6,047 research outputs found

    Observer-biased bearing condition monitoring: from fault detection to multi-fault classification

    Get PDF
    Bearings are simultaneously a fundamental component and one of the principal causes of failure in rotary machinery. The work focuses on the employment of fuzzy clustering for bearing condition monitoring, i.e., fault detection and classification. The output of a clustering algorithm is a data partition (a set of clusters) which is merely a hypothesis on the structure of the data. This hypothesis requires validation by domain experts. In general, clustering algorithms allow a limited usage of domain knowledge on the cluster formation process. In this study, a novel method allowing for interactive clustering in bearing fault diagnosis is proposed. The method resorts to shrinkage to generalize an otherwise unbiased clustering algorithm into a biased one. In this way, the method provides a natural and intuitive way to control the cluster formation process, allowing for the employment of domain knowledge to guiding it. The domain expert can select a desirable level of granularity ranging from fault detection to classification of a variable number of faults and can select a specific region of the feature space for detailed analysis. Moreover, experimental results under realistic conditions show that the adopted algorithm outperforms the corresponding unbiased algorithm (fuzzy c-means) which is being widely used in this type of problems. (C) 2016 Elsevier Ltd. All rights reserved.Grant number: 145602

    Fuzzy clustering of univariate and multivariate time series by genetic multiobjective optimization

    Get PDF
    Given a set of time series, it is of interest to discover subsets that share similar properties. For instance, this may be useful for identifying and estimating a single model that may fit conveniently several time series, instead of performing the usual identification and estimation steps for each one. On the other hand time series in the same cluster are related with respect to the measures assumed for cluster analysis and are suitable for building multivariate time series models. Though many approaches to clustering time series exist, in this view the most effective method seems to have to rely on choosing some features relevant for the problem at hand and seeking for clusters according to their measurements, for instance the autoregressive coe±cients, spectral measures or the eigenvectors of the covariance matrix. Some new indexes based on goodnessof-fit criteria will be proposed in this paper for fuzzy clustering of multivariate time series. A general purpose fuzzy clustering algorithm may be used to estimate the proper cluster structure according to some internal criteria of cluster validity. Such indexes are known to measure actually definite often conflicting cluster properties, compactness or connectedness, for instance, or distribution, orientation, size and shape. It is argued that the multiobjective optimization supported by genetic algorithms is a most effective choice in such a di±cult context. In this paper we use the Xie-Beni index and the C-means functional as objective functions to evaluate the cluster validity in a multiobjective optimization framework. The concept of Pareto optimality in multiobjective genetic algorithms is used to evolve a set of potential solutions towards a set of optimal non-dominated solutions. Genetic algorithms are well suited for implementing di±cult optimization problems where objective functions do not usually have good mathematical properties such as continuity, differentiability or convexity. In addition the genetic algorithms, as population based methods, may yield a complete Pareto front at each step of the iterative evolutionary procedure. The method is illustrated by means of a set of real data and an artificial multivariate time series data set.Fuzzy clustering, Internal criteria of cluster validity, Genetic algorithms, Multiobjective optimization, Time series, Pareto optimality

    Cluster validity in clustering methods

    Get PDF

    Electricity clustering framework for automatic classification of customer loads

    Get PDF
    Clustering in energy markets is a top topic with high significance on expert and intelligent systems. The main impact of is paper is the proposal of a new clustering framework for the automatic classification of electricity customers’ loads. An automatic selection of the clustering classification algorithm is also highlighted. Finally, new customers can be assigned to a predefined set of clusters in the classificationphase. The computation time of the proposed framework is less than that of previous classification tech- niques, which enables the processing of a complete electric company sample in a matter of minutes on a personal computer. The high accuracy of the predicted classification results verifies the performance of the clustering technique. This classification phase is of significant assistance in interpreting the results, and the simplicity of the clustering phase is sufficient to demonstrate the quality of the complete mining framework.Ministerio de Economía y Competitividad TEC2013-40767-RMinisterio de Economía y Competitividad IDI- 2015004

    Clustering Methods for Electricity Consumers: An Empirical Study in Hvaler-Norway

    Get PDF
    The development of Smart Grid in Norway in specific and Europe/US in general will shortly lead to the availability of massive amount of fine-grained spatio-temporal consumption data from domestic households. This enables the application of data mining techniques for traditional problems in power system. Clustering customers into appropriate groups is extremely useful for operators or retailers to address each group differently through dedicated tariffs or customer-tailored services. Currently, the task is done based on demographic data collected through questionnaire, which is error-prone. In this paper, we used three different clustering techniques (together with their variants) to automatically segment electricity consumers based on their consumption patterns. We also proposed a good way to extract consumption patterns for each consumer. The grouping results were assessed using four common internal validity indexes. We found that the combination of Self Organizing Map (SOM) and k-means algorithms produce the most insightful and useful grouping. We also discovered that grouping quality cannot be measured effectively by automatic indicators, which goes against common suggestions in literature.Comment: 12 pages, 3 figure

    Fuzzy clustering of univariate and multivariate time series by genetic multiobjective optimization

    Get PDF
    COMISEF Working Papers Series WPS-028 08/02/2010 URL: http://comisef.eu/files/wps028.pd

    Relational visual cluster validity

    Get PDF
    The assessment of cluster validity plays a very important role in cluster analysis. Most commonly used cluster validity methods are based on statistical hypothesis testing or finding the best clustering scheme by computing a number of different cluster validity indices. A number of visual methods of cluster validity have been produced to display directly the validity of clusters by mapping data into two- or three-dimensional space. However, these methods may lose too much information to correctly estimate the results of clustering algorithms. Although the visual cluster validity (VCV) method of Hathaway and Bezdek can successfully solve this problem, it can only be applied for object data, i.e. feature measurements. There are very few validity methods that can be used to analyze the validity of data where only a similarity or dissimilarity relation exists – relational data. To tackle this problem, this paper presents a relational visual cluster validity (RVCV) method to assess the validity of clustering relational data. This is done by combining the results of the non-Euclidean relational fuzzy c-means (NERFCM) algorithm with a modification of the VCV method to produce a visual representation of cluster validity. RVCV can cluster complete and incomplete relational data and adds to the visual cluster validity theory. Numeric examples using synthetic and real data are presente
    corecore