
NMUS: Structural Analysis for Improving the

Derivation of All MUSes in Overconstrained
Numeric CSPs

R.M. Gasca, C. Del Valle, M.T. Gómez-López, and R. Ceballos
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Abstract. Models are used in science and engineering for experimen-
tation, analysis, model-based diagnosis, design and planning/sheduling
applications. Many of these models are overconstrained Numeric Con-
straint Satisfaction Problems (NCSP ), where the numeric constraints
could have linear or polynomial relations. In practical scenarios, it is
very useful to know which parts of the overconstrained NCSP instances
cause the unsolvability.

Although there are algorithms to find all optimal solutions for this
problem, they are computationally expensive, and hence may not be ap-
plicable to large and real-world problems. Our objective is to improve
the performance of these algorithms for numeric domains using struc-
tural analysis. We provide experimental results showing that the use of
the different strategies proposed leads to a substantially improved per-
formance and it facilitates the application of solving larger and more
realistic problems.

1 Introduction

A lot of Artificial Intelligence problems can be cast in terms of Numeric Con-
straint Satisfaction Problems (NCSPs), and a large number of systems have
been developed to compute efficiently solutions of these problems. NCSPs are
more and more often used to solve engineering problems arisen in different ar-
eas such as qualitative reasoning, diagnosis, planning, scheduling, configuration,
distributed artificial intelligence, etc... This work focuses on problems related to
engineering field, what play a prominent role in industrial applications. Gener-
ally, these problems are formed by a set of constraints among variables whose
domains are real interval values. Usually, the numeric constraints are linear or
polynomial relations (equations or inequations).

However, not every set of numeric constraints is satisfiable. Different re-
searchers have proposed methods for the identification of Minimally Unsatis-
fiable Subsets of Constraints (MUSes) or Conflict Sets (CS) as they are also
named in overconstrained CSPs. Determining MUSes can be very valuable in
many industrial applications, because it describes what is wrong in a NCSP
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instance. They represent the smallest explanations -in terms of the number of
involved constraints- of infeasibility. Indeed, when we check the consistency of
a NCSP , we prefer knowing which constraints are contradicting one another
rather than only knowing that the whole NCSP is inconsistent.

In the bibliography, different types of CSPs have been treated in order to
obtain the MUSes. They are related to Satisfiability Problems [8] [2] [13] [7],
Disjunctive Temporal Problem (DTP ) [11] [9] [12] and model-based diagnosis
and debugging problems [10] [5] [6] [1] [3]. Due to the high computational com-
plexity of these problems, the goal of most of these approaches was to reduce
the amount of satisfaction checking and subsets examined. However, some ap-
proaches were designed to derive only some MUSes and no all MUSes of these
overconstrained CSPs.

To derive MUSes in overconstrained NCSP , we are aware of very few techni-
cal works. In [4], Irreducible Infeasible Subsets (IIS) was studied for only linear
and integer domains, but not all MUSes are obtained. These problems may con-
tain multiple MUSes, and all of them must be resolved by constraint relaxation
before the NCSP can be solved. Also, other authors of the model-based diagnosis
community have treated the high complexity of these problems using constraint
databases [6] and new concepts such as constraint clusters and nodes [3].

In this paper, a set of new derivation techniques are presented to obtain
efficiently MUSes of a overconstrainted NCSP . These techniques improve the
complete technique in several ways depending on the structure of the constraint
network. It makes use of the powerful concept of the structural lattice of the
constraints and neighborhood-based structural analysis to boost the efficiency of
the exhaustive algorithms. As systematic methods for solving hard combinatorial
problems are too expensive, structural analysis offers an alternative approach for
quickly generating all MUSes. Accordingly, experimental studies of these new
techniques outperform the best exhaustive ones. They avoid to solve a high
number of NCSPs with exponential complexity, however they add some new
procedures with polynomial complexity.

The rest of the article is organized as follows. In Section 2, we start presenting
some examples of overconstrained NCSPs to introduce the problem domain.
Section 3 presents some definitions and notations. Section 4 exposes different
neighborhood concepts based on the structural analysis of the constraint net-
work. Afterwards, we propose different search algorithms for deriving numeric
MUSes in a efficient way and their experimental results are argued in Section
5. Finally, in the last section we present our conclusions and future work.

2 Motivating Examples

The parts of an overconstrained NCSP instance that could cause the unsolv-
ability are the variables domains or constraints of the problem. Only this last
cause will be treated in this article.

In the following subsections, we specify some different NCSP instances to
motivate this work. The specification of a NCSP instance is represented by Ψ ,
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Fig. 1. Overconstrained NCSP with same real variables for all constraints

the variables by XΨ , the domains by DΨ , the constraints by CΨ and the goals
by GΨ . In this last item, the modeler could also specify which constraints would
be preferred for relaxing.

2.1 NCSP with the Same Real Variables for All Constraints

An example is the following geometrical problem, where the overconstrained
NCSP instance has linear equations and polynomial equations/inequations:

Ψ ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

XΨ = {x, y}
DΨ = {x, y ∈ [−10, +10]},
CΨ = {c1 ≡ x2 + y2 < 4, c2 ≡ (x − 7/2)2 + y2 < 4, c3 ≡ x ∗ y > 1,

c4 ≡ x + y = 0, c5 ≡ y + (x − 1)2 = 5, c6 ≡ (x + 4)2 + y2 = 1,
c7 ≡ y = 6 − (x + 3)2, c8 ≡ (x + 8)2 + (y − 4)2 = 1,
c9 ≡ (x − 8)2 + (y − 4)2 = 1, c10 ≡ y = 5 + (x − 4)2,
c11 ≡ y = 6 + 2 ∗ (x − 4)2, c12 ≡ (x − 8)2 + (y − 7)2 = 1}

GΨ = Solutions(X)? Why?

This problem has no solution, but the question is what cause it. In this case, Ψ
exhibits the following MUSes, namely {c1, c2, c5}, {c10, c11}, {c9, c12}, etc...

2.2 NCSP with Some Different Variables for the Numeric
Constraints

The following example is extracted from a recent work in the model-based diag-
nosis community [3], where the mi and ai constraints corresponds to multipliers
and adders respectively. This is a very illustrative example to show the utility
of the structural analysis:
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Fig. 2. Overconstrained NCSP with different real variables for all constraints

Ψ ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

XΨ = {a, b, c, d, e, f, g, h, i, j, k, m, n, o, p, q, r, xi(i ∈ {1, ..., 12})}
DΨ = {xi ∈ (−∞, +∞),

a, b, c, d, e, f, g ∈ [2, 4] k, m, n, o ∈ [3, 5]
p, q, r ∈ [15, 18])}

CΨ = {m1 ≡ a ∗ c = x01, a1 ≡ x01 + x02 = x08,
etc...}

GΨ = Solutions(X)? Why?

3 Definitions and Notations

In the previous section, some overconstrained NCSPs in terms of examples have
been shown. This section presents some necessary definitions to formalize and
clarify the derivation of all MUSes in these problems.

Definition 3.1 (Numeric Variable). A variable of the NCSP whose domain
is a real interval value. The set of numeric variables of the problem is denoted
by XΨ and XΨ (ci) stands for the set of variables of a constraint ci.

Definition 3.2 (Numeric Constraint). It is a linear or polynomial relation
(equations or inequations) involving a finite subset of numeric variables.

Definition 3.3 (Goal). A predicate that denotes the users’ preferences to search
why the NCSP is overconstrained.

Definition 3.4 (Numeric Constraint Satisfaction Problem). A four-tuple
Ψ =(X,D,C,G) where XΨ = {x1, ..., xn} is a set of variables, whose continuous
domains are respectively DΨ = {d1, ..., dn}(n ≥ 1), CΨ = {c1, ..., cm}(m ≥ 1) is
a set of numeric constraints and GΨ is the goal.

Definition 3.5 (Overconstrained NCSP). It is a NCSP with no solution
caused by some of the domains or constraints contradicting others.



When a NCSP instance is unsatisfiable, it has at least one Numeric Minimally
Unsatisfiable SubSet, in short one NMUS. It is a set of numeric constraints
which is unsatisfiable, but becomes satisfiable as soon as we remove any of its
constraints.

Definition 3.6 (Numeric Minimally Unsatisfiable SubSet). Given an in-
stance Ψ of a NCSP , a MUS μ is a set of numeric constraints s.t. μ ⊂ CΨ , μ is
unsatisfiable and ∀δ ∈ μ, μ\{δ} is satisfiable.

The number of constraints in a MUS is its cardinality and it is represented by
#μ. Generally, we can have more than one MUS in the same NCSP . Some of
them can overlap, in the sense that they can share some constraints, but they
cannot be fully contained one in another. This concept of MUS have similarities
with that one of IIS in the case of systems of linear inequalities.

4 Neighborhood-Based Structural Analysis

To construct a practical system developing a complete and efficient method for
deriving numeric MUSes is a key issue in real-world and industrial applications.
In this paper, the option for an important reduction of the search space is based
on the structural analysis. For this reason, the concept of neighbors of a given
assignment of the constraints of a NCSP is defined.

Definition 4 (Assignment). It is the tuple of values {0, 1} assigned to each
constraint of a NCSP instance Ψ , meaning the truth value of each constraint.
It is represented by A(CΨ ).

For example, in a NCSP with five numeric constraints an assignment could be
(c1, c2, c3, c4, c5) ≡ (1, 0, 0, 1, 0).

4.1 General Neighborhood

Definition 4.1 (Neighbor Assignment). Given an assignment A(CΨ ), a
neighbor assignment is defined by a new assignment A′(CΨ ) that differs in ex-
actly one truth value.

For a given assignment A(CΨ ), one option could be to consider all alternatives
whose variable assignments differ in exactly one position; for example, the as-
signment (c1, c2, c3, c4, c5) ≡ (1, 0, 0, 1, 0) would be a neighbor of (c1, c2, c3, c4, c5)
≡ (1, 0, 0, 1, 1), since they both differ only on the assignment to c5. However, as
each ci variable may take these different values, the cardinality of the set of
possible neighbors could be very high. But, it could be reduced in a signifi-
cant way, taking into account the structural aspects of the constraint network
of the NCSP . In this article, two clear options of neighborhood are used: when
the variables of all the constraints of NCSP are identical then we define the
concept of domain-based neighborhood; in other cases we define the concept of
variable-based neighborhood.



4.2 Variable-Based Neighborhood

An important aspect in this concept is the notion of Non-Observable Numeric
Variable of a NCSP instance. For these variables, there is not any information
about their domains.

Definition 4.2.1 (Non-Observable Numeric Variable). It is a numeric
variable of a NCSP , whose initial domain in the problem specification is (−∞,
+∞).

For the example in the subsection 2.2, the neighborhood is based on the common
non-observable numeric variables between constraints.

Definition 4.2.2 (Variable-based Neighbor Assignment of Constraints).

Given an assignment of A(CΨ ), a neighbor is defined by a new assignment
A′(CΨ ) that differs in exactly one truth value of a constraint with some common
non-observable variable to the constraints with truth values equals 1.

4.3 Domain-Based Neighborhood

Another neighborhood concept is when all numeric constraints of an overcon-
strained NCSP instance have the same variables. In this case we could use the
projection operator of a variable xi ∈ XΨ w.r.t. a constraint cj ∈ CΨ is repre-
sented as Πxi(cj). In the same way, the projection operator of a variable xi ∈ XΨ

w.r.t a set of constraint CΓ ⊂ CΨ that is represented as Πxi(Cγ). Then, the
new concept for deriving MUSes is the domain-based neighborhood. A con-
straint ci ∈ CΨ could be domain-based neighbor of another set of constraint
Cγ ⊂ CΨ |ci 	∈ Cγ when the intersection of the projections for all variables of set
XΨ is not empty:

∀xk ∈ XΨ Πxk
(ci) ∩ Πxk

(Cγ) 	= ∅
Definition 4.3 Domain-based Neighbor Assignment of the Constraints
Given an assignment of A(CΨ ), a neighbor is defined by a new assignment
A′(CΨ ) that differs in exactly one truth value of a constraint and all projec-
tion operations of the variables w.r.t. a set of the numeric constraints with truth
value equals 1 is not empty.

With this definition we are sure of the domain-based neighborhood, but it
could happen that the intersection of all the projections are not empty and the
constraints are unsatisfiable. For this reason, it is necessary to solve a NCSP .

5 NMUS: Numeric MUSes Search Methods

In this section, a set of methods NMUS is presented to efficiently derive all
MUSes using the Neighborhood-based Structural Analysis on overconstrained
NCSP . We describe different bottom-up derivation strategies taking into ac-
count the concept of neighborhood for the different types of problems. The search
methods are different depending on the structural aspects of these problems.



5.1 NMUS for NCSPs with the Same Variables for All Constraints

A basic algorithm would study all the 2n − 1 combinations of constraints in
order to determine all MUSes of an overconstrained NCSP instance Ψ , where
n is the cardinality of the set CΨ . The proposed method is complete, but it is
very inefficient and no practical. For this reason, this work proposes different
strategies to improve this algorithm.

Let MUS be a data structure List of Sets where the MUSes are stored and
Q a data structure type Queue of Sets where the active constraints and its
projections w.r.t the variables of the problem are stored. The function poll()
retrieves and removes the head of a queue or null if the queue is empty.

First Improvement (NMUS-1): Only Inclusion in queue of satisfiable
subsets. This first improvement will include in the queue Q only subset of
constraints that are satisfiable. Given an overconstrained NCSP instance Ψ ,
the algorithm is shown in Algorithm 1.

Alg. NMUS-1 (Ψ : NCSP )

Let CΨ = {c1, . . . , cn} be constraints of the overconstrained NCSP instance

Q := Queue with a set for each satisfiable numeric constraints belong to CΨ

MUS := List with the set of unsatisfiable numeric constraints belong to CΨ

while (Q is not Empty)

{ci . . . cj}:=Q.poll()
for (ck ∈ {cj+1 to cn})
if (NOT ∃SubSet1...n−1

{ci...cj} ∪ ck ∈ MUS) // n is cardinality of {ci . . . cj}
if ({ci . . . cj}∪ck is satisfiable) // a NCSP must be solved

Q.add({ci . . . cj} ∪ ck)

else

MUS.add({ci . . . cj} ∪ ck)

endIf

endIf

endFor

endWhile

Algorithm 1. NMUS-1 (Ψ : NCSP )

In this algorithm, the neighborhood concept is not taken into account and the
satisfiability could be checked using NCSP solvers.

Second Improvement (NMUS-2): Using Domain-based neighborhood
In this algorithm, two concepts are used: domain-based neighborhood and over-
lapping projection. The initialization procedure is the same as the previous al-
gorithm. The new algorithm is shown in Algorithm 2.

The function Overlap Projection(Constraint c, Constraints List lc) returns
true if it exists overlapping between the projection of the constraint c and the pro-
jection of lcw.r.t. every variable. If this function returns false, itmeans that it exists
a MUS formed by c and some constraints of lc, thereby c ∪ lc is not a MUS.



Alg. NMUS-2(Ψ : NCSP )

............... // Initialization
while (Q no Empty)

{ci . . . cj}:= Q.poll() // a list of satisfiable constraints are obtained

for (ck in {cj+1 to cn}) // it avoids to obtain redundant solutions

if (Overlap Projection(ck , {ci . . . cj}) AND

NOT ∃SubSet1...n−1
{ci...cj} ∪ ck ∈ MUS

if ({ci . . . cj} ∪ ck is satisfiable) // a NCSP is created

Q.add({ci . . . cj} ∪ ck)

else

MUS.add({ci . . . cj} ∪ ck)

endIf

else

if(#{ci . . . cj}=1)

MUS.add({ci . . . cj} ∪ ck)

endIf

endIf

endFor

endWhile

Algorithm 2. NMUS-2 (Ψ : NCSP )

Third Improvement (NMUS-3): Sorting constraints according to the
overlapped domain. The heuristic used in this algorithm is based on the quick
search of MUSes. First of all, the algorithm sorts the constraints depending on
the number of projections that intersect with the projections of other constraints.

It is possible to check the satisfiability only analysing the minimum and max-
imum value of each variable in the different constraints, no being necessary to
solve a NCSP . The previous algorithms add subsets of constraints in the queue
Q when a subset of constraints is satisfiable. If we analyze first the less promising
subsets, there will be less possibilites yo add these constraints to Q.

5.2 NMUS for NCSPs with Some Different Variables for the
Numeric Constraints

In this algorithm, we will apply a different neighborhood concept, the variable-
based one. The initialization procedure is the same as in the previous algorithm,
but the data structure Q can be now a Queue, a Stack or another data struc-
ture depending on the different search strategy. This structure must have a new
method add which includes a tuple 〈Cγ , NOBV (Cγ)〉, where NOBV (Cγ)) rep-
resents the set of non-observable variables of Cγ .

Depending on the type of structure Q, the search process will be depth-search
or breadth-search, what will determine two different algorithms NMUS-4 and
NMUS-5 respectively (Algorithm 3).



Alg. NMUS-4-5(Ψ : NCSP )
............... // Initialization
while(Q is not Empty)

〈Cγ , NOBV (Cγ)〉 := Q.poll() // chose a element belong to Q
neighbors := expand (〈Cγ , NOBV (Cγ)〉) // generate neighbours

according variable-based neighborhood
foreach (〈ck, NOBV (ck)〉 ∈ neighbors)

if(Cγ ∪ ck is satisfiable)// a NCSP is created
Q.add(〈Cγ , NOBV (Cγ)〉 ∪ 〈ck, NOBV (ck)〉)

else
MUS.add(〈Cγ , NOBV (Cγ)〉 ∪ 〈ck, NOBV (ck)〉)

endIf
endFor

endWhile

Algorithm 3. NMUS-4-5(Ψ : NCSP )

6 Experimental Results

NMUS is a prototype that includes all previous algorithms. This prototype is im-
plemented in Java and runs on an AMD Athlon Dual Core 2.21 GHz with 1.78 GB
Ram. The standard routine used for solving NCSP belongs to ILOGTMJSolver.

The different algorithms of this prototype improve the performance of basic
algorithms for numeric domains using the structural analysis. We provide exper-
imental results showing that the use of the different strategies proposed leads
to substantially improved performance and facilitates to solve larger and more
realistic problems. The following table reports the experimental results for the
different examples of the Section 2 when a domain-based or a variable-based
neighborhood are used. NMUS-5 is more efficient than NMUS-4 since using a
breadth search approach we can detect more easily the redundant sets of con-
straints that are generated. The examples show also a significant improvement
w.r.t. the basic algorithms. Therefore these algorithms provide a realistic method
for deriving all numeric MUSes of a given problem.

Table 1. Experimental Results for examples in Section 2

Algorithms Example 2.1 Algorithms Example 2.2

# NCSPs Time(ms) Time (ms)

Basic Alg. 212 − 1 = 4095 40210 Basic Alg. 1017

NMUS-1 88 8692 NMUS-4 16,8

NMUS-2 58 7500 NMUS-5 2,0

NMUS-3 57 2340

7 Conclusions and Future Work

The derivation of all MUSes for overconstrained NCSP is a computationally
hard problem and arises in a lot of industrial problems. This problem has been
formally defined in this paper and different methods for deriving all NMUSes



are also presented here. Our experimental results show that the computation
time required is significantly reduced in comparison to the basic algorithms.

Future work in this problem will include moreover enhancing more the effi-
ciency of our algorithms, the treatment of new types of problems, for example
when the constraint network has cycles or a disjunctive set of constraints. Fi-
nally, an important future goal will be to use the relaxation preferences that
provides a user about how to weaken constraints to achieve feasibility.
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