9 research outputs found

    On Isolating Points Using Disks

    Full text link

    The Complexity of Separating Points in the Plane

    Get PDF
    We study the following separation problem: given n connected curves and two points s and t in the plane, compute the minimum number of curves one needs to retain so that any path connecting s to t intersects some of the retained curves. We give the first polynomial (O(n3)) time algorithm for the problem, assuming that the curves have reasonable computational properties. The algorithm is based on considering the intersection graph of the curves, defining an appropriate family of closed walks in the intersection graph that satisfies the 3-path-condition, and arguing that a shortest cycle in the family gives an optimal solution. The 3-path-condition has been used mainly in topological graph theory, and thus its use here makes the connection to topology clear. We also show that the generalized version, where several input points are to be separated, is NP-hard for natural families of curves, like segments in two directions or unit circles

    Covering the Boundary of a Simple Polygon with Geodesic Unit Disks

    Full text link
    We consider the problem of covering the boundary of a simple polygon on n vertices using the minimum number of geodesic unit disks. We present an O(n \log^2 n+k) time 2-approximation algorithm for finding the centers of the disks, with k denoting the number centers found by the algorithm

    Point Set Isolation Using Unit Disks is NP-complete

    Full text link
    We consider the situation where one is given a set S of points in the plane and a collection D of unit disks embedded in the plane. We show that finding a minimum cardinality subset of D such that any path between any two points in S is intersected by at least one disk is NP-complete. This settles an open problem raised by Matt Gibson et al[1]. Using a similar reduction, we show that finding a minimum cardinality subset D' of D such that R^2 - (D - D') consists of a single connected region is also NP-complete. Lastly, we show that the Multiterminal Cut Problem remains NP-complete when restricted to unit disk graphs

    The complexity of separating points in the plane

    Get PDF
    We study the following separation problem: given n connected curves and two points s and t in the plane, compute the minimum number of curves one needs to retain so that any path connecting s to t intersects some of the retained curves. We give the first polynomial (O(n3)) time algorithm for the problem, assuming that the curves have reasonable computational properties. The algorithm is based on considering the intersection graph of the curves, defining an appropriate family of closed walks in the intersection graph that satisfies the 3-path-condition, and arguing that a shortest cycle in the family gives an optimal solution. The 3-path-condition has been used mainly in topological graph theory, and thus its use here makes the connection to topology clear. We also show that the generalized version, where several input points are to be separated, is NP-hard for natural families of curves, like segments in two directions or unit circles

    Minimum Shared-Power Edge Cut

    Get PDF
    We introduce a problem called the Minimum Shared-Power Edge Cut (MSPEC). The input to the problem is an undirected edge-weighted graph with distinguished vertices s and t, and the goal is to find an s-t cut by assigning "powers" at the vertices and removing an edge if the sum of the powers at its endpoints is at least its weight. The objective is to minimize the sum of the assigned powers. MSPEC is a graph generalization of a barrier coverage problem in a wireless sensor network: given a set of unit disks with centers in a rectangle, what is the minimum total amount by which we must shrink the disks to permit an intruder to cross the rectangle undetected, i.e. without entering any disc. This is a more sophisticated measure of barrier coverage than the minimum number of disks whose removal breaks the barrier. We develop a fully polynomial time approximation scheme (FPTAS) for MSPEC. We give polynomial time algorithms for the special cases where the edge weights are uniform, or the power values are restricted to a bounded set. Although MSPEC is related to network flow and matching problems, its computational complexity (in P or NP-hard) remains open

    Visibility Domains and Complexity

    Get PDF
    Two problems in discrete and computational geometry are considered that are related to questions about the combinatorial complexity of arrangements of visibility domains and about the hardness of path planning under cost measures defined using visibility domains. The first problem is to estimate the VC-dimension of visibility domains. The VC-dimension is a fundamental parameter of every range space that is typically used to derive upper bounds on the size of hitting sets. Better bounds on the VC-dimension directly translate into better bounds on the size of hitting sets. Estimating the VC-dimension of visibility domains has proven to be a hard problem. In this thesis, new tools to tackle this problem are developed. Encircling arguments are combined with decomposition techniques of a new kind. The main ingredient of the novel approach is the idea of relativization that makes it possible to replace in the analysis of intersections the complicated visibility domains by simpler geometric ranges. The main result here is the new upper bound of 14 on the VC-dimension of visibility polygons in simple polygons that improves significantly upon the previously known best upper bound of 23. For the VC-dimension of perimeter visibility domains, the new techniques yield an upper bound of 7 that leaves only a very small gap to the best known lower bound of 5. The second problem considered is to compute the barrier resilience of visibility domains. In barrier resilience problems, one is given a set of barriers and two points s and t in R^d. The task is to find the minimum number of barriers one has to remove such that there is a way between s and t that does not cross a barrier. In the field of sensor networks, the barriers are interpreted as sensor ranges and the barrier resilience of a network is a measure for its vulnerability. In this thesis the very natural special case where the barriers are visibility domains is investigated. It can also be formulated in terms of finding a so-called minimum witness path. For visibility domains in simple polygons it is shown that one can find an optimal path efficiently. For polygons with holes an approximation hardness result is shown that is stronger than previous hardness results in geometric settings. Two different three-dimensional settings are considered and their respective relations to the Minimum Neighborhood Path problem and the Minimum Color Path problem in graphs are demonstrated. For one of the three-dimensional problems a 2-approximation algorithm is designed. For the general problem of finding minimum witness paths among polyhedral obstacles it turns out that it is not approximable in a strong sense

    Geometric Separation and Packing Problems

    Full text link
    The first part of this thesis investigates combinatorial and algorithmic aspects of geometric separation problems in the plane. In such a setting one is given a set of points and a set of separators such as lines, line segments or disks. The goal is to select a small subset of those separators such that every path between any two points is intersected by at least one separator. We first look at several problems which arise when one is given a set of points and a set of unit disks embedded in the plane and the goal is to separate the points using a small subset of the given disks. Next, we focus on a separation problem involving only one region: Given a region in the plane, bounded by a piecewise linear closed curve, such as a fence, place few guards inside the fenced region such that wherever an intruder cuts through the fence, the closest guard is at most a distance one away. Restricting the separating objects to be lines, we investigate combinatorial aspects which arise when we use them to pairwise separate a set of points in the plane; hereafter we generalize the notion of separability to arbitrary sets and present several enumeration results. Lastly, we investigate a packing problem with a non-convex shape in â„ť3. We show that â„ť3 can be packed at a density of 0.222 with tori of major radius one and minor radius going to zero. Furthermore, we show that the same torus arrangement yields the asymptotically optimal number of pairwise linked tori
    corecore