10,082 research outputs found

    On metric temporal description logics

    Get PDF
    We introduce metric temporal description logics (mTDLs) as combinations of the classical description logic ALC with (a) LTLbin, an extension of the temporal logic LTL with succinctly represented intervals, and (b) metric temporal logic MTL, extending LTLbin with capabilities to quantitatively reason about time delays. Our main contributions are algorithms and tight complexity bounds for the satisfiability problem in these mTDLs: For mTDLs based on (fragments of) LTLbin, we establish complexity bounds ranging from EXPTIME to 2EXPSPACE. For mTDLs based on (fragments of) MTL interpreted over the naturals, we establish complexity bounds ranging from EXPSPACE to 2EXPSPACE

    Metric Temporal Description Logics with Interval-Rigid Names: Extended Version

    Get PDF
    In contrast to qualitative linear temporal logics, which can be used to state that some property will eventually be satisfied, metric temporal logics allow to formulate constraints on how long it may take until the property is satisfied. While most of the work on combining Description Logics (DLs) with temporal logics has concentrated on qualitative temporal logics, there has recently been a growing interest in extending this work to the quantitative case. In this paper, we complement existing results on the combination of DLs with metric temporal logics over the natural numbers by introducing interval-rigid names. This allows to state that elements in the extension of certain names stay in this extension for at least some specified amount of time

    Timed Context-Free Temporal Logics

    Get PDF
    The paper is focused on temporal logics for the description of the behaviour of real-time pushdown reactive systems. The paper is motivated to bridge tractable logics specialized for expressing separately dense-time real-time properties and context-free properties by ensuring decidability and tractability in the combined setting. To this end we introduce two real-time linear temporal logics for specifying quantitative timing context-free requirements in a pointwise semantics setting: Event-Clock Nested Temporal Logic (EC_NTL) and Nested Metric Temporal Logic (NMTL). The logic EC_NTL is an extension of both the logic CaRet (a context-free extension of standard LTL) and Event-Clock Temporal Logic (a tractable real-time logical framework related to the class of Event-Clock automata). We prove that satisfiability of EC_NTL and visibly model-checking of Visibly Pushdown Timed Automata (VPTA) against EC_NTL are decidable and EXPTIME-complete. The other proposed logic NMTL is a context-free extension of standard Metric Temporal Logic (MTL). It is well known that satisfiability of future MTL is undecidable when interpreted over infinite timed words but decidable over finite timed words. On the other hand, we show that by augmenting future MTL with future context-free temporal operators, the satisfiability problem turns out to be undecidable also for finite timed words. On the positive side, we devise a meaningful and decidable fragment of the logic NMTL which is expressively equivalent to EC_NTL and for which satisfiability and visibly model-checking of VPTA are EXPTIME-complete.Comment: In Proceedings GandALF 2018, arXiv:1809.02416. arXiv admin note: A technical report with full details is available at arXiv:1808.0427

    Temporal Data Modeling and Reasoning for Information Systems

    Get PDF
    Temporal knowledge representation and reasoning is a major research field in Artificial Intelligence, in Database Systems, and in Web and Semantic Web research. The ability to model and process time and calendar data is essential for many applications like appointment scheduling, planning, Web services, temporal and active database systems, adaptive Web applications, and mobile computing applications. This article aims at three complementary goals. First, to provide with a general background in temporal data modeling and reasoning approaches. Second, to serve as an orientation guide for further specific reading. Third, to point to new application fields and research perspectives on temporal knowledge representation and reasoning in the Web and Semantic Web

    MetTeL: A Generic Tableau Prover.

    Get PDF

    Temporalized logics and automata for time granularity

    Full text link
    Suitable extensions of the monadic second-order theory of k successors have been proposed in the literature to capture the notion of time granularity. In this paper, we provide the monadic second-order theories of downward unbounded layered structures, which are infinitely refinable structures consisting of a coarsest domain and an infinite number of finer and finer domains, and of upward unbounded layered structures, which consist of a finest domain and an infinite number of coarser and coarser domains, with expressively complete and elementarily decidable temporal logic counterparts. We obtain such a result in two steps. First, we define a new class of combined automata, called temporalized automata, which can be proved to be the automata-theoretic counterpart of temporalized logics, and show that relevant properties, such as closure under Boolean operations, decidability, and expressive equivalence with respect to temporal logics, transfer from component automata to temporalized ones. Then, we exploit the correspondence between temporalized logics and automata to reduce the task of finding the temporal logic counterparts of the given theories of time granularity to the easier one of finding temporalized automata counterparts of them.Comment: Journal: Theory and Practice of Logic Programming Journal Acronym: TPLP Category: Paper for Special Issue (Verification and Computational Logic) Submitted: 18 March 2002, revised: 14 Januari 2003, accepted: 5 September 200
    corecore