3,123 research outputs found

    NMUS: Structural Analysis for Improving the Derivation of All MUSes in Overconstrained Numeric CSPs

    Get PDF
    Models are used in science and engineering for experimentation, analysis, model-based diagnosis, design and planning/sheduling applications. Many of these models are overconstrained Numeric Constraint Satisfaction Problems (NCSP), where the numeric constraints could have linear or polynomial relations. In practical scenarios, it is very useful to know which parts of the overconstrained NCSP instances cause the unsolvability. Although there are algorithms to find all optimal solutions for this problem, they are computationally expensive, and hence may not be applicable to large and real-world problems. Our objective is to improve the performance of these algorithms for numeric domains using structural analysis. We provide experimental results showing that the use of the different strategies proposed leads to a substantially improved performance and it facilitates the application of solving larger and more realistic problems.Ministerio de Educación y Ciencia DIP2006-15476-C02-0

    Exploration of the scalability of LocFaults approach for error localization with While-loops programs

    Get PDF
    A model checker can produce a trace of counterexample, for an erroneous program, which is often long and difficult to understand. In general, the part about the loops is the largest among the instructions in this trace. This makes the location of errors in loops critical, to analyze errors in the overall program. In this paper, we explore the scala-bility capabilities of LocFaults, our error localization approach exploiting paths of CFG(Control Flow Graph) from a counterexample to calculate the MCDs (Minimal Correction Deviations), and MCSs (Minimal Correction Subsets) from each found MCD. We present the times of our approach on programs with While-loops unfolded b times, and a number of deviated conditions ranging from 0 to n. Our preliminary results show that the times of our approach, constraint-based and flow-driven, are better compared to BugAssist which is based on SAT and transforms the entire program to a Boolean formula, and further the information provided by LocFaults is more expressive for the user

    Branch-and-Prune Search Strategies for Numerical Constraint Solving

    Get PDF
    When solving numerical constraints such as nonlinear equations and inequalities, solvers often exploit pruning techniques, which remove redundant value combinations from the domains of variables, at pruning steps. To find the complete solution set, most of these solvers alternate the pruning steps with branching steps, which split each problem into subproblems. This forms the so-called branch-and-prune framework, well known among the approaches for solving numerical constraints. The basic branch-and-prune search strategy that uses domain bisections in place of the branching steps is called the bisection search. In general, the bisection search works well in case (i) the solutions are isolated, but it can be improved further in case (ii) there are continuums of solutions (this often occurs when inequalities are involved). In this paper, we propose a new branch-and-prune search strategy along with several variants, which not only allow yielding better branching decisions in the latter case, but also work as well as the bisection search does in the former case. These new search algorithms enable us to employ various pruning techniques in the construction of inner and outer approximations of the solution set. Our experiments show that these algorithms speed up the solving process often by one order of magnitude or more when solving problems with continuums of solutions, while keeping the same performance as the bisection search when the solutions are isolated.Comment: 43 pages, 11 figure

    Constraint-based Sequential Pattern Mining with Decision Diagrams

    Full text link
    Constrained sequential pattern mining aims at identifying frequent patterns on a sequential database of items while observing constraints defined over the item attributes. We introduce novel techniques for constraint-based sequential pattern mining that rely on a multi-valued decision diagram representation of the database. Specifically, our representation can accommodate multiple item attributes and various constraint types, including a number of non-monotone constraints. To evaluate the applicability of our approach, we develop an MDD-based prefix-projection algorithm and compare its performance against a typical generate-and-check variant, as well as a state-of-the-art constraint-based sequential pattern mining algorithm. Results show that our approach is competitive with or superior to these other methods in terms of scalability and efficiency.Comment: AAAI201

    Mapping constrained optimization problems to quantum annealing with application to fault diagnosis

    Get PDF
    Current quantum annealing (QA) hardware suffers from practical limitations such as finite temperature, sparse connectivity, small qubit numbers, and control error. We propose new algorithms for mapping boolean constraint satisfaction problems (CSPs) onto QA hardware mitigating these limitations. In particular we develop a new embedding algorithm for mapping a CSP onto a hardware Ising model with a fixed sparse set of interactions, and propose two new decomposition algorithms for solving problems too large to map directly into hardware. The mapping technique is locally-structured, as hardware compatible Ising models are generated for each problem constraint, and variables appearing in different constraints are chained together using ferromagnetic couplings. In contrast, global embedding techniques generate a hardware independent Ising model for all the constraints, and then use a minor-embedding algorithm to generate a hardware compatible Ising model. We give an example of a class of CSPs for which the scaling performance of D-Wave's QA hardware using the local mapping technique is significantly better than global embedding. We validate the approach by applying D-Wave's hardware to circuit-based fault-diagnosis. For circuits that embed directly, we find that the hardware is typically able to find all solutions from a min-fault diagnosis set of size N using 1000N samples, using an annealing rate that is 25 times faster than a leading SAT-based sampling method. Further, we apply decomposition algorithms to find min-cardinality faults for circuits that are up to 5 times larger than can be solved directly on current hardware.Comment: 22 pages, 4 figure
    corecore