC,,1(2() is nonstandard. Then ICp,41 () W~
B, and T, () f TS0

Finally, we introduce the axiom schemes for A, formulas.
IAn11 =P~ +{Vz [p(z,0) = ¢(2,0)] = Lpa(0) : @ € Bnp1, ¢ € My}

Using L, instead of I,, we obtain LA, ;. Parameter free schemes, IA ; and LA,
are defined similarly. Uniform versions of the above fragments have been introduced by
R. Kaye (see [11]). UIA, 41 is P~ together with, for all ¢ € 3,11, ¢ € 1,41,

Va VU [¢(z, V) < Y(x,0)] — VU1, (V).

ULA,, 41 is defined accordingly using L,. We introduce a uniform version of collection.
UBA,, 11 is IA together with, for all ¢ € I, and ¢ € 3,

Va VU [Fy oz, y, V) < Ywp(z,w, V)] = V2VTBy 44(2, V).

Theorem 1.6. For alln € w, IA, | =< ULA,; and

I, k= LA, — IA;,
) )

UBA,;1 <= BY,;, <= ULA,,; — UlA, = I3,
g f f

BYni1 = LAy = IApn

Forn>1, LA, == UlA,; and IA | <& 1Y, but IA] = TA,.

R.O. Gandy (see [10]) proved the equivalence between LA, 1 and BX,1; and R. Kaye
(see [11]) obtained a similar result for the uniform versions. See [9] for UIA,; = I%,,
LA, == UlA, and IA |, == ULA.q; [7] for 1A, |[= UIA,;1; 2.14 for
UBA, 1 <= BX, | ; and [4] for UIA; = IA7] (there UIA; is denoted by sIA;). The
above diagram contains the following open problems:

(—): The Paris-Friedman’s Conjecture: LA, 1 <= IA, ;.
(—): The Uniform Paris—Friedman’s Conjecture: ULA,, 1 <= UIA, ;1.
(—): The Parameter Free Paris-Friedman’s Conjecture: LA | <= IA .

Recently, T. Slaman (see [19]) has obtained a partial answer. He has proved that
LA, 11 +exp <= IA, 41 + exp.

On the other hand, L. Beklemishev (see [4]) has proved that IA; + exp is a Y3—
conservative extension of UIA; + exp; hence, ULA + exp < UIA; + exp. Beklem-
ishev’s result seems to be easily extended to n > 1; so, only the case n = 0 seems to be
open in the two first problems. However, Slaman’s proof rests on the equivalence between
B>, 11 and LA, 1; therefore it can not be adapted to the parameter free problem.
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2. The theories 1A, ;(T), LA, 1(T) and B*A,,1(T)

Through this paper T will denote a consistent theory in the first—order language of
Arithmetic. For such a theory we introduce the classes of formulas
Apt1(T) = {p(z,V) € ¥pt1 ¢ there exists ¢(x, V) € 41, T @ — P}
When the schemes of induction and minimization are restricted to these classes of

formulas we obtain the theories IA,,41(T) and LA,,4;(T). We also consider the following
version of the collection schemes

B*A,11(T) =1A0 + {By 2 y(2,70) 1 p €11, Jyp(z,y,v) € Apga(T)}.

Remark 2.1. We shall begin with some basic properties of the theories introduced above.
First we observe that IX,,11 = IA,11(T) = I%,.

If p € ¥y 41 and ¢ € 11,41 then ¢ < 9 is a I1,,;o—formula. So, it follows that (a similar
result holds for minimization and collection)

Claim 2.2, If Tth+2 (T) = Thp T/) then IAn_H(T) < IAn-i—l(T/)-

n+2(

Let A%, ,(T) be the dual class of A,;1(T). Since the negation of a A, 1(T) formula
(that is, a A} | (T)-formula) is equivalent (in T) to a A,1(T)- formula, as in the proof
of Il,, 41 <= I¥, 41 (see lemma 7.5 in [12]), we get that

Claim 2.3. LA, (1(T) = IA} |(T) <= 1A, 1(T).

For each ¢(x,y) € I,,—1, Jy [Y(x,y) V (-Fz¢(z,2) ANy = 0)] € Apt1(T). So, as in the
proof of BY, 11 = I3, (see 1.2.15 in [10]), we obtain

Claim 2.4. B*A,,1(T) = I%,,. Hence, forn > 1, B*A,+1(T) = BX,.

Suppose that T is an extension of IX,. Let ¢ € II, and ¥ € %, such that T
Jy (x,y) < Yy (x,y). Let us consider the following formulas
el(xa w) =z <wAJu [Soﬂﬂt(x?u) A (vz>27§2§w Jy < ucp(z, y)]?
92('%" w) =r<w /\VZ/WIL",y) AVu [QO(.CE, u) - (VZ)QUSZSwEly < ucp(za U)]
Then T F 01(x,w) < O3(z,w) and 6; € ¥,,41 and O3 € II,41 in T and in LA, +1(T).
From this, as in lemma 1.2.17 in [10], we obtain that

Claim 2.5. If T is an extension of I%,, then LA, +1(T) = B*A,,+1(T).

Definition 2.6. (A, properties) We say that
(1) T is Apy1—closed if Ap+1(T) is closed in T under bounded quantifiers.
(2) T has A, y1—collection if T = B*A,41(T).
(3) T has A, y1-minimization if T = LA,+1(T).
(4) T has Apyi1-induction if T = IA,+1(T).
(5) T is An+1—PF if IAn+1(T) <~ LAn+1(T)
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Remark 2.7. Let us consider some examples of theories having A, 1 properties. Since
BY, 11 = B*A,11(T), we get that every theory extending BX,,; has A, 1—collection.
Now we improve this result.

Claim 2.8. If T = BY,_, then T has A, j—collection.

Proof of Claim. Let o(x,y,v1,...,vy) € I, and ¢(x, w, ¥) € ¥, such that T + Jy p(z,y, V) <
Ywy(z,w, ). Let 0(z,y) € X, be

o((x)o, ¥, (2)1,- -+, (@)m) V [y = 0 A =Vwp((z)o, w, ()1, - -, (#)m)]-
Since T F Vz3yl(z,y), T F VzIuVe < 23y < ub(z,y). Let A = T and a,b € A

-,

such that 2 |= Vo < aJye(z,y,b) and ¢ = (a,b). Then there exists d € U such that
A = Ve < ¢Jy < db(x,y). Since a < ¢, then A E Vo < aJy < dp(z,y,b); hence,
2 = By, as required.

0

There exist theories, e.g. I3, (see 2.17), that have A, —collection and are not exten-
sion of BY, ;. Now we present a case in which both conditions are equivalent.

Claim 2.9. If T is complete and has A, 1—collection then T = BY_ ;.

Proof of Claim. Let % = T and 0(z,y) € ¥, such that 2 |= Va2 Iy0(x,y). Since T
is complete, T F Va Iy b(x,y); so, JyO(z,y) € Apt1(T). Since T has A, 1—collection,
A &= By; hence, A EVzIuVe < z3y < ub(x,y). O

Next result was, chronologically, the main reason to introduce the theory B*A,,1;(T).
This theory became one of the main tools in this work once we came to the concept of
IT,,—functional theory (see subsection 3.1).

Theorem 2.10. (1) If T is Ay q1—closed then T is A, +1—PF.
(2) If T has A, y1—collection then T is A, 1—closed.

Proof. ((1)): By 2.3, it is enough to see that IA,1(T) = LA, 1(T). Suppose that
there exist 2 = IA,;1(T) and p(x) € Api1(T) such that A = 3z p(x) A Ve —p,(x). Let
0(z) € I,41 be Vz < z-¢p(x). We have that A = 0(0) A [(z) — 6(z + 1)]. Since T is
Apqi—closed, 0(z) € Ay (T). By 2.3, A = IA} (T); so, A |= Vo —~p(x), a contradiction.
((2)): Let ¢(x,y) € I1,, ¢¥(x,y) € X, such that T F Jyp(zr,y) < Vyiy(zr,y). By the
closure properties under bounded quantification of BY,,, there exists 6(z) € X,41 such
that BY, F 0(z) < JuVzr < z3y < up(z,y) (for n = 0, we do not need BY,,). The
following equivalences hold in the given theories.

Ve < zVyi(z,y) < Ve <zIye(z,y) [in T
— JuVr <z3dy <ue(r,y) [in B*A,41(T)]
— 0(2) [in BY,]

Since T has A, i—collection, all the above equivalences hold in T. Then, as Vx <
2Vy(z,y) € My, 6(2) € Apt1(T). So, Vo < z3yp(x,y) is equivalent in T to a
Ap11(T) formula. O



Remark 2.11. Now we describe others elementary relations among A,,1 properties of a
theory.

Claim 2.12. If T has A,y1—collection then T has A,,1+1—-induction.

Proof of Claim. Suppose that T F Jy p(x,y) < Yy (x,y), where p(z,y) € I, ¥(x,y) €
Y. Let O(x,y) € II,, be o(z,y) V ~1(x,y). Since T F VzIyb(x,y), then Jyb(z,y) €
A, +1(T). Now the proof continues as in 2.4. O

Claim 2.13. The following conditions are equivalent

(i) T has A,1—collection.
(ii) T is A, 41—closed and has A, 11—induction.
(iii) T has A, 1—minimization.

Proof of Claim. (i) = (ii) is 2.10 and 2.12. (ii) = (iii) follows from 2.10—(1).
((iii) = (i)): Suppose that T has A, ;;—minimization. Then T = IX¥,; so, by 2.5,
LA,+1(T) = B*A,+1(T). Hence, T = B*A,4+1(T). O

For each model 2, Th(2) has A, ;—collection if and only if A = UBA, ;1 (or U =

BX,, see 2.9); and Th() has A, ,-minimization if only if % = ULA,,1. So, as a

consequence of 2.13, we obtain that
Claim 2.14. BY | < UBA,;; <= ULA, ;.

Remark 2.15 (Thy, ,(T) and A, properties). Here we shall see that a theory T has
a A,y1-property if and only if Thyy, ,(T) has that property. This is easily seen for
A, +1—closed. Now we consider A, 1—induction.

Claim 2.16. T = IA,,(T) if and only if Thy, ,(T) = IA,11(T).

Proof of Claim. Let ¢ € ¥;,41 and ¢ € Il 41 such that T - ¢ < 1. Let I, be

P(0) AV [p(z) = (x +1)] — Vo i(z).
Then, Thy,,,(T) I, < I, ,. Suppose that T has A, ;-induction, then T F L,; hence,
T+ I,,. Since I,y € Il 12, Thy, ,(T) F L, 4; so, Thy,,(T) - I, as required. O

From this, 2.13 and 2.10 we get a similar result for LA, ;(T); and from 2.5, using
again 2.13, also for B*A,, ;1 (T).

Claim 2.17. If Thy, ,(T) = Thy, ,(BX,41), T has A, 1-collection. So, I¥,, 1A, 1
and UIA, 1 have A, 4+1—collection.

Remark 2.18. Now we study relations between IA;,41(T) and IX,,, BY,, 11 and BX, . By
2.17, 1%, has A, +1—collection; so, by 2.10 and 2.4, it follows that I3, <= IA,+1(I%,) <
LA, +1(I¥,) < B*A,+1(I¥,). From this result, 1.3 and 2.2 we get that

I¥, <= IA,4+1(BX,41) <= LA, 11(BX,1+1) <= B*A,11(BX,41).
9



Since ¥o(2,,) € Apy1(BX,,41), the above result gives a generalization of IY,, <= I¥y(3,,)
(see [10], theorem I.2.4).

Let T be a theory consistent with I¥,, 11, 20 = T+I¥,41 and a € A nonstandard. Then,
by 1.5, Kn+1(2,a) = Tth+2 (T + I¥,4+1); hence, by 2.15, K, 11(,a) = IA,+1(T) +
B*A,11(T). So, again by 1.5, it holds that

Izn+1 |:> IAn+1(T) == B2n+1 ’:> B*An+1(T)
In particular, BY,, 11 = B*A, 11 (V).

Now assume that there exists 2 = T +1I%,, 41 such that K, 1 (2() is not standard. Then,

by 1.5-(2), Knr1() = BX, ;. So, IA,11(T) == BX,; and B*A,1(T) == BX ;.

Remark 2.19. (On induction and collection rules) In this remark we state some rela-
tions between A, j—properties and induction and collection rules.

Claim 2.20. The following conditions are equivalent:

(i) T has A, +1-induction.
(ii) T is closed under A, ;-IR.

Proof of Claim. The result follows from [T, A,+1-IR] <= T + IA,,+1(T).

Claim 2.21. Let T be an extension of IAy. Then
[T,%,4+1-CR] <= T + B*A,,11(T).

Proof of Claim. (<=): Let ¢(z,y) € 1I,, such that T F Vx 3y p(z,y). Then 3y p(z,y) €
Apt1(T). Hence, T +B*A,,+1(T) FVz3JuVe < 23y < up(z,y).

(=): Let p(x,y) € 11, and ¢(z,y) € X, such that T F Jyp(x,y) < Yy (z,y). Then
T+ Vz 3y (p(z,y) V ~¢(z,y)). So,

[T,%,+1—-CR] F VzJuVe < 23y < wu(p(z,y) V-u(x,y)).
Hence, [T,3,+1-CR] FVz < z3yp(z,y) — FuVe < z3y < uep(z,y).

O
Claim 2.22. Let T be an extension of IAy. The following conditions are equivalent:
(i) T has A,41—collection.
(ii) T is closed under %, +1—CR.
Proof of Claim. The result follows from 2.21.
O

3. Functional character of A, ., properties

In this section we shall see that the A,,1—properties of a theory T are connected with
descriptions of Thyy,,,(T) using I3, and a class of I, functions.

In what follows I' will denote a class of formulas of £ with two free variables, z, y say.
For a formula ¢(x,y), the conjunction of
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(=): Vo Vyr Vs [z, y1) A p(z,42) — y1 = 2], and

(5): Va1 Vo Vyr Vi [11 < @2 A (@1, y1) A (a2, y2) — y1 < g2,
will be denoted by IPF(p). That is, IPF(y) expresses that ¢(x,y) defines an increasing
partial function. Let IPF(I") = {IPF(¢(z,y)) : ¢(x,y) € T'}, Func(l') = {Vz Iy o(x,y) :
¢ € T'} and I’ = Func(l') + IPF(I"). Let us observe that for I' C II,, I'* C I, 9.
For a theory T let Func,(T) = Func(Gr,(T)), where Gr,(T) = {p(z,y) € II,, : Tk
vz 3y o(z,y)}-

Remark 3.1 (The language L£(I")). Let L(I") denotes the extension of £ obtained by adding
a function symbol G, for each ¢ € I'. Let Al be the class of bounded formulas of £(T").
The classes XL and TI%, n € w, are defined as usually. Let us consider the following theories
of language L(I').
IAG =P~ +{L,: p € Af}+{p(z,y) = Gylz) =y: p €T},
IA]" =IA{ +IPF(I).

Then IA} <= LAJ and, for I C IL,, IA] and IA]" are II}, | ~axiomatizable.

In general, if T is a theory in the language of Arithmetic, T will denote the extension
of T to L(I') obtained by adding to T, as new axioms, the formulas ¢(z,y) < G () = v,

for each ¢ € I'. Observe that (T 4 Func(I'))r is a conservative extension of T + Func(T").
It holds that

Claim 3.2. (i) If t(z) € Term(L(T)) then (IAg+T*)p Fa < a2’ — t(x) < t(a).
(ii) Let t(Z) € Term(L(T')). There is ¢(Z,y) € Api1(IAg + Func(I')) such that
(IAg + Fune(D))r F t(Z) = y < ¢(&,y).

Remark 3.3. By a standard argument on contraction of quantifiers (see [12]) for each
o(Z,9) € 11, there exists ¢°(u,v, &, y) € II,, such that

(—): IAo FVZ 37 (2, y) < YuIvVEVY o°(u, v, Z, 7).

(—): TAo F ¢%(u,v,Z,9) = Z<uAy <.

Claim 3.4. Let ¢ (x,y) € II,,. There exists ¢ ¢(x,y) € II;, such that

(i) IS, =y, y1) Ag(z,y2) — y1 = yo.
(i) IX, F Iy (z,y) — Iy p(z,y).
(iii) IX, F Yp(z,y) — 3z < yy(z, 2).

Proof of Claim. For n = 0, let ¢ ¢(x,y) be the formula ¢ (z,y) AVz < y—(x,2). It is
clear that v (x,y) satisfies the claim. For n > 1, let ¥1(x,y,2) € ¥,-1 such that ¥ (z,y)
is Vz91(x,y, 2). Let ¢¢(x,y) be the following formula

Sea(y) A ¢ (z,1g(y)) A VG <l1g(y) [71(x, 4, ();) AVzZ < (y); ¢ (=, j; 2)]-
To prove (ii) follow the proof of I¥, = FAC(X,,) (see lemma I.2.35 in [10]). Parts (i)
and (iii) are easy. O

From this result, using contraction of quantifiers, it follows that
Claim 3.5. If T = IX%,, then Thy, ,(T) = Thy, ,(IX, + Func,(T)).
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Below we shall see that Thyy,,,(T) can be described, for some theories, using I¥,, and
a family of II,—functions, I' C Gr,(T). In section 3.1, we prove that if T has A, 41—
collection then the functions in I' are nondecreasing. In section 3.2, we shall see that
if T is A,11—closed then every A, ;1(T) formula is equivalent to a bounded formula of

£(Gro(T)).
3.1. II,—functional classes.

Definition 3.6. (1) Let I' C II,,. We say that I is a II,,—functional class if I¥,, +T'* is
consistent.
(2) Let T be a theory. We say that T is I1,~functional if there exists a II,,—functional
class I' such that Thy, ,(T) = Thy,,(IX, +I'). In this case we say that I is
a II,,—functional class for T.

Let us notice that if T" is a II,,—functional class for T, then, by 2.2, IA,;1(T) —
IA,+1(IX, + T%); and, since IX,, 4+ I'* is 11,49 axiomatizable, T — I%,, + T'*.

Lemma 3.7. Let I be a II,,—functional class. Then

(1) Tth+2 (Izn + F*) = Tth+2 (BETL-H + F*)'
(2) IX,, + ' has A, +1—collection. So, it has A, 1i—induction.

Proof. ((1)): Let 6(z,y) € %, such that BX,4; + ' + Vz3y6(z,y). Let us suppose
that I¥,, + I ¥ Va JyO(z,y). Let A = I, + T* + =Vax Iy b(z,y) and a € A such that
A =Vy—0(a,y). Let
T =ED®) + {3z ¢(z,a) - Jz < c(z,a) : Y(x,y) € Xpt1}

(where ED(21) is the elementary diagram of 2l and ¢ is a new constant symbol). By
compactness, T is consistent. Let 8 = T. Then A < B, B = I, + ' + Ve Iy 0(x,y)
and, by 1.5, Z,,11(B,a) <$ B and it is proper. So, Z,+1(%B,a) = BX,+; + I'*. Since
Zn+1(%B,a) = Yy —6(a,y), this gives the desired contradiction.

((2)): It follows from (1), 2.8 and 2.15. O

Theorem 3.8. Let T be a consistent theory. Then
T has A, 41—collection <= T is Il,—functional.

Proof. (<=): Let I be a II,,~functional class for T. Hence, by 3.7-(2), since Thyy, ,,(T) =
Thy,, ,,(IX, +T*), T has A, ;;—collection.

(=): Let
I'={p(z,y) €Il; : TEVzIye(z,y), IE, FIPF(p)}.

Let us see that I' is a II,,—functional class for T. It is enough to prove that for all
O(z,y) € I, if T+ VzIyl(z,y) then IX,, + T F Vz Iy 6(z,y). We consider the following
cases.

Case 1: n =0: Let Cy(z,y) be the formula

Vu < z3v <yb(u,v) ANVw < yJu < z Vv < w—6(u,v).
That is, y = max({v: Ju < z[v = (uz)(0(u, 2))]}). We have that
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(i) IAg F V2 3y Co(z,y) — Y Iy o(x,y),

(ii) IAQ H IPF(C@), and

(iii) B*A1(T) - Vz 3y Co(z,y) < Vo Iy O(x,y). (Since Jyb(x,y) € A1(T)).
Since T has Aj—collection and T + Va Jy0(x,y), by (iii), T F Vz Iy Cy(x,y); hence, by
(ii), Cop(z,y) € I'. So, IAg + I'* F Vo 3y Cy(x,y), and, by (i), IAg + I F Vo Iy 0(x,y), as
required.
Case 2: n > 1: Since T has A, y;—collection, T = B*A,,1;(T) = I%,;; hence, (1 < n)
we can use predicates and functions associated to Godel’s 8 function. For example, we
will use the following A;(I¥;) formulas: Seq(z): “z is a sequence”; lg(z) = y: “y is the
length of z7; (z); = y: “y is the j—th projection of z”. Let ¢'(z,y,2) € ¥,_1 such that
0(x,y) is V2 0'(z,y, z). Let Cy(z,y) be the formula

( Seq(y) Alg(y) =2 ASeq((y)1) Ag((y)1) = (y )o A
Vw < (y)o [Sea((¥)1,w) AMg((W)1,w) =2 A (Y)1w0 < 2] A
Vu <z 3v < (y)oVz0'(u,v,2) A
Vu < (Y) 1,030 < wVz 0 (u,v,2) A
Yw < (y)oq Yo < w3z < (Y)1w,1 0 ((Y) 10,050, 2) A
VE < (Y)1,w,1 I S wVz <O ((Y)1,0,0,0, 2)
We give an informal description of Cy(x,y). The interpretation of the first two lines is
clear. The other parts of Cy(z,y) are developed to get
(¥)o = (pw)[Vu < zFv <wVz 0 (u,v, 2)]
(V) 10,0 = (pu)[-Fv <wVz0'(u,v, )]
Yw <
U e (o < w3 <0 (V1000 2)]
Since Cyp(z,y) € I1,,(BX,), Co(z,y) € II,(T), 11, (IX,,). We also have that
(ii) IS, F IPF(Cy), and
(iii) B*Ap11(T) F Vo Iy Co(z,y) < Yo Iy b(z,y).
The proofs of (i) and (ii) are trivial, see the informal description of Cy(x,y) given above.
To prove (iii) it is enough to see that

Claim 3.9. B*A,,1(T) - Vz 3y (x,y) — Vo Iy Co(x,y).

Proof of Claim. Let A = B*A,,11(T) such that 2 = Vz 3y 6(z,y) and let a € A. Since
JyO(z,y) € Apy1(T), A = FyVu < aFv < yb(u,v). So, there exists b € A such that
AE=b=(uy)[vu < aJv < yb(u,v)]. For each d < b let

cg = (pu)fu <aA-Fv < db(u,v)].
So, for every d < b, A = It Vo < dIz < t -6 (cq,v,2). Let

eq = (pt)[Vo < d3Jz <t -6 (cq,v, 2)].
In what follows we shall see that the elements (cg, €p), ..., {cp_1,€p—1) can be given as a
sequence. Let p(w,p,x) € 11,,(BX,,) be the formula

Seq(p) Alg(p) =2 A (p)o <z AVu < (p)oFv < wVz 0 (u,v,z) A
Vo < w3z < (p)1-0'((p)o,v, 2) AVt < (p)1 Fv <wVz < t0'((p)o,v, 2)

We have that 2 = Vw < b3p p(w,p,a) (if w < b, take p = {(cy, €y)). Now let U (z, 3, w, p) €
Yn+1(B3,) be the formula
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[Fy <y'Vu <z3Iv<yb(u,v) Ap=0] V
[y <wAp=0]V< [Fu<azVv <y —0(u,v) A\p=0]V
p(w,p,x)

Since Ip ¥ (z, vy, w,p) € Apt1(T) and A = B*A,4+1(T), then there exists ¢ € 2 such
that 2 = Vw < b3Ip < ¢¥(a,b,w,p). Let s € A such that A = Seq(s) Alg(s) =bAVj <
bl(s); = q]. Let 6(z,a,s,b) € II,,(BY,) be the formula a < z V 3y < (b, s) Cy(x,y). Then

2 =6(0,a,s,b) A[6(z,a,s,b) = §(x+1,a,s,b)].
So, A EVxd(z,a,s,b); hence, A = Jy < (b, s) Cy(a,y). O

From (i)—(iii), as in case n = 0, it follows I3, + I'* - Va 3y 0(z, y). O

Corollary 3.10. Let T = I%,,. The following conditions are equivalent:
(1) T is II,,—functional.
(2) Every total II,~function of T is bounded by a total increasing function; that is,
for every (x,y) € II,, such that T F Va 3ly p(x,y) there exists C,(x,y) € II,, such
that T+ Va 3y Cy(x,y) ANIPF(C,) and T+ Cy(z,y) — 3y < yo(z,y).

Remark 3.11. Here we study the relationship among being II,,—functional, axiomatization
and conservativeness, for consistent theories.

Claim 3.12. Let T be such that Thy, ,(BX,+1 +T) = Thy,_,(T). Then
(i) T is II,,—functional.
(ii) If TV is X, +o—axiomatizable then

ThH an—l-l + T+ T/) = ThH (T + T/).

n+2 ( n+2

Proof of Claim. ((i)): By 2.8, BY,+1 + T has A, 1(T)—collection; so, by the hypothesis,
2.15 and 3.8, T is II,,—functional.
((ii)): Follows from Thyy, ,(BX,41 + T) = Thy, ., (T). O

n+2(

Claim 3.13. Let T be II,,; o—axiomatizable and let T’ be ¥, o—axiomatizable.

(i) T is II,,~functional if and only if Thyy, ,(BX,+1 + T) = Thy,_,(T).
(i) If T is II,~functional and T + T’ is consistent, T + T’ is II,—~functional.

Proof of Claim. (ii) follows from (i) and 3.12. Let us see (i). Let I' be a II,,—functional
class for T. Then

Tth+2 (T) = Tth+2 (an—H -+ F*) = Tth+2 (B2n+1 + T)

Where the first identity follows from 3.7—(1) and the last one, since T is IT,, 4 s—axiomatizable,
from T <— IX,, + I'*. Il

Claim 3.14. If T is Ys—axiomatizable and T —> IA( then T is Ilg—functional. In partic-
ular, I, Thyy, (NV), IAT and LA are Ilp—functional.

By a result of D. Leivant (see [16]), for n > 1, if T is a sound and ¥,,4o—axiomatizable
theory, then T does not extend I3,. By 2.1 in [8], this is also true for any consistent
theory. As B*A,,11(T) extends I¥,, we get that
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Claim 3.15. (n > 1) If T is ¥, 9—axiomatizable and consistent then T is not II,—
functional. In particular, forn > 1, Il |, IA ", and LA, are not II,~functional.

Remark 3.16. Now we give some examples of II,,s—axiomatizable theories which do not
have A, i-collection. Suppose that n > 1, T = I¥, and Thy, ,(T) # Thy,,, (N).
Then (see [9], theorem 3.7), it holds that Thy,,,(T) == LA, ;. Hence, there exist
¢o(x) € ¥, and ¢(x) € II, such that Thy, ,(T) ¥ Va(p(z) < ¢(r)) — L, Let
6 € 11,42 be the sentence Vz (p(x) < ¥(x)). Then Thy, ,(T) 4 6 does not have A, 11—
minimization; hence, it does not have A,,;1—collection. From this we get:

Claim 3.17. (n > 1) Every X -theory, 11, 9—axiomatizable and (consistent) extension of
IY,, has a I, ys—axiomatizable extension that does not have A, —collection.

We now consider case n = 0. By theorem 3.2 in [9], if T is an extension of IA( such
that T + exp is consistent and Thyy, (T + exp) # Thy, (V) then Thy, (T) === LAT.
This gives the following result (related with some results of Beklemishev (see [2], theorems
6.1 and 6.2)).

Claim 3.18. Let T be a %1—theory, lla—axiomatizable, extension of 1A such that T 4+ exp
is consistent. Then there exists a Ils—axiomatizable extension of T which does not have
Aq—collection.

We now consider A,,;1—induction. Next result has also been obtained by Beklemishev
for n =0 (see [4]).

Claim 3.19. Every theory, T, ¥, 11-definable in N, II,,, o—axiomatizable and consistent
with PA + Thy, (N) has a II,9-axiomatizable extension which does not have A, 41—
induction.

Proof of Claim. Follows from Thyy, ,(T) == 1A, see corollary 4.6 in [9]. O
3.2. II,,—Parikh pairs.

Definition 3.20. Let I" C II,, and 'y C 1,49 such that Func(T') C T'y. We say that (I',T'y)
is a II,,—Parikh pair if IX,, + I'1 is consistent and

(1) for all (%, y) € I, such that I3, +T'1 - VZ 3y (&, §) there exists a term of L(T'),
t(Z), such that (IX,, + T'1)r F V& 3y < ¢(Z) ¢ (Z,¥), and
(2) for all 0(%) € Al there exists (%) € Apy1(IX, + ') such that

(IX, + T1)r F 0(Z) < P(2).

Definition 3.21. We say that T is a IlI,,—Parikh theory if there exists a Il,—Parikh pair
(I',I'y) such that Thy, ,(T) = Thy, ., (IX, +T).

Remark 3.22. Here we give some basic facts on II,,—Parikh pairs. We first observe that
(Gry(T), Func, (T)) satisfies condition (1) of definition 3.20.
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Claim 3.23. Let (%, y) € 11, such that T FVZ3yy(Z,y). There is a term of L(Gr,(T)),
t(), such that (IX, + Func,(T))qy, () - VE 37 < H(Z) (7, 7).

Proof of Claim. Let ¢/ (u,v) be V& < uVy < v¢¢(u,v,Z,y), where ¢°(u,v, Z,7) is as in
3.3. Then T F VuJvy'(u,v). Let O(u,v) € I be ¢ (u,v), see 3.4, and let () be
the term Go(Ji(z1,...,2%)) (Where Ji(z1,..., k) is a term of L(Gr,(T)) associated to
Cantor’s function used in contraction of quantifiers). Then (I, + Func,(T))ar,(T)

VE g < 1) (7, 9).
In what follows (I',T';) shall denote a II,,—Parikh pair.

Claim 3.24. (n > 1) Let o(Z,y) € II,,_1 and ¥(Z,y) € ¥,,—1. Then there exist terms of
L(T), t(Z), t'(£), such that
(IZ, +T)r k3G e(@, ) < 3
(IZy + ) B VY9(T, §) < Vg

Qg

< HT) (T, ),
< (@) Y(Z, ).

Proof of Claim. Let ¢1(Z,y) € II,, be the formula ¢(Z,9) V (VZ—¢(Z,Z) A j = 0). Since
IX, + T4 FVZ 37 01(Z, 7), by 3.20—(1), there exists a term of L£(T'), t(Z), such that (I¥,, +
) V2 37 < t(Z) ¢1(F, §); hence,

(IZn + T1)r E 3@, 3) < 37 < 1(F) o(Z, ).
For ¢ € ¥, _1 we obtain the result, from the above one, using —. 0

Claim 3.25. Let (&, %) € Al such that (IX,, +T'1)r - VZ 35 (7, ). There is a term t(7)
of L(T') such that (IX,, +T'1)r b VZ 3y < (%) o(Z, 7).

Proof of Claim. By 3.20—(2), there exists (Z, ¥, z) € II,, such that 3z (%, 7, z) € Apr1(IX,+
') and (IX, + T)r F o(&,9) < Jz¢(Z,7,2). Let t(¥) be a term of L(T') such that
(IX, + T1)r V237, 2 < H(@) Y(Z, 7, z). Then (IX, + T'1)r F VE Iy < H(Z) o(Z, 7). O

Claim 3.26. Let ¢(%) € AY((IX, +T1)r). Then there exists 0(%) € Al such that (IX, +
T')r F o(Z) < 0(2).

Proof of Claim. Assume (IX,, + I'1)r b Jy¢'(Z,y) « Vyo'(Z,y), where ¢'(Z,y) and
Y (F,y) are Al and ¢(F) is Jy ¢/ (F,y). Let 6(F,y) € Af the formula ¢/ (Z,y) V =/ (F, y).
Then (IX,, +T'1)p F VZ 3y §(Z, y); so, by 3.25, there exists a term (&) of L(I') such that
(IZ, 4+ [)r = VE 3y < ¢(F) 6(Z,y). Hence, (IS, +T'i)r k- o(Z) < Jy < 1(2) ¢'(Z,y). O

Theorem 3.27. Let (I',I'1) be a Il,,—Parikh pair, ¢(Z) € Apy1(I¥, + T'1). Then there
exists 0(%) € A} such that (IS, +T'1)r F o(Z) « 0(7).

Proof. For n = 0 the result follows from 3.26. Suppose that n > 1. Let po(Z, ¥, 21, ..., Zn),
Yo(Z, 7,21, ..., 2Zn) € Ag such that (assume n even)
(_): @(f) = Elgvgl EI5\2 .. 3571 @0(57 g) Z‘17 Z‘27 ey 571)
(—): w(f) = Vgagl VZ?Q .. Vgn ¢0(f, 17, 2?1, 52, ce ,Zn), and
() (X, +T)r F (@) < ¢(2).

16



By 3.24, there exist t1(Z,9), to(Z,9,21), - -, tn(Z, Y, 21, - . ., Zn—1) terms of L£(I") such that
the following formulas are equivalent in (IX,, + I'1)r

(—): VZl 352 ce E|Zn (p()(f, :lj, 51, ey En)

(_): vz‘1 S tl(fa g) HZZ S tQ(fa g’ 51) ce Elgn S tn(fa gj? 517 ey gn—l) ©0-
Let ¢'(7,9) € A} be the last formula. Analogously, we get that there exist #}(%,%),
th(Z, 9, 21), ., th (2,9, 21, ..., Zn—1) terms of L(T') such that the following formulas are
equivalent in (I¥,, + I'1)p

(0): 32VZs . . VE0(Z, T, 21, - Z).

(7): 3z < tll(fa 37) vz < té(fa 37’ 21) S VEp < t;’b(f’ 377 217 ) anl) Yo-
Let /(%, %) € A} be the last formula. Then

(IS, +T)r - 37¢' (7, 9) < Vyy'(Z,9).

So, ¢’ (7, %) € AT ((IX,+T1)r) and, by 3.26, there is (%) € A} such that (IX,,+T1)r
Ay ¢/ (Z,9) < 6(F); hence, (IX,, + T'1)r F ¢(¥) < 0(Z), as required. O

Theorem 3.28. Let T be an extension of IY,,. Then
T is II,,-Parikh <= T is A,4+1—closed.

Proof. (=): Let ¢(z,7) € An11(T) and ¢(¥) € Term(L). Let us see that Vo <
t(V) p(z,v) € Apy1(T). Let (I',T'1) be a II,—Parikh pair for T. Then, using 3.27 and
3.20-(2), there exist 0(z,7) € A and ¥(¥) € A,41(T) such that (IX, + I'y)r proves
o(z, V) < 0(x,v) and Vo < t(V) p(z, ¥) < (7).
(«<=): Let us prove that (Gry(T), Func,(T)) is a II,,-Parikh pair for T. By 3.23, we only
need to prove 3.20—(2). The proof is by induction on the length of A} —formulas. Let (%) €
A}, we only consider the case where 6(7) is 3y < t(%) 0p(&,y). By induction hypothesis
there exists 1o(7,y) € Apy1(T) such that (IX, + Func,(T))ar, (1) F %0o(Z,y) < 00(7,y).
Then, by 3.2-(ii), there exists 6(Z,v) € Apt1(IX,, + Func,(T)) such that

(IXy + Func, (T)) g, (r) = 30 [6(Z,v) A Jy < viho(F, y)] < Jy < H(T) 00(Z, y).
As T is A, y1-closed, there exists ¥(Z,v) € Ap41(T) such that

T+ 3y < vio(d,y) < ¢(T,v).

Since Jv [§(Z,v) A Y(Z,v)] € Apt1(T), this proves the result. O

4. Extended Parikh’s Theorem

In this section, we shall see that for some kind of II,,—functional class I'" there exists an
extension of £ such that each A, 11(I¥, +T') formula is equivalent to a bounded formula
of L(T).

4.1. Ag formulas as A, ; formulas.

Lemma 4.1. Let I' C1I,, and I'; C 11,49 such that Func(I') C T'; and

for all s(¥),t(Z,y) € Term(L(T")) there exists ts(¥) € Term(L(T')) such that
(BXy +T)r by < 5(7) — (#,y) < t5(7).
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(1) Let (%) € Af. Then there exist ¢)(Z,z) € S, 0(F, 2) € II,, and t(¥) € Term(L(T))
such that
(B, + T)r FVz > (%) [p(¥) < (&, 2) < 6(F, 2)].
(2) Let (%) € Af. Then there exists §(Z) € Ap11(BY,+T'1) such that (BX,,+T'1)r -
p(T) = 6(T).
For n =0, BX( can be replaced by IAq (collection is not needed).

Proof. By induction on the length of ¢(Z) as in lemma 1.1.30 in [10]. O
Remark 4.2. Let I" be a II,—functional class. We have the following results.

Claim 4.3. For every t(Z,y),s(¥) € Term(L(I')) there exists a term ts(Z¥) such that
(IAg+T)r Fy < s(¥) — t(&,y) < ts(Z). So, lemma 4.1 holds for (BX,, + I'*)r and
(', I'*) satisfies part (2) of definition 3.20.

Proof of Claim. By 3.2—(i), the result follows taking ts(Z) as t(Z, s(Z)). O
Claim 4.4. (IS, + ™) = IA]".

Proof of Claim. Let ¢(x) € AL and 2 |= (I, + I')r such that A = 3z p(z). By 4.1-
(1), there exist ¢(x,z) € 3, and t(x) term of L£(I') such that (BX, + I'*)r = Vz >
t(z) [p(z) < ¢¥(z,2)]. Let a € A such that A = p(a) and let b = t(a). Then A = ¢(a,b).
Since 2 = LY, there is ¢ € A such that A = ¢ = (ux)[¢)(x,b)]. Since I is a IT,—functional
class, by 3.2-(1) A = ¢ = (uz)[p(x)]; hence, A = L. O

Remark 4.5. Here we prove that Ilp—functional classes provide examples of Ilp—Parikh
pairs. In the next subsection we shall see that for n > 1 this is also true for some kind
of IT,,—functional classes. In what follows I' shall denote a IIy—functional class. As in 4.4,
using 4.1-(1) for n = 0, we get

Claim 4.6. IA]" < (IA( +I™)r.

Claim 4.7 (Parikh's theorem). Let I” C TI{. For each p(Z,7) € Al such that IAL" +T" I
VZ 37 (%, ) there exists a term t(Z) of L(T') such that AL + TV - VZ 3§ < t(Z) p(Z, ).

Claim 4.8. (I',T"*) is a [Ip—Parikh pair.

Proof of Claim. By 4.7, part (1) of definition 3.20 holds for (I',T*). So, the result follows
from 4.3. O

4.2. A, formulas as Ag formulas. Strong II,—functional classes. In order to improve
4.1, 4.4 and 4.6-4.8, we consider a special kind of II,,—functional classes. Let I" be a II,,—
functional class and 2 = IA( + I'*. We shall also denote by 2 the expansion of 2 to £(I")
given by: for every a,b € % and p € T’

WG(a) =b — AFp(ab).
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Let ay,...,a; € 2. The simple initial segment of A determined by ai,...,ax is
Sr(,a1,...,ar) ={b: b<t(d), t(¥) € Term(L(I'))}. Observe that if A = (IAg+I")p
then Sp(%, @) is an L£(I')-structure.

Definition 4.9. Let I' be a Il,,—functional class. We say that I' is a strong I1,,—functional
class if for every A = 1Ay + I'* and every J

if 3 ¢ A as L(T') structures then J <& A as L—structures.

Let us observe that every Ilg—functional class is a strong IIp—functional class. Moreover,
if " is a strong II,,—functional class and I" is a II,,—functional class such that I' C I”, then
I is a strong II,,—functional class.

Lemma 4.10. (n > 1) Let I be a strong Il,,—functional class. Then for every k < n,
Thy,,,(BSk2 + ) = Thyy,,,, (IS, + T*) = Thy,,(IAq + ).

n+2 ( n+2 (

Proof. Suppose that BXg o + I'* + Vo Iy p(z,y), where p(z,y) € II,, and IX; + ' F
Va Jy o(x,y). By compacteness, T is consistent, where
T = (IX, +I)r + Vy —p(c,y) + {t(c) <d: t(x) term of L(T")}.

Let A =T, a = A(c) and B = Sp(A, a). Since I' is a II,,—functional class, B C¢ A as
L(I")-structures and, by the last group of axioms of T, it is proper. Also, for all f(x,y) € T’
and b € B there exists d € B such that 2 = 6(b,d). Since I' is a strong II,,—functional
class and 2 = IAg + T, B <¢ A as L-structures. So, from A = Vy —p(a,y) we get that
B = Vy ~p(a,y). Since, B = 1A +T; and, for k <n, B <j | A, then B = BYy 0. So,
B E BXgio+ T and B = Jy ¢(a,y). Contradiction. This proves the first identity. The
second one follows from the first by induction on k < n. O

Remark 4.11. (Strength of 4.4, 4.6, 3.7, 4.1) In what follows let I" be a strong II,,—functional
class.

Claim 4.12. (i) IA} <= (IS, + T)r <= (1A + ).
(i) IAg + I <= I3, +T™.

Proof of Claim. By 4.4, (IS, + T*)r = IA}]" = (IA¢ +T™)r. Let § € ¥,. Then
B, 41 F Ip; so, by 4.10 (for k =n — 1), IAg + I'* - Iy. This proves (i). Part (ii) follows
from (i). O

By 4.12, we can rewrite 3.7 as follows

Claim 4.13. (i) Thy, ,(IAg 4+ T*) = Thy,,, (B, 1 + ).
(i) IAg + I = IA, 1 (IS, + T%) = B*A, (IS, + I*).

Claim 4.14. (i) Let p(%) € Af. There are ¢)(Z,z) € Sy, 0(F,2) € I, and (%) such
that TAY" - Vz > t(Z) [p(%) < (&, 2) < 0(F, 2)).
(i) Let o(¥) € A}. Then there exists §(Z) € Apy1(BY, + I'*) such that IAL"
P(F) < 0(T).
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Proof of Claim. For n > 1, I¥,, = BX,,. So, (IX, + I'*)r = (BX,, + I'*)pr. Then the
result follows from 4.1 and 4.12. O

Theorem 4.15 (Extended Parikh's theorem (Strength of 4.7)).

Let T' be a strong I1,~functional class and I C II,,41 UTLY. For each ¢(x,y) € I, U Af
such that (BX,41 + " 4+ IT*)p - Va 3y p(x,y) there exists a term t(z) of L(T') such that
IAL + TV F Yz Iy < t(z) o(z,y).

Proof. Deny the proposition’s conclusion. We proceed as in 4.10. By compacteness the
following theory is consistent (c and d are new constants)
T — IAL +TV + {Vy <t(c)—p(c,y): t(z) term of L(T)}
+ {t(c) <d: t(z) term of L(I")}

Let A =T, a = t(c) and B = Sp(A,a). Since I' is a II,,~functional class, B C® A as
L(T)-structures. Then B <& A as L-structures. So, B = Vy ~¢(a,y) and, since A = I3,
and 2 is a proper extension of B (last set of axioms of T), B | (BX,41 + IV +T")p.
Contradiction. g

Corollary 4.16. (Strength of 4.8) If " is a strong II,,—functional class then (I',T'*) is a
11,,—Parikh pair.

4.3. Existence theorems of strong II,—functional classes.

Theorem 4.17. (n > 1) There is a strong I1,,—functional class, H,,, such that
for all ¢ € H,,, I¥,,_1 - IPF(p) and I%,, <= 1%, + H.

Proof. For each 0(v,y) € IL._; let 6'(x,w) be the following formula
[-3v < xTybO(v,y) ANw=0] V
w = (wy,w2) Nwy < x A
Jwy, wy Sw ¢ Vo <z [Fy0(v,y) — Iy < w2 0(v,y)] A
O 00 (W1, w2) AU < 2 [0, 0, (v, w2) = v < wi]
It is clear that there is 6*(z,w) € II,, such that IX,,_; - 0'(z,w) < 0*(z,w). Let H,, =
{0*(z,w) : O(v,y) € II,_1}. Let O(v,y) € II,—1. It holds that I¥,; + IPF(§*) and
I¥, F Vo 3w 0*(z,w); so, H, is a II,~functional class and I3, <= I¥, + H*. Let us
observe that H} C Hy C --- C H,, C .... Now, by induction on n > 1, we prove that H,
is a strong II,,—functional class. Let A = IAg + H and J C® 2 such that
(%) for all p(z,w) € H,, a € T there is b € J such that A = ¢(a,b).
By induction on n > 1, using Tarski—Vaught’s test, we prove that J <, .
(n=1): Let us see that J <1 . Let 0(v,y) € IIp and a € J such that A = JyO(a,y).
Since 6*(z,w) € Hy and A = IA¢ + Hj, then 2 = Vz 3y 6*(x,w). Since a € J, by (%),
there exists d € J such that 2 = 6*(a,d). Since IAg F 0/ (z,w) < 0*(z,w), A | 0 (a,d);
so, there exists b € 2 such that b < d and 2 |= 0(a,b). Since d € J and J C® 2, then
b € 7, as required.
(n —n+1): Since A | IAg + H! and, by induction hypothesis, H,, is a strong II,,—
functional class, we get that 2 = I, + H. Let 6(z,y) € II, and a € J such that
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2 = Jy0O(a,y). Now as in the case n = 1, using that A = I3, + H, we obtain that there
exists b € J such that A = 6(a, b). O

Proposition 4.18 (Strength of 3.8). If T has A,i—collection, there is a strong Il,—
functional class ' such that Thy, ,,(T) = Thy,,,,(IAq +TI').

n+2 n+2

Proof. Suppose that n > 1. By 3.8, there is a IT,,~functional class I'; such that Th,,2(T) =
Thy+2(IX, +I'7). Let I' = H,, + I'y. Then, I' is a strong II,—functional class; so, by
417 and 412, IS, + I <= IAg + I'*. Hence Thy,,(T) = Thy,,, (IS, + IF) =
Thnn_’_2 (IAQ + F*). O

Lemma 4.19. Let T = I%,, % |= Thy, ,(T) and a € A. If (I',I'1) and (I",T]) are
I1,,—Parikh pairs for T then Sr(2, a) = Sp/(2, a).

Proof. Let b € Sp(2,a). There are t(x) € Term(L(T")) such that b < ¢(a) and p(z,y) €
Ap+1(T) such that (IX, +Ty)r F t(z) =y < o(z,y). Let s(x) be a term of L(T) such
that (IX,, + ') F Vo 3y < s(x) p(z,y). So, b < s(a); hence, b € Sp/(2A, a). O

Theorem 4.20. Let T be an extension of I¥,, and (I',I'1) a II,,—Parikh pair for T (so, T
is A, y1—closed). The following conditions are equivalent

(1) T has Ay41—collection.

(2) (IZn + Fl)l“ — IAE

(3) For each s(0),t(v,z) € Term(L(I")) there exists t;(¥) € Term(L(I")) such that
(IX, +Ty)r ko < s(¥) — (v, z) < ts(0).

(4) Tth+2 (T) = Tth+2 (BXp41 +11).

(5) For every A = (IX, + I'1)r and a € A, Sr(A,a) <, A as L-structures and
Sr(#, a) = Thy, ,(T).

Proof. From 2.8 and 2.15, it follows (4) = (1).

((1) = (5)): By 4.19 and 4.16 we may assume that I" is a strong II,—functional class for
T (and that T'y = T). So, by 4.9, Sp(2,a) <, A as L-structures. Let ¢(z,y) € II,, such
that T F Yz 3y ¢(x,y). Then there exists ¢(z) € Term(L(I")) such that (IX,, + I')r
Vedy < t(z)e(x,y). Let b € Sp(~A,a). Then, it holds that there exist ¢ € A and
s(z) € Term(L(T")) such that A = ¢ < t(b) A p(b,c) Ab < s(a). Since I' is II,,—functional,
c < t(b) <t(s(a)); hence, c € Sp(2A, a). So, Sp(A,a) = Iy (b, y).

((5) = (4)): Let @(x,y) € I, such that B, 1 + I'1 F Vo 3y p(z,y). Suppose that
IY, + 1 ¥ Ve Iy o(x,y). Let T/ be the theory

(IX, +T'1)r + Yy ~¢(c,y) + {t(c) <d: t(z) € Term(L())}.

By compacteness, T’ is consistent. Let 2 = T and a = 2(c). Since Sp(™A,a) <& A
as L-structures and is proper, Sr(2,a) = Vy—¢(a,y) and Sr(A,a) = BX, 1. Then,
Sr(,a) = BX,41 + I'1. Contradiction.

((1) = (2)): Let p(z) € AL. There exists 1(x) € A,41(T) such that (IS, + I'q)r
o(x) < (). Since T has A,,+1-induction, by 2.15, I¥,, + T'; has A,,+1-induction; hence,
>, +Ih - Iw. So, (IEn + Fl)l“ (o I(p-
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((2) = (1)): Let p(z) € Api1(T). By 3.27, there exists 6(x) € A} such that (IS, +
I')r F 6(x) < ¢(x). Then, by (2), T F I,; so, T has A, i-induction. Since T is
Apyi1-—closed, by 2.13, T has A, 4;—collection.

((1) = (3)): Let s(0),t(v,z) € Term(L(T")). By 3.2 there exist ¢(¥,z), 0(V,x,z) €
Apy1(IX, +T'1) such that

(IS0 + Ti)r k- [5(9) = & 9@, )] A 7, 2) = 2 65, 2, 2)].
Let I'g be a strong IT,,—functional class for T. By 4.16, there exist ¢o(¥, z) and so(7) terms
of L(T'y) and ¢(7, z) € Ap4+1(T) such that
(I, +T§)r, F VU 3z < so(V) (¥, x) A VUVz Iz < to(V,x) 0(T, z, 2).

and (IX, +T'{)r, F to(V, s0(0)) = z < (7, z). Then

IY, + 5 o0 )ANae <2/ N0V, z,2) — 32" (Y(U,2) ANz < 2).
Since Thy, (IS, + %) = Thyy, ., (T) = Thyy, (IS, + I'y), then

IX,+ T F @) Ne <z ANO(T,x,z) — 3" (W(0,2) ANz < 2.
Since T F Vi 3z (7, z), there exists t5(¥)) such that

(I, +Ty)r FVo3z < t5(0) (7, 2).

So, (IX, +T'1)r Fz < s(¥) — t(v,z) < t5(¥), as required.
((3) = (1)): Let p(z,y,v) € II,; such that Iy p(x,y,v) € Apt1(T). Then there exist
0(z, ), po(z,y,v) € A} such that
Let ¢¥(z,7,y) € Ay be (8(z,T) A po(z,y,7)) V (=0(x,7) Ay = 0). Then, by 3.25, there
exists t(z,¥) € Term(L(I")) such that (IX, + I'1)r F Vo Vi 3y < t(z,?) ¢(z,7,y). By (3),
there exists t/(u, ¥) € Term(L(T')) such that (IX,, +T1)r F 2 < u — t(z,9) < t/(u,v). So,

(IX, +Ty)r FVuVi Ve < udyp(z,y,v) — ' Ve <udy <o ¢(z,y, V).
That is, T = By ;4. So, T has A, 1—collection. O

5. II,—envelopes

5.1. General properties of II,,—envelopes. Initial segments. In this section we introduce
the concept of II,—envelope. This generalizes the concept of envelope (see [10]) and is
closely related to indicators (see [12]). Some results in this section are generalizations
of results on indicators that appear in chapter 14 of [12]. However, II,—envelopes will
provide us with IL,—functional classes defined uniformely. This is why we include these
results here. In particular, we will obtain II,—envelopes that will be used in section 6 to
prove the hierarchy theorem.
For each formula p(u,z,y) let T'y, = {¢(k,z,y) : k € w}.

Definition 5.1. Let p(u,z,y) € X, ;. We say that

(1) (u,z,y) is a Il,—g-envelope of T in Ty if T + T}, and for all k € w, To =
e(k+1,2,y) — Iz <yop(k,z,2).
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(2) o(u,z,y) satisfies II,-ENV for T and Ty if for each ¢ (z,y) € 1, such that
T F Va 3y (z,y), there exists k € w such that
To b ok, z,y) — Jz < y(zx, 2).
(3) o(u,z,y) is a II,,—envelope of T in Ty if p(u,x,y) is a II,,—q—envelope of T in T
and satisfies 11,,—ENV for T and Ty.

Remark 5.2. Now we shall give some basic properties of envelopes. Let p(u,z,y) € ¥p4+1
a II,—q—envelope of T in Ty. By contraction of quantifiers, part (2) of definition 5.1 is
also true for ¥(x,y) € ¥, ;. We also have that

Claim 5.3. (i) If T = Tq then Thy, ,(T) = Thy, ,(To +T7).
(ii) If p € 11, and T +IX,, is consistent then I, is a II,,—functional class.

Definition 5.4. Let ¢(u,z,y) € X,41. We say that ¢(u,x,y) satisfies I1,,~IND for T and
Ty if for every 2 |= Ty countable, nonstandard and a,b € 2, the following conditions are
equivalent:

(IND-(i)): For allk € w, A =3y < bp(k,a,y).

(IND-(ii)): There exists J =T such that J <§ 2 and a < J < b.

Remark 5.5. Let p(u,z,y) € ¥,,41 such that T + Vo Iy ¢(k, x,y), for all k£ € w. Then for
all theory Ty we have that: IND-(ii) = IND-(i). So, if ¢(u, z,y) is a II,—g—envelope,
then in order to prove that ¢(u,x,y) satisfies IL,~IND it is enough to establish that:
IND-(i) = IND-(ii).

Now we shall study conditions under which it holds that IL,-ENV is equivalent to
II,-IND. Let us note, however, that the proof of part <= of next theorem shows that, if
Ty = 1%, then every II,—q—envelope of T in T satisfying 1L,,—IND is a II,,—envelope.

Theorem 5.6. (n > 1) Suppose that Top = I¥,, and
(i) T is recursively axiomatizable, and
(ii) Thyy, ,(T) = Thy,,,(T +BX,11).
Let p(u,z,y) € ¥, 41 be a Il,,—g—envelope of T in Ty. Then with respect to T and Ty
o(u, z,y) satisfies II,-ENV <= ¢(u,z,y) satisfies I1,,~IND.

Proof. (<=): Let ¢(x,y) € II,; such that T F Vz Jy¢(z,y) and suppose that for all k € w,
To ¥ p(k,z,y) — Iz < y(x,z). For all k € w let

Ty =To+ {Jy <dp(j,c,y) A\Vz<d—(c,z): j<k}
Since, for all k € w, T}, is consistent, T* = | J;c,, Tk is consistent. Let A* = T countable
nonstandard, 2 = A7, a = A*(c) and b = A*(d). Then A E Ty and for all k € w,
A = Jy < bp(k,a,y). Since ¢ satisfies II,,-IND for T and Ty, there exists J = T such
that 3 <$ 2 and a < J < b. So, there exists e € J such that J = ¢(a, e); hence, e < b and
A = ¢Y(a,e). But A* =Vz < d-1(c,2); hence, A |=Vz < b—)(a,z). So, A = —(a,e), a
contradiction.
(=>): By 5.5, it is enough to prove IND-(i) = IND-(ii). We follow the proof of
theorem 11.7 in [12]. Let 2 = Ty countable, nonstandard and a,b € 2 such that 2 =
Jy < by(k,a,y), for all k € w. Let
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T =T+ BX, 11 +{VZY(c,2): Y(z,2) € X, AEVZ < bip(a,2)}.
By (ii) it follows that T’ is consistent. Since 2 = I¥,, and n > 1, the ¥,~type of a, b in 2
belongs to SSy () (the standard system of 2); hence, {"VZ'9(c,2)7: ¢ € &, A =VZ <
bip(a,2)} € SSy(A). So, by (i), T/ € SSy(2). Since SSy(2l) is a Scott system, there
exists B | T' countable which is SSy(2()-saturated; hence, B is recursively saturated.
Let ¢ = ®B(c). Then, for each 0(x, 2) € II,,, if B = 3Z60(c, 2) then A = 3IZ < bb(a, 2). So,
by Friedman’s theorem, there exists H : % <. 2 such that H(c) = a and b ¢ H(B). Let
J=H(B). Then TJ=T, I <A and a < T < b. O

Remark 5.7. Condition (ii) in 5.6 cannot be deleted. We have used it there in order to
prove that: IND-(i) = IND-(ii). Even more, suppose that T — T( = I¥,, and
o(u,z,y) € Xyy1 is a II,—q—envelope of T in T that satisfies II,,-IND for these theories.
Let ¢ (z,y) € II, be such that T + BX, 41 F Yz Jy¢(x,y). Then, it holds that there is
k € wsuch that T - ¢(k,z,y) — 3z < y¢(z, 2). So, Thy,,,(T) = Thy, ,(T+BX,41).

n+2 n+2 (

Remark 5.8. For Ilp—envelopes we have the following form of 5.6.

Claim 5.9. Suppose that Tg = IAg+exp, T is recursively axiomatizable and Thy, (T) =
Thy, (T + BX1). Let p(u,x,y) € 1 a Illp—g—envelope of T in Ty. Then, with respect to
T and To,

o(u, z,y) satisfies Ip-ENV <= ¢(u,z,y) satisfies lp—IND.

In some cases this result is also true even though Ty is not an extension of IA + exp.
Using methods that appears in [1], mainly the superexponential function (see the proof of
lemma 3 there), it can be proved that

Claim 5.10. Suppose that T —> BY; + exp =— Ty = IAq, and T is recursively
axiomatizable. Let o(u,x,y) € Ay be a llp—q—envelope of T in Ty. Then, with respect to
T and Ty,

o(u, x,y) satisfies [Ip-ENV <= ¢(u,x,y) satisfies I1o—IND.

5.2. Existence theorems of II,,—envelopes. In this and in the next subsection we are go-
ing to use formulas in the language and in the metalanguage. In order to write expressions
that are easier to read we shall use uppercase Greek letters for formulas in the metalan-
guage (real formulas) and lowercase Greek letters for formulas in the language (elements
of a model that it thinks that are formulas). We shall use o, 7,... as variables (in the
language of Arithmetic) for formulas, and p as variable (in the language of Arithmetic)
for proofs.

Theorem 5.11. If T is recursively axiomatizable, I1,,—functional and, for n = 0, T F exp,
then there exists a II,,—envelope of T in IX,,.

Proof. Since T is II,,—functional, T has A, 1—collection and, for n > 1, T = I¥,, =
BX,,. Let us consider the following cases:
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Case A: n > 1. Since T is recursively axiomatizable, there is Prfr(z,y) € ¥; that
represents to {(o,p) € w? : pisa proof of o in T} in P~. Let ®(u,z,y) € II, be a
formula equivalent in B3, (so, also in T), to
Vp.r <u Formy— (7(vo, v1)) A Prir (Vv Ju T(’U.U,’U'l),p) —
— Vxo < 2 Jyo < y Saty,, (7(%0, %0))
Where Satyg, (v) is a truth definition in I¥; for II,—formulas.
Let ®(u,z,y) € ¥,41 be a formula equivalent in BY,, (so, also in T), to
W <yly=y +ur®(u,z,y) A\VY' <y =¥ (u,z,y")].
Let k € w. Since T has A, 1—collection, T - Vz Iy ®(k, z,y). Moreover, as y = ¢/ + k,
I¥, F®k+1,2,y) - Iz <y®(k,z,z) and T - IPF(®(k, z,v)).
Let ¥(z,y) € II, such that T F Vz3Iy¥(z,y) and k > "U(z,y)". Then I¥, +
O(k,z,y) — Iz < y¥(x,z). So, ®(u,x,y) satisfies I,~ENV for T and I%,,.
Case B: n = 0. Since T is recursively axiomatizable, there is Prfy(z,y, w) € Ag such that
Jw Prfr(z,y,w) represents to {(c,p) : p is a proof of o in T} in P~. Let ®'(u,z,y) € Xg
be
Formy;- (p(vo,v1)) A Prfr(Yvg Jur p(vo, v1), p,w) —
Yy = <Zv Z,> -
Vz,2' <y { 7 = 2@+ )7 }
—
Voo < 2 3yo < 2" Volp, (o, y0), 2)
Where Vy(v1,v2,v3) € Ag is a truth definition in IAg + exp for A formulas and ¢ € w
is a constant which depends upon the explicit definition of Vy(v1, ve, v3) (see [10], V.5.4).

Let ®(u,x,y) € X defined as in case A. Now, as there, it is proved that ®(u,z,y) is a
IIp—envelope of T in IA,. O

Vp, pyw < u

Remark 5.12. Let T be II,,~functional and ®'(u,z,y,w) € II,, such that Jw &' (u, z, y, w)
is a II,—envelope of T in IX,. Let us see that there exists a II, formula which is a
II,,—envelope of T in IX,,.

Let U(u,z,y) € II,, be Jw,y < yly = (w,y’) A ¥ (u,x,y’,w)]. For each k € w, let
Ui (z,y) be U(k,z,y). Then T F Vz3IyVi(z,y). Let Cy,(z,y) be as in the proof of
3.8. The definition of Cy, (x,y) is uniform in k; so, using k as a parameter we obtain
Cy(u,z,y) € II,,. Let O(u,x,y) € I1,, be

Seq(y) Ng(y) =u+1AVj < uCu(f, z, (y);)-
Then O(u,z,y) is a II,,—envelope of T in I¥,,.

Theorem 5.13. (1) For all m > n (m > 1, for n = 0) there exists a Il,,—envelope of
I¥,, in IX,, ®(u,z,y) € 11, such that
(a) I F VYuVe Jy &(u, x, y).
(b) i1 FVu, 2,91, y2 [P(u, 7,91) A @(u+ 1, 2,y2) — y1 < yal.
(2) For all n € w there exists a Il,—envelope, ®(u,z,y) € Il,,, of PA in I¥,, such that
(a) Th(N) F VuVz Iy ®(u, z,y).
(b) Th(N) + VU,ﬂfvylayz [(I)(U,CC, yl) A (I)(U +1, I)?/Q) —in < 3/2]-

Proof. Let 1 < n < m. We will prove that the II,,—envelope obtained in 5.12, from the one
given in 5.11, satisfies the properties of 1-(a) and 1-(b). Let ®'(u,x,y) € II,, the formula
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VP,TSU{

It is enough to prove that IX,,1 - Vu Ve Iy &' (u, x, y).
Let A EIX,41, ¢, p, T € A, p,7 < ¢, such that

A = Formy;— (7(vo, v1)) A Prfrs,, (Vvo 31 7(vo, v1),p).
Then A = Vz IpPrfrs, (Jvi 7(2,v1),p). By reflexion, see [10],
I¥,,41 - Senty, , (0) A IpPrfrs,, (0,p) — Saty, ,(0).
Hence, 2 |= Vz Saty,,_, (v 7(&,v1)). So, 2 = Vx Iy Saty, (7(2,9)). Since A |= BII,, for
all a € 2 there is b € 2 such that
A E=Ve <ady <bSatn, (7(z,9)).
Then 2 =V Iy D' (¢, z,y). O

FormH; (7(vo,v1)) A Prfrs,, (Voo vy 7(vo,v1),p) —
— Vo < o3y < ySaty, (7(Zo, %0))

5.3. Strong II,,—envelopes.

Definition 5.14. Let ®(u,z,y) € I1,, a II,,—envelope of T in Ty. We say that ®(u,x,y) is
a strong I1,—envelope if 'y is a strong I1,—functional class.

Lemma 5.15. (n > 1) Suppose that T is recursively axiomatizable and Thy, ,(T) =
Thy, (T +BX,11). Let ®(u,z,y) € II,, be a Il,,—envelope of T in IX,,. If 1A +1'y =
I¥,, then ®(u,z,y) is a strong II,,—envelope.

Proof. By 5.3, I'g is a II,~functional class; hence, I3, +1'} is consistent. Let 2 = IA¢+I';
and J <§ 2 such that for all £ € w and a € J there exists b € J such that A = ®(k,a,b).
Let us see, using Tarski-Vaught test’s, that J <,, 2. Let ©(z,y) € II,,_1, a € J such that
A = JyO(a,y) and ¢ € A such that T < ¢. Then for all k € w, A = Jy < cP(k,a,y). So,
by 5.6, there exists J; = T such that J; <¢ 2 and a < J; < ¢. Hence, J; = JyO(a,y)
and 2 E Jy < ¢O(a,y). Then, by underspill (A | IX,), there exists d € J such that
A = Jy < dO(a,y). So, there is b € J such that A = O(a,b). O

Theorem 5.16. (n > 1) There exists a formula E,,(u, z,y) € II,, such that
(1) For every k € w, I%,,_1 F IPF(E, (k,x,y)).

IS, < TAg + T .

I'g,, is a strong 1I,,—functional class.

Let K,,(z) = y be the formula E,(z,z,y) and T';, = {K,,(z) = y}. Then
a) I, - IPF(K,,).

(b; I¥, FVz 3y [K,(x) = y].

(¢) Ty, is a strong I1,,—functional class.

Proof. The idea is to define E,,(u, x,y) as the strong II,—functional class of 4.17, H,,, in
an uniform way. A ¥, formula similar to K, (x) = y has been considered by R. Kaye in
[11] and [13]. However, we need a II,, formula.

The proof of the theorem is by induction on n > 1.
(n=1): Let ©)(o,z,w, z) € II; be the following formula
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([ —Fv < 23y 3 [2(””+”+y+2)ca <2 AVy(o, (v,y),2") ANw=0] V
w = (wi,wz) ANwi < 2 AVo(0pws, (W1, w2), 2) A
(

2(w+v+y+2)cg < Z//\VO(O' v,y),z’) — }
— E]y < w9 V[)(O', <v,y>,z)

)

Jwr, wy < Yy V2!
w1, W2 S W VUSJJ yz{

A (Vo(O s, (v, w2),2) — v < wy)
where Vo (0,,u,, (w1, w2), 2) is the formula
Vo(o, (w1, wa), z) AVw < we=Vy(o, (w1, w), 2).
Let ©1(0,z,y) and E;(u,z,y) be the following IT;—formulas
y={(w,z) Nz = 2@twt2)” A
Jw<y { [Formy; (0 (vo, v1)) A ©} (0, 2w, 2)] V
[—|F01rmHa (o(vo,v1)) Aw = 0]

Seq(y) Alg(y) = u+ 1AV <u1(j,z, (y);)-
The proof of (1) is as in 4.17, and (2) follows easily from the definition of Eq(u,z,y).
We also have that

Claim 5.17. IAg +I'y = SII; .

Proof of Claim. Let 2 |=1Ag + T, ¥(z,y) € Il; and a € 2. Let us see that
AEJwVe <a[By¥(z,y) — Jy <wVY(z,y)].
Let ¢ = "W Since A = I'y , there exists b € 2 such that A = Ei(¢),a,b). Then
A = O(¢,a,(b)y); so, A = O)(¢,a,b,b"), where (b)y, = (V/,b"). Let d € A such that
d<aand A EJy¥(d,y). Then
A | 33 2T < AV, (dy), )

SO, 2 ': Ely < (bI)Q V()(wa <day>7 bl/)' That iS, 2 ’: Ely < b\I/(d,y) U

Since SII; <= Slly <= I¥i, then IAg + I'y = I¥;. This proves (3). To prove

(4), follow the proof of 4.17. Now we prove (5). From the definition of K;(z) = y,
I¥; FIPF(K;(x) = y). This gives 5-(a). We have that

Claim 5.18. I¥; F Vz Jy [Ky(z) = y].

Proof of Claim. Since I¥; <= S, then
3y, 2 Vo(o, (v, y), 2) A2+ < 2y
— Jy,z < z1(Vo(o, (v,9),2) A 9(v+y+2)*”
By properties of Vy(v1,v2,v3), (see theorem V.5.4 of [10]), we have that
IS F 200+t < o)y Vo(o, (v,y),z1) < Vo(o, (v,y), 22)].
Then, as in 4.17, we get that IX; F Vo, 2 Jw, z ©) (0, z, w, 2). O

Dy dn Vo <z
<z)

This completes the proof of 5—(b). Now we prove 5—(c).
Let A = IAg + I'y, and 3 C° A such that for all a € J there is b € J such that
A = Ki(a) =b. Let k € w, a € J and ¢ = max(k,a). Then ¢ € J; hence, there exists
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d € J such that A = Kj(c) = d; that is, A = Ej(c,¢,d). Since IAg F Eqi(u,z,y) — Vv <
u3z < yEi(v, 7, 2), there exists b € J such that 2 |= Eq(k,a,b). Since A = IAq+I'g , by
(4), J =<1 2
This proves 5—(c¢) and completes the proof of the theorem for n = 1.
(£n—n+1): For each m, 1 < m < n, let E,,(u,z,y) be a II,, formula that satisfies
(1)-(5). Let ©), (0, z,w) € I, 41(IX,) the formula
[-3v < 2z 3y Satp, (6(0,y)) ANw = 0] V
w = <w1, ’LU2> ANwp <z A Satnn (0#71”2 (11)1, wg)) A
Jy Satn, (0(0,9)) — Fy < wy Sat, (0(0,9)) A
Satnn (Uu,wz (1),1112)) — VU S w1

Jwi, wy < w
’ - Yo <z

(where Satry, (0,0, (01, 02)) is Satyy, (o (01, 92))AVy < v =Saty, (0(01,79))). Let Opi1(u, z,y)
and E,,11(u, z,y) be the following II,,+;—formulas
Seq(y) AMg(y) = u+1AVj <u®) (5, ();),
Seq(y) ANlg(y) =n+ 1A [/\1§m§n Em(u, 2, (4)m-1)] A Ont1(u, 2, (Y)n).
It is clear that for all k € w, I¥, = Ve Iy O, (k,z,y). So, for all k € w, IX,

IPF(E,+1(k, z,y)) and E, 41 (u, x,y) is a I1,+1—q—envelope of I¥,,+1 in I¥,, ;1. This proves
(1) and (2) for Ep41(u,z,y). We also have that

Claim 5.19. 1A+ T | = IX,.
Proof of Claim. Let 2 |= 1A + I‘]’EHH. By induction on m, 1 < m < n, let us see that
A =13,

(m=1): By (1), forn =1, EIA¢+ I, . So, by (3) (for n =1), A = I%;.

(m — m+1<mn): By induction hypothesis (on n, using (1) for m + 1), for all k € w,
I¥,, F IPF(E,,+1(k, 2, y)). By induction hypothesis (on m) A = I%,,, so A E IA¢+T;

]Em+1 '
Then, by induction hypothesis (on n, using (3) for m +1 < n), A = I,,4;. O

Claim 5.20. IAq + T | = IS,41.

Proof of Claim. Let 2 = 1A + I, ., By 519, 2 = 1IX,; s0, ©;, 1 (u,2,y) is T4 in A
Now, as in 5.17, we get that 2 |= SII; so, A = I, 4. O

This proves (3). The proofs of (4) and (5) are as for n = 1. O

Theorem 5.21. (n > 1) If T is recursively axiomatizable and 11, —functional then there is
a Il,,—formula which is a strong I1,,—envelope of T in IX,,.

Proof. By 5.11 and 5.12, there exists ©(u,x,y) € II,, which is a II,,—envelope of T in
I¥,,. Using 5.16 we get E,(u,z,y) € II,, which is a II,,—g—envelope of I¥,, in I¥,. Let
®(u,x,y) € 11, the following formula

Seq(y) ANg(y) =2 (u+ 1) AVj < ulEn(d, 7, (y)25) A O, 2, (y)2541)]-
Since O(u,x,y) is a II,—envelope of T in I%,,, ®(u,z,y) is a II,—envelope of T in IX,.
By 5.16-(3), IAg + I'y, <= I¥,; hence, IAg + 'y = IX,. So, by 5.15, ®(u,z,y) is a
strong II,—envelope of T in IX,,. O
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Corollary 5.22. (1) (n > 1) For all m > n there exists a strong 1l,—envelope of I3,
in IY,, ®(u,z,y) € 11, such that
(a) I¥41 F VuVr 3y &(u, x, y).
(b) IZpmp1 b Vu, 2,41, y2 [R(u, 2, 41) A R(u+ 12, 92) = y1 < yol.

(2) For all n € w there is a strong Il,—envelope, ®(u,x,y) € I, of PA in I%,, such

that
(a) Th(N) F VuVx Iy ®(u, z,y).
(b) Th(N) = Vu,z, y1,y2 [P(u, z,y1) A P(u+ 1, 2,92) — y1 < yal.

6. The hierarchy 1A, (IX,,), m >n

For each formula ¢ (z, ¥) and term t(x) of L(I"), let [¢), t](z;¥) denotes
z < t(max(g)) Ap(z,§) AVe (Y(z,§) — 2 = 2).

Definition 6.1. Let I be a II,~functional class, 2 = (IAg 4+ I'™)pr and ) # X C A. Let
K§ (2; X) be the substructure of 2 whose universe is

{aed: Ak [ i)(a;b), e AL, t € Term(L(D)), be X},
and let T} (A; X) be the initial segment of A given by K§ (; X).

Remark 6.2. Let T' be a IL,~functional class, 2 |= IA]" and () # X C 2. The structures
K (2; X) and Z} (2; X) have similar properties, with respect to £(T), that K1 (2; X) and
71(2; X). In particular, K§(2;X) <o 2 and K (2 X) <§ ZF (5 X) <8 2 as L(T)-

structures.

Remark 6.3. Let T be a strong II,,—functional class, 2 = (IAg+ I'*)p and 0 # X C 2.
Here we prove some basic facts on K (2; X) and Z (20; X). Let us first observe that since
2 = (IAg + ), by 4.12, 2 = TAL".

Claim 6.4. 7} (2, X) <¢ 2, as L—structures, and I} (%, X) | IAL".

Proof of Claim. The first part follows from 6.2. As a consequence, since I' C 1I,,, Ig (A, X)
is a model of IA( and for all ¢ € I it satisfies IPF(¢) and the definition axiom of G. So,
5 (A, X) = (TAg +T)r. O

Claim 6.5. /CJ (24, X) <41 Z5 (%, X) and K (A, X) <, A, as L-structures. Also K} (A, X) |
1AL

Proof of Claim. Let ¢(z, @) € I, and b € K5 (21, X) such that Z} (21, X) |= Jz1(x, b). Let
0(x,w) € Al such that TAL" F ¢ (z, @) < 0(z, ). Then, by 6.4, I} (A, X) = 2 0(z, b).
So, by 6.2, K§(, X) |= 3x0(x,b). Let a € K5(A, X), such that K5 (A, X) |= 0(a,b).
Then Z§ (2, X) = 0(a, b). Hence, by 6.4, V(A X) E yY(a, b). By Tarski-Vaught’s test,
KL, X) <nt1 5 (A, X). From this and 6.4 we get that Kf (21, X) <, 2. So, as in the
second part of 6.4, K5 (2, X) = IAL. O
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Claim 6.6. If K§(2l; X) is not cofinal in 2 then 7} (A, X) & (BS,4+1 + [)r.

Proof of Claim. Since I' is a strong II,,—functional class, 2 = I¥,. We also have that
T8 (A, X) <¢ A and is proper; hence, 7} (; X) = (BS,41 + ). O

Remark 6.7. Let p(u,z,y) € II,, be a strong II,,—envelope of T in T, where T — I3,,.
We shall denote by G}, the function symbol of L(I',) associated with ¢(k,z,y) and by
[V, k](x; 9) the formula [, Gi](z;9). Let A = Tr, and a € 2 nonstandard. We have that

Claim 6.8. {G(a) : k € w} is cofinal in Icg“" (2, a).

Proof of Claim. Let b € /ng (A, a). Then there are 1(z,y) € Ag“" and a term t(x) of L(I',)
such that 2 |= [¢,t](b;a). By 4.14 there exists 0(z,z) € ¥,41 such that (IAg + '), F
t(x) = z < 0(x,2). Since T = IAg + I'},, then T F Va3260(x, 2); so, there is k € w
such that T + ¢(k,z,y) — 32 < y0(x,2). Hence, (T +T%)r, F t(z) < Gi(x). So,
A=b<tla) < Ggla). O

Claim 6.9. Suppose that 2 = Yu,z,y1,y2 [e(u,z,y1) A (u + 1,2,y2) — y1 < yo] and

A = YuVr Iy p(u,x,y). Then w is definable in ICg“" (A, a) by the formula Iy (u,a,y);
that is, by a X, 41 formula with parameters.

Proof of Claim. Let us see that {c € ng”(Ql, a) : ICg“’ E Jye(c,a,y)} Cw. Let ¢,d €
IC(I;“”(Ql, a) such that ng“"(Ql, a) E p(c,a,d). Since ¢ € 11, by 6.5, A = ¢(c,a,d). By 6.8,
there exists k € w such that A = d < Gi(a). Then, ¢ < k; hence, ¢ € w. O

Theorem 6.10. Let T be a II,—functional theory (if n = 0 we assume that T + exp),

¢(u,z,y) € I, a strong I1,~envelope of T in T, A = Tr, and a € A nonstandard. Then
(1) IC(I;“’ (A, a) <§ Ig“’ (A, a) <G AU, as L(T',)-structures.

(2) ng“’ (A,a) <54 IOF‘P (A, a) <& A and ng“’ (A, a) <, A, as L-structures.

(3) Ko# (A, a) =IAL? and Ky ? (2, a) = BSpy1.

(4) Zo" (A, a) b= I8, 11,

(5) If IC(I;“" (A, a) is not cofinal in A then IOF“" (A, a) EBY41.

(6) Ky (2, a) = Thy,,,(T).

(7) Ko (%, a) | 1A, 41 (T).

Proof. Part (1) follows from 6.2 and part (2) from 6.3.

((3)): By 6.5 it is only necessary to prove that ICOF“" (A,a) = BX,11. Let b € IC(I;"’ (A, a).

Then there exist ¥(x,y) € Ag“’ and k € w such that A = [¢, k]|(b;a). By 4.14, there

exist 0(z,y, z) € II,, and a term t(x,y) of L(I',) such that IAg“" FVz > t(z,y) [Y(z,y) <

O(x,y,z)]. Let c1,c90 € IC(I;(”(Ql, a) such that ¢; > b and ¢ > t(c1,a). Then A = (z,a) <

[0(z,a,c2) Nz < ¢1] and ICg“" 2, X) E ¢(z,a) < [0(z,a,c2) Nz < ¢1]. Let 0 (z,y, 21, 22)

be the formula 6(z,y, z2) A x < z;. We consider the following cases.
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Case A: n=0. For all §(y1,...,ym) € Ag there exists r € w such that

1A, - 2(max(yl,-..,ym)+2)7' <u— [5(3/17 o ,ym) PN VO(FC;—I’ <y1’ o ,ym>’ u)]
Since T + exp, ng“’(Ql, a) = V("0 (b, a,c1, co), 2max(bacie2) 2y - ot d € ICg“’(Ql, a)
nonstandard. Then ICg ?(2, a) satisfies the following formula

Formn, (o) A
Vo (07 <b7 a, z1, 22>7 2(max(b,a,z1,22)+2)a) A
Vo < b-Vo(o, (z,a, 21, zo), 2(max(@,0,21,22)+2)%)
Since b is an arbitrary element of ICg “(A,a), then ICOF“’ (A, a) satisfies
Forma, (o) A

V()(O', <U, a,z1, 2/,2>7 2(max(u,a,zl,22)+2)a) A
Ve < u-Vy(o,{x,a,z,22), 2(max(x’“721722)+2)a)
Let v(d,a) denotes this formula. Then v(d,a) € ¥; (in BX;). Assume that IC(I;"’ (A, a)

is a model of BY;. Since IC(I;“O(Ql, a) <o A, A E v(d,a). So, there is in 2 an one—one
Y ;—mapping from (< d+ 1) to (< d), a contradiction.

do <d
321 E|Z2 {

Vu<d+130<d
321322{

Case B: n > 1. We proceed as in case A but now we use Satyy, (z). Let v(d,a) be the
following formula

Formyy, (
Vu<d+1do <d 9.0 3 Satnn( (, a, 21, 22)) A
#1222 v < u—Sat, (0(i,a, 31, %))
)-

We have that v € ¥,,11(BX,,+1). Assume that IC ?(A,a) E BX,+1. Since IC(I;“’ (A, a) <n
A, A = v(d,a). So, there exists in 2 an one—one Enﬂfmapping from (< d+1) to (< d),
a contradiction.

((4)): Suppose that IOF‘P (A,a) = IX,41. By (2) we have that for all k£ € w, IOF“’ (A, a) E

Jy [p(k,a,y) A\Vu < k3z < yp(u,a, z)]. Then by ¥,,11-overspill there exists ¢ € Ig“’ (A, a)
nonstandard such that

OF“’(Q[, a) = Jylp(e,a,y) AVu < c3z < yp(u,a, 2)].
Let b € Ig“" (A, a) such that Ig* (A, a) = ¢(c,a,b) AVu < ¢3z < yp(u,a,z). Then for all
kew, IOF“" (A, a) = Gi(a) < b, a contradiction (see 6.8).
((5)): This follows from 6.6.
((6)): Let ¥(x,2) € II,, and k € w such that T F Vz 3z(z, z) and

T = VaVy|p(k,z,y) — 3z < yo(z, 2)].

Let ¢/ (x,2) € Apy1(BEy) be ¢(z,2) ANVw < z—p(z,w). For all b € /Cg”(%l, a) there
is ¢ € A such that 2 }= 1'(b,c). Since I'y, is a strong II,—envelope, by 4.12, ¢/(z,2) €
Apt1(IAg + I'); hence, there exists 6(z,2) € Ag“’ such that IAE“’ F ' (z,2) < 0(x, 2).
Since A = IA(I;*’, A = [0,k](c;b) and ¢ € IC(I;“”(Q[, a). Since 6 € Ag“", by (1), ng“"(Ql, a) =
0(b,c). So, by (3), Ky*(A,a) = ¢/(b,c); hence, Ky? (2, a) = (b,c). So, Ky*(UA,a) =
Vx 3z (z,z). This proves (6).
((7)): This follows from 2.13 (T is IT,—functional and 3.8) and (6). O
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Theorem 6.11 (The Hierarchy Theorem). Let T be a Il,~functional theory (if n = 0 we
assume that T F exp), p(u,z,y) a strong II,—envelope of T in T and T’ an extension
of T such that T' F VuVz Jy p(u,x,y), and T+ p(u,z,y1) A p(u + 1,2,y2) — y1 < ya.
Then
(1) Foreach® = Th@ and a € U nonstandard, ICg“’ (A, a) EIA,+1(T) and ICg“" (A, a) =
IA, 1 (T).
(2) TAp ot (T') = 1A, 44 (T).

Proof. Part (2) follows from (1). By 6.10-(7), ICg*" (A, a) EIA,+1(T). Since Jy o(u, z,y) €

A,+1(T’) and, by 6.9, Jy (u,a,y) defines w in IC(I;“’ (A, a), then IC(I;"’ (A, a) FEIA, 1 (T).
O

Theorem 6.12. (1) For all m < n, IA,11(IX,,) < I%,.
(2) For allm > n, IAni1(I8mi1) = I 41 (IS0).
(3) IA, 1 (N) = 1A, 1 (PA).

Proof. (1) follows from 2.18. Let us see (2). By 5.22—(1), for every m > n there exists a
strong II,—envelope that satisfies the hypothesis of 6.11 for T = I%,, and T/ = IX,,1;
hence, (2) follows from 6.11-(1). Part (3) is proved in a similar way using 5.22—(2). O

Lemma 6.13. For every m > n, BY, 11 == IA, 1 (IX,,41).

Proof. Since IA, 11 (I¥,41) is a II,,;o—axiomatizable theory (see [8], theorem 1.1, or [7],
[15]) and, by 6.12, IA,+1(IX,+1) = I%,, the result follows from 1.3. O

Theorem 6.14. (1) For allm > n, 1A, 11 (IX041) = B*Ap11(I2041)-
(2) IA,+1(PA) = B*A,11(PA).

Proof. First observe that for every theory T, BY, 11 = B*A,41(T), and if T has A, 41—
collection then, by 2.10, IA,,41(T) = B*A,4+1(T). Since IX,, 11, m > n, PA and Th(N)
have A, 1—collection, then (1), (2) and (3) follow from 6.13. O

7. Remarks and open questions

The main problem we have considered in this work is the Paris—Friedman’s Conjecture
in three versions
(1) Paris—Friedman’s Conjecture: 1A, ;1 <= LA, ;1.
(2) Uniform Paris—Friedman’s Conjecture: UIA,, 1 <= ULA, ;.
(3) Parameter Free Paris-Friedman’s Conjecture: IA | <= LA .
From Slaman’s result, it holds IA,,+; <= LA, 1, for n > 1. We have studied here the
relativization of these problems to A,,4; formulas in a theory T. This gives a new version
of the Conjecture.

4. Relativized Paris-Friedman’s Conjecture: IA,1(T) <= LA,;1(T).
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We have proved that if T satisfies some conditions then the relativized Paris—Friedman’s
Conjecture for T holds. So, we consider the following strong forms of these Conjectures.

Problem 1. Does it hold that for all T extension of 1>,

(1) If T is A,41—closed then T has A,4j—collection?
(2) If T has A, +1—-induction then T has A, ;—collection?
(3) If T is A,,+1-PF then T has A, ;—collection?

Let us observe that if every (complete) extension of I¥,, satisfies 1-(2) then the Uniform
Paris—Friedman’s Conjecture holds.

Condition 3.10-(2) is related with the Uniform Paris-Friedman’s Conjecture. Let 2 =
UIA, ;1 and ¢(z,y) € II;; such that A = Vo Iy p(x,y). Let F, : A — A be defined by:
Fy(a) = (uy)lp(a,y)]. Let I be, the bounding map of F,, defined by

Fi(a) = (pr)<a[Vu < a (Fyp(u) < Fyp(x))]

Claim. Let 2 = UIA, ;. If for each ¢(x,y) € II,, such that 2 = Va 3y p(z,y), it holds
that F is a total function on 2 then A = ULA, 4.

Let us consider the following question.
Problem 2. In the above conditions. Is F; a total function?

In 3.12 we have obtained a conservativeness property, Thy, ,(T) = Thy, (T +
B, +1), under which T is II,,—functional and, hence, satisfies the Relativized Paris—
Friedman’s Conjecture. We have also extended this result in 3.13 for ¥, ;2 extensions
of II,,1 0 axiomatizable theories. Let us consider the following problems.

Problem 3. (1) Let T be a theory such that T+BX,, is consistent. Are the following
conditions equivalent?
(a) T is II,—functional.
(b) Thy,,,,(T) = Thy,,,(T + BX,41).
(c) Thy,, ., (T) = Thy, ., (T + BZ;+1).
(2) Let T be a II,,; o—axiomatizable extension of I3, and let T be ¥, ; o—axiomatizable
such that T + T’ is consistent. Does it hold that

T is II,,-functional <= T + T’ is II,,—functional?

In 5.11 it is proved that if T is II,—functional and recursively axiomatizable then T has
a II,,—envelope in IX, (for n = 0 we add that T F exp). For all n € w, Thy,,(N) is
IT,,—functional and proves exp. Nevertheless, Thyy, ,,(N) does not have a II,~envelope in
I>,. So, it cannot be omitted that T is recursively axiomatizable.

Now, we will consider if T I exp could be eliminated for n = 0. The theory III; has
IIp—collection, is recursively axiomatized and III; ¥ exp. It holds that if ¢(z,y) € Ay
and III] F Vz 3y ¢(z,y) then there exists k € w such that III] F JzVe [z < x — Jy <
a* o(x, y)] (see [5]).

From this it follows that ¢(u,z,y) = 2" 4+ u = y is a IIp—envelope of III] in Thyy, (N).
Let us consider the following problem.
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Problem 4. Is there a Ilp—envelope of III] in IAy?

m
fol

In section 6 the models KC§ (2, a) have been used to separate the fragments IA,, 11 (IX,,),
> n. Theorem 1.1 sums up results obtained using these models. Let us consider the
lowing problem.

Problem 5. Is strict the following chain of theories?

il
2
3
4
5

6

[7

B*Api1(N) = B*Ap 1 (PA) = ... = B*Ap 1 (ISn41) = B*Ap 41 (IX,)
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