51 research outputs found

    Parameterization Above a Multiplicative Guarantee

    Get PDF
    Parameterization above a guarantee is a successful paradigm in Parameterized Complexity. To the best of our knowledge, all fixed-parameter tractable problems in this paradigm share an additive form defined as follows. Given an instance (I,k) of some (parameterized) problem ? with a guarantee g(I), decide whether I admits a solution of size at least (at most) k+g(I). Here, g(I) is usually a lower bound (resp. upper bound) on the maximum (resp. minimum) size of a solution. Since its introduction in 1999 for Max SAT and Max Cut (with g(I) being half the number of clauses and half the number of edges, respectively, in the input), analysis of parameterization above a guarantee has become a very active and fruitful topic of research. We highlight a multiplicative form of parameterization above a guarantee: Given an instance (I,k) of some (parameterized) problem ? with a guarantee g(I), decide whether I admits a solution of size at least (resp. at most) k ? g(I). In particular, we study the Long Cycle problem with a multiplicative parameterization above the girth g(I) of the input graph, and provide a parameterized algorithm for this problem. Apart from being of independent interest, this exemplifies how parameterization above a multiplicative guarantee can arise naturally. We also show that, for any fixed constant ?>0, multiplicative parameterization above g(I)^(1+?) of Long Cycle yields para-NP-hardness, thus our parameterization is tight in this sense. We complement our main result with the design (or refutation of the existence) of algorithms for other problems parameterized multiplicatively above girth

    On rr-Simple kk-Path

    Full text link
    An rr-simple kk-path is a {path} in the graph of length kk that passes through each vertex at most rr times. The rr-SIMPLE kk-PATH problem, given a graph GG as input, asks whether there exists an rr-simple kk-path in GG. We first show that this problem is NP-Complete. We then show that there is a graph GG that contains an rr-simple kk-path and no simple path of length greater than 4logk/logr4\log k/\log r. So this, in a sense, motivates this problem especially when one's goal is to find a short path that visits many vertices in the graph while bounding the number of visits at each vertex. We then give a randomized algorithm that runs in time poly(n)2O(klogr/r)\mathrm{poly}(n)\cdot 2^{O( k\cdot \log r/r)} that solves the rr-SIMPLE kk-PATH on a graph with nn vertices with one-sided error. We also show that a randomized algorithm with running time poly(n)2(c/2)k/r\mathrm{poly}(n)\cdot 2^{(c/2)k/ r} with c<1c<1 gives a randomized algorithm with running time \poly(n)\cdot 2^{cn} for the Hamiltonian path problem in a directed graph - an outstanding open problem. So in a sense our algorithm is optimal up to an O(logr)O(\log r) factor

    A Sublinear Tester for Outerplanarity (and Other Forbidden Minors) With One-Sided Error

    Full text link
    We consider one-sided error property testing of F\mathcal{F}-minor freeness in bounded-degree graphs for any finite family of graphs F\mathcal{F} that contains a minor of K2,kK_{2,k}, the kk-circus graph, or the (k×2)(k\times 2)-grid for any kNk\in\mathbb{N}. This includes, for instance, testing whether a graph is outerplanar or a cactus graph. The query complexity of our algorithm in terms of the number of vertices in the graph, nn, is O~(n2/3/ϵ5)\tilde{O}(n^{2/3} / \epsilon^5). Czumaj et~al.\ showed that cycle-freeness and CkC_k-minor freeness can be tested with query complexity O~(n)\tilde{O}(\sqrt{n}) by using random walks, and that testing HH-minor freeness for any HH that contains a cycles requires Ω(n)\Omega(\sqrt{n}) queries. In contrast to these results, we analyze the structure of the graph and show that either we can find a subgraph of sublinear size that includes the forbidden minor HH, or we can find a pair of disjoint subsets of vertices whose edge-cut is large, which induces an HH-minor.Comment: extended to testing outerplanarity, full version of ICALP pape

    Computational methods for finding long simple cycles in complex networks

    Get PDF
    © 2017 Elsevier B.V. Detection of long simple cycles in real-world complex networks finds many applications in layout algorithms, information flow modelling, as well as in bioinformatics. In this paper, we propose two computational methods for finding long cycles in real-world networks. The first method is an exact approach based on our own integer linear programming formulation of the problem and a data mining pipeline. This pipeline ensures that the problem is solved as a sequence of integer linear programs. The second method is a multi-start local search heuristic, which combines an initial construction of a long cycle using depth-first search with four different perturbation operators. Our experimental results are presented for social network samples, graphs studied in the network science field, graphs from DIMACS series, and protein-protein interaction networks. These results show that our formulation leads to a significantly more efficient exact approach to solve the problem than a previous formulation. For 14 out of 22 networks, we have found the optimal solutions. The potential of heuristics in this problem is also demonstrated, especially in the context of large-scale problem instances

    Spanning Trees with Many Leaves in Graphs without Diamonds and Blossoms

    Full text link
    It is known that graphs on n vertices with minimum degree at least 3 have spanning trees with at least n/4+2 leaves and that this can be improved to (n+4)/3 for cubic graphs without the diamond K_4-e as a subgraph. We generalize the second result by proving that every graph with minimum degree at least 3, without diamonds and certain subgraphs called blossoms, has a spanning tree with at least (n+4)/3 leaves, and generalize this further by allowing vertices of lower degree. We show that it is necessary to exclude blossoms in order to obtain a bound of the form n/3+c. We use the new bound to obtain a simple FPT algorithm, which decides in O(m)+O^*(6.75^k) time whether a graph of size m has a spanning tree with at least k leaves. This improves the best known time complexity for MAX LEAF SPANNING TREE.Comment: 25 pages, 27 Figure
    corecore