1,863 research outputs found

    Real-Time Monitoring and Fault Diagnostics in Roll-To-Roll Manufacturing Systems

    Full text link
    A roll-to-roll (R2R) process is a manufacturing technique involving continuous processing of a flexible substrate as it is transferred between rotating rolls. It integrates many additive and subtractive processing techniques to produce rolls of product in an efficient and cost-effective way due to its high production rate and mass quantity. Therefore, the R2R processes have been increasingly implemented in a wide range of manufacturing industries, including traditional paper/fabric production, plastic and metal foil manufacturing, flexible electronics, thin film batteries, photovoltaics, graphene films production, etc. However, the increasing complexity of R2R processes and high demands on product quality have heightened the needs for effective real-time process monitoring and fault diagnosis in R2R manufacturing systems. This dissertation aims at developing tools to increase system visibility without additional sensors, in order to enhance real-time monitoring, and fault diagnosis capability in R2R manufacturing systems. First, a multistage modeling method is proposed for process monitoring and quality estimation in R2R processes. Product-centric and process-centric variation propagation are introduced to characterize variation propagation throughout the system. The multistage model mainly focuses on the formulation of process-centric variation propagation, which uniquely exists in R2R processes, and the corresponding product quality measurements with both physical knowledge and sensor data analysis. Second, a nonlinear analytical redundancy method is proposed for sensor validation to ensure the accuracy of sensor measurements for process and quality control. Parity relations based on nonlinear observation matrix are formulated to characterize system dynamics and sensor measurements. Robust optimization is designed to identify the coefficient of parity relations that can tolerate a certain level of measurement noise and system disturbances. The effect of the change of operating conditions on the value of the optimal objective function – parity residuals and the optimal design variables – parity coefficients are evaluated with sensitivity analysis. Finally, a multiple model approach for anomaly detection and fault diagnosis is introduced to improve the diagnosability under different operating regimes. The growing structure multiple model system (GSMMS) is employed, which utilizes Voronoi sets to automatically partition the entire operating space into smaller operating regimes. The local model identification problem is revised by formulating it into an optimization problem based on the loss minimization framework and solving with the mini-batch stochastic gradient descent method instead of least squares algorithms. This revision to the GSMMS method expands its capability to handle the local model identification problems that cannot be solved with a closed-form solution. The effectiveness of the models and methods are determined with testbed data from an R2R process. The results show that those proposed models and methods are effective tools to understand variation propagation in R2R processes and improve estimation accuracy of product quality by 70%, identify the health status of sensors promptly to guarantee data accuracy for modeling and decision making, and reduce false alarm rate and increase detection power under different operating conditions. Eventually, those tools developed in this thesis contribute to increase the visibility of R2R manufacturing systems, improve productivity and reduce product rejection rate.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146114/1/huanyis_1.pd

    Testing Layered Interconnection Networks

    Get PDF
    We present an approach for fault detection in layered interconnection networks (LINs). An LIN is a generalized multistage interconnection network commonly used in reconfigurable systems; the nets (links) are arranged in sets (referred to as layers) of different size. Switching elements (made of simple switches such as transmission-gate-like devices) are arranged in a cascade to connect pairs of layers. The switching elements of an LIN have the same number of switches, but the switching patterns may not be uniform. A comprehensive fault model for the nets and switches is assumed at physical and behavioral levels. Testing requires configuring the LIN multiple times. Using a graph approach, it is proven that the minimal set of configurations corresponds to the node disjoint path sets. The proposed approach is based on two novel results in the execution of the network flow algorithm to find node disjoint path sets, while retaining optimality in the number of configurations. These objectives are accomplished by finding a feasible flow such that the maximal degree can be iteratively decreased, while guaranteeing the existence of an appropriate circulation. Net adjacencies are also tested for possible bridge faults (shorts). To account for 100 percent fault coverage of bridge faults a postprocessing algorithm may be required; bounds on its complexity are provided. The execution complexity of the proposed approach (inclusive of test vector generation and post-processing) is O(N4WL), where N is the total number of nets, W is the number of switches per switching element, and L is the number of layers. Extensive simulation results are provided

    A fault diagnosis framework for centrifugal pumps by scalogram-based imaging and deep learning.

    Get PDF
    Centrifugal pumps are the most vital part of any process industry. A fault in centrifugal pump can affect imperative industrial processes. To ensure reliable operation of the centrifugal pump, this paper proposes a novel automated health state diagnosis framework for centrifugal pump that combines a signal to time-frequency imaging technique and an Adaptive Deep Convolution Neural Network model (ADCNN). First, the vibration signals corresponding to different health conditions of the centrifugal pump are acquired. Vibration signals obtained from the centrifugal pump carry a great deal of information and generally, statistical features are extracted from the vibration signals to retain meaningful fault information. However, these features are either insensitive to weak incipient faults or unsuitable for tracking severe faults, thus, decreasing the fault classification accuracy. To tackle this problem, a signal to time-frequency imaging technique is applied to the pump vibration signals. For this purpose, Continuous Wavelet Transform (CWT) is applied to decompose the vibration signals over different time-frequency scales and extract the pump fault information in both the time and frequency domains. The CWT scales form two-dimensional time-frequency images commonly referred to as scalograms. The CWT scalograms are then converted into grayscale images (SGI). Over the past few decades, CNN models have been established as an effective practice to process images for classification and pattern recognition. Consequently, the extracted CWTSGIs are finally provided as inputs to the proposed ADCNN architecture to achieve feature extraction and classification for centrifugal pump faults. The performance of the proposed diagnostic framework (CWTSGI + ADCNN) is validated with a vibration dataset collected from a testbed specifically designed for centrifugal pump diagnosis. The experimental results suggest that the proposed technique based on CWTSGI and ADCNN outperformed existing methods with an average performance improvement of 4.7 - 15.6%

    Algorithms in fault-tolerant CLOS networks

    Get PDF

    Dynamic Modeling, Sensor Placement Design, and Fault Diagnosis of Nuclear Desalination Systems

    Get PDF
    Fault diagnosis of sensors, devices, and equipment is an important topic in the nuclear industry for effective and continuous operation of nuclear power plants. All the fault diagnostic approaches depend critically on the sensors that measure important process variables. Whenever a process encounters a fault, the effect of the fault is propagated to some or all the process variables. The ability of the sensor network to detect and isolate failure modes and anomalous conditions is crucial for the effectiveness of a fault detection and isolation (FDI) system. However, the emphasis of most fault diagnostic approaches found in the literature is primarily on the procedures for performing FDI using a given set of sensors. Little attention has been given to actual sensor allocation for achieving the efficient FDI performance. This dissertation presents a graph-based approach that serves as a solution for the optimization of sensor placement to ensure the observability of faults, as well as the fault resolution to a maximum possible extent. This would potentially facilitate an automated sensor allocation procedure. Principal component analysis (PCA), a multivariate data-driven technique, is used to capture the relationships in the data, and to fit a hyper-plane to the data. The fault directions for different fault scenarios are obtained from the prediction errors, and fault isolation is then accomplished using new projections on these fault directions. The effectiveness of the use of an optimal sensor set versus a reduced set for fault detection and isolation is demonstrated using this technique. Among a variety of desalination technologies, the multi-stage flash (MSF) processes contribute substantially to the desalinating capacity in the world. In this dissertation, both steady-state and dynamic simulation models of a MSF desalination plant are developed. The dynamic MSF model is coupled with a previously developed International Reactor Innovative and Secure (IRIS) model in the SIMULINK environment. The developed sensor placement design and fault diagnostic methods are illustrated with application to the coupled nuclear desalination system. The results demonstrate the effectiveness of the newly developed integrated approach to performance monitoring and fault diagnosis with optimized sensor placement for large industrial systems

    Machine Learning in Manufacturing towards Industry 4.0: From ‘For Now’ to ‘Four-Know’

    Get PDF
    While attracting increasing research attention in science and technology, Machine Learning (ML) is playing a critical role in the digitalization of manufacturing operations towards Industry 4.0. Recently, ML has been applied in several fields of production engineering to solve a variety of tasks with different levels of complexity and performance. However, in spite of the enormous number of ML use cases, there is no guidance or standard for developing ML solutions from ideation to deployment. This paper aims to address this problem by proposing an ML application roadmap for the manufacturing industry based on the state-of-the-art published research on the topic. First, this paper presents two dimensions for formulating ML tasks, namely, ’Four-Know’ (Know-what, Know-why, Know-when, Know-how) and ’Four-Level’ (Product, Process, Machine, System). These are used to analyze ML development trends in manufacturing. Then, the paper provides an implementation pipeline starting from the very early stages of ML solution development and summarizes the available ML methods, including supervised learning methods, semi-supervised methods, unsupervised methods, and reinforcement methods, along with their typical applications. Finally, the paper discusses the current challenges during ML applications and provides an outline of possible directions for future developments

    Gas Turbines

    Get PDF
    This book is intended to provide valuable information for the analysis and design of various gas turbine engines for different applications. The target audience for this book is design, maintenance, materials, aerospace and mechanical engineers. The design and maintenance engineers in the gas turbine and aircraft industry will benefit immensely from the integration and system discussions in the book. The chapters are of high relevance and interest to manufacturers, researchers and academicians as well

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y Tecnología DPI2001-3089Ministerio de Eduación y Ciencia d TEC2006-0386

    Contribution to the evaluation and optimization of passengers' screening at airports

    Get PDF
    Security threats have emerged in the past decades as a more and more critical issue for Air Transportation which has been one of the main ressource for globalization of economy. Reinforced control measures based on pluridisciplinary research and new technologies have been implemented at airports as a reaction to different terrorist attacks. From the scientific perspective, the efficient screening of passengers at airports remain a challenge and the main objective of this thesis is to open new lines of research in this field by developing advanced approaches using the resources of Computer Science. First this thesis introduces the main concepts and definitions of airport security and gives an overview of the passenger terminal control systems and more specifically the screening inspection positions are identified and described. A logical model of the departure control system for passengers at an airport is proposed. This model is transcribed into a graphical view (Controlled Satisfiability Graph-CSG) which allows to test the screening system with different attack scenarios. Then a probabilistic approach for the evaluation of the control system of passenger flows at departure is developped leading to the introduction of Bayesian Colored Petri nets (BCPN). Finally an optimization approach is adopted to organize the flow of passengers at departure as best as possible given the probabilistic performance of the elements composing the control system. After the establishment of a global evaluation model based on an undifferentiated serial processing of passengers, is analyzed a two-stage control structure which highlights the interest of pre-filtering and organizing the passengers into separate groups. The conclusion of this study points out for the continuation of this theme
    corecore