8,762 research outputs found

    The effects of death and post-mortem cold ischemia on human tissue transcriptomes

    Get PDF
    Post-mortem tissues samples are a key resource for investigating patterns of gene expression. However, the processes triggered by death and the post-mortem interval (PMI) can significantly alter physiologically normal RNA levels. We investigate the impact of PMI on gene expression using data from multiple tissues of post-mortem donors obtained from the GTEx project. We find that many genes change expression over relatively short PMIs in a tissue-specific manner, but this potentially confounding effect in a biological analysis can be minimized by taking into account appropriate covariates. By comparing ante- and post-mortem blood samples, we identify the cascade of transcriptional events triggered by death of the organism. These events do not appear to simply reflect stochastic variation resulting from mRNA degradation, but active and ongoing regulation of transcription. Finally, we develop a model to predict the time since death from the analysis of the transcriptome of a few readily accessible tissues.Peer ReviewedPostprint (published version

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered

    A Path to Implement Precision Child Health Cardiovascular Medicine.

    Get PDF
    Congenital heart defects (CHDs) affect approximately 1% of live births and are a major source of childhood morbidity and mortality even in countries with advanced healthcare systems. Along with phenotypic heterogeneity, the underlying etiology of CHDs is multifactorial, involving genetic, epigenetic, and/or environmental contributors. Clear dissection of the underlying mechanism is a powerful step to establish individualized therapies. However, the majority of CHDs are yet to be clearly diagnosed for the underlying genetic and environmental factors, and even less with effective therapies. Although the survival rate for CHDs is steadily improving, there is still a significant unmet need for refining diagnostic precision and establishing targeted therapies to optimize life quality and to minimize future complications. In particular, proper identification of disease associated genetic variants in humans has been challenging, and this greatly impedes our ability to delineate gene-environment interactions that contribute to the pathogenesis of CHDs. Implementing a systematic multileveled approach can establish a continuum from phenotypic characterization in the clinic to molecular dissection using combined next-generation sequencing platforms and validation studies in suitable models at the bench. Key elements necessary to advance the field are: first, proper delineation of the phenotypic spectrum of CHDs; second, defining the molecular genotype/phenotype by combining whole-exome sequencing and transcriptome analysis; third, integration of phenotypic, genotypic, and molecular datasets to identify molecular network contributing to CHDs; fourth, generation of relevant disease models and multileveled experimental investigations. In order to achieve all these goals, access to high-quality biological specimens from well-defined patient cohorts is a crucial step. Therefore, establishing a CHD BioCore is an essential infrastructure and a critical step on the path toward precision child health cardiovascular medicine

    System-Level Modeling and Optimization of the Energy Efficiency in Cellular Networks -- A Stochastic Geometry Framework

    Full text link
    In this paper, we analyze and optimize the energy efficiency of downlink cellular networks. With the aid of tools from stochastic geometry, we introduce a new closed-form analytical expression of the potential spectral efficiency (bit/sec/m2^2). In the interference-limited regime for data transmission, unlike currently available mathematical frameworks, the proposed analytical formulation depends on the transmit power and deployment density of the base stations. This is obtained by generalizing the definition of coverage probability and by accounting for the sensitivity of the receiver not only during the decoding of information data, but during the cell association phase as well. Based on the new formulation of the potential spectral efficiency, the energy efficiency (bit/Joule) is given in a tractable closed-form formula. An optimization problem is formulated and is comprehensively studied. It is mathematically proved, in particular, that the energy efficiency is a unimodal and strictly pseudo-concave function in the transmit power, given the density of the base stations, and in the density of the base stations, given the transmit power. Under these assumptions, therefore, a unique transmit power and density of the base stations exist, which maximize the energy efficiency. Numerical results are illustrated in order to confirm the obtained findings and to prove the usefulness of the proposed framework for optimizing the network planning and deployment of cellular networks from the energy efficiency standpoint.Comment: To appear in IEEE Transactions on Wireless Communication

    A TLBO-BASED ENERGY EFFICIENT BASE STATION SWITCH OFF AND USER SUBCARRIER ALLOCATION ALGORITHM FOR OFDMA CELLULAR NETWORKS

    Get PDF
    Downlink of a cellular network with orthogonal frequency-division multiple access (OFDMA) is considered. Joint base station switch OFF and user subcarrier-allocation with guaranteed user quality of service, is shown to be a promising approach for reducing network’s total power consumption. However, solving the aforementioned mix-integer and nonlinear optimization problem requires robust and powerful optimization techniques. In this paper, teaching-learning based optimization algorithm has been adopted to lower cellular network’s total power consumption. The results show that the proposed technique is able to reduce network’s total power consumption by determining a near optimum set of base stations to be switched OFF and near optimum subcarrier-user assignments. It is shown that the proposed scheme is superior to existing base station switch OFF schemes. Robustness of the proposed TLBO-based technique is verified

    A simplified, Langendorff-free method for concomitant isolation of viable cardiac myocytes and non-myocytes from the adult mouse heart

    Get PDF
    Rationale: Cardiovascular disease represents a global pandemic. The advent of and recent advances in mouse genomics, epigenomics, and transgenics offer ever-greater potential for powerful avenues of research. However, progress is often constrained by unique complexities associated with the isolation of viable myocytes from the adult mouse heart. Current protocols rely on retrograde aortic perfusion using specialized Langendorff apparatus, which poses considerable logistical and technical barriers to researchers and demands extensive training investment. Objective: To identify and optimize a convenient, alternative approach, allowing the robust isolation and culture of adult mouse cardiac myocytes using only common surgical and laboratory equipment. Methods and Results: Cardiac myocytes were isolated with yields comparable to those in published Langendorff-based methods, using direct needle perfusion of the LV ex vivo and without requirement for heparin injection. Isolated myocytes can be cultured antibiotic free, with retained organized contractile and mitochondrial morphology, transcriptional signatures, calcium handling, responses to hypoxia, neurohormonal stimulation, and electric pacing, and are amenable to patch clamp and adenoviral gene transfer techniques. Furthermore, the methodology permits concurrent isolation, separation, and coculture of myocyte and nonmyocyte cardiac populations. Conclusions: We present a novel, simplified method, demonstrating concomitant isolation of viable cardiac myocytes and nonmyocytes from the same adult mouse heart. We anticipate that this new approach will expand and accelerate innovative research in the field of cardiac biology. </jats:sec

    Artificial intelligence-powered mobile edge computing-based anomaly detection in cellular networks

    Get PDF
    Escalating cell outages and congestion-treated as anomalies-cost a substantial revenue loss to the cellular operators and severely affect subscriber quality of experience. Stateof-the-art literature applies feed-forward deep neural network at core network (CN) for the detection of above problems in a single cell; however, the solution is impractical as it will overload the CN that monitors thousands of cells at a time. Inspired from mobile edge computing and breakthroughs of deep convolutional neural networks (CNNs) in computer vision research, we split the network into several 100-cell regions each monitored by an edge server; and propose a framework that pre-processes raw call detail records having user activities to create an image-like volume, fed to a CNN model. The framework outputs a multilabeled vector identifying anomalous cell(s). Our results suggest that our solution can detect anomalies with up to 96% accuracy, and is scalable and expandable for industrial Internet of things environment
    • …
    corecore