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Testing Layered Interconnection Networks
Bin Liu, Student Member, IEEE, Fabrizio Lombardi, Senior Member, IEEE,

Nohpill Park, Member, IEEE, and Minsu Choi, Member, IEEE

Abstract—This paper presents an approach for fault detection in layered interconnection networks (LINs). An LIN is a generalized

multistage interconnection network commonly used in reconfigurable systems; the nets (links) are arranged in sets (referred to as

layers) of different size. Switching elements (made of simple switches such as transmission-gate-like devices) are arranged in a

cascade to connect pairs of layers. The switching elements of an LIN have the same number of switches, but the switching patterns

may not be uniform. A comprehensive fault model for the nets and switches is assumed at physical and behavioral levels. Testing

requires configuring the LIN multiple times. Using a graph approach, it is proven that the minimal set of configurations corresponds to

the node disjoint path sets. The proposed approach is based on two novel results in the execution of the network flow algorithm to find

node disjoint path sets, while retaining optimality in the number of configurations. These objectives are accomplished by finding a

feasible flow such that the maximal degree can be iteratively decreased, while guaranteeing the existence of an appropriate circulation.

Net adjacencies are also tested for possible bridge faults (shorts). To account for 100 percent fault coverage of bridge faults a

postprocessing algorithm may be required; bounds on its complexity are provided. The execution complexity of the proposed approach

(inclusive of test vector generation and post-processing) is OðN4WLÞ, where N is the total number of nets, W is the number of

switches per switching element, and L is the number of layers. Extensive simulation results are provided.

Index Terms—Fault detection, layered interconnection networks, switch, fault tolerance, network flow.

�

1 INTRODUCTION

THE efficient design and manufacturing of today’s digital
systems require programmability (accomplished

through devices such as FPGAs, field programmable gate
arrays) [16] and high connectivity (accomplished through
complex high-speed interconnection networks such as
crossbars and MINs, multistage interconnection networks)
[4], [6]. Implementation of different types of multistage
interconnection networks, together with their topological
equivalence, can be found in [19], [24]. For example, point-
to-point connections can be provided by using baseline
networks [20]. Sparse interconnection networks consisting
of cascading different networks have been proposed for
configurable computing systems [1], [2].

High-performance computing has undergone a substan-
tial change with the advent of configurable systems. These
systems rely on interconnection resources such as nets and
switches for programming flexibility, reduction in interchip
communication and efficient routing [2], [4], [15]. The
occurrence of faults in the nets and switches poses major
concerns for continued system operation. Previous works on
testing have dealt with different types of interconnection
networks such as passive PCB-like networks [9], [12] and

Multistage Interconnection Networks (MINs) [6], [7], [8].
Testing is usually accomplished by connecting the nets and
setting the switches; the responses received at the outputs are
then compared with the ones provided at the inputs.
However, the presence of switches in an interconnection
network substantially complicates the testing process [7]. The
most serious limitation of current testing methods is that a
homogeneous multistage structure is commonly assumed
once switching elements are considered [6], [22]. This is not
always applicable to practical systems as reconfiguration
usually requires an irregularpattern [1], [4], [15]. The inability
of current testing methods to deal with generic switching
interconnection networks is further aggravated by the lack of
a systematic testing algorithm [22].

A current trend in reconfigurable chip and system design
is to have complex switching resources in the interconnec-
tion network [4] such that point-to-point switching and
routing can also be accomplished between chips [15]. A
layered interconnection network (LIN) has been proposed
for reconfigurable systems [4] due to simplicity of im-
plementation and flexibility in routing [1]. A LIN can be
thought as an inhomogeneous MIN; the nets (links) are
arranged in layers of different cardinality to connect the
chips. The net layers are connected in cascade using
switching elements. Switching elements have the same
number of switches, but their pattern may not be uniform.

The objective of this paper is to propose a practical and
structured approach to test layered interconnection net-
works (LINs) at production time under multiple faults. A
divide-and-conquer approach is proposed under a compre-
hensive fault model. Given an LIN and the layout
information (represented by an adjacency graph) for the
nets, the proposed algorithm establishes the minimal
number of configurations for testing the LIN. This algo-
rithm is based on the iterative execution of the maximum
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flow algorithm. It is proven that, by constructing different
graphs, this process can be achieved optimally. A coloring
algorithm is used to generate the test vectors used in each
configuration. A postprocessing algorithm is used to deal
with any remaining net adjacencies for detecting bridge
faults. The novelty of this approach is that it has general
applicability at polynomial time complexity, while attaining
100 percent fault coverage.

2 PRELIMINARIES

An LIN consists of nets and switching elements. The nets
(links) are arranged inL layers; each layer canhaveadifferent
number of nets. Layers are connected in cascade using L� 1
switching elements; someof thenetsmaynotpropagate to the
next layer as they are used as local outputs. Similarly, local
inputs can be provided to the internal switching elements.
Each switching element consists of a fixed number of simple
switches. Each switch connects a pair of nets in two adjacent
and consecutive layers (note that the switches are unidirec-
tional, i.e., not bidirectional); if a switch is ON (OFF), then the
two nets are logically connected (disconnected). The switch-
ing patterns of the switching elements can be nonuniform.
Without loss of generality and correctness, it is assumed that
the primary (nonlocal) input and the output pins of the LIN
are located on opposite sides. Fig. 1 shows an LINwithL ¼ 3;
each switching element consists of six switches.Nets 0, 1, and
2 (7, 8, 9) are connected to the input (output) pins. All internal
nets propagate through the layers (i.e., no internal net is a
local output or input). This corresponds to the worst-case
scenario due to the limited controllability/observability of
the nets. The graph representation of an LIN is given by
the directed acyclic graph G ¼ ðV ;EÞ (Fig. 2): In G, each
node vi 2 V represents a net; each edge eðvi; vjÞ 2 E
represents the switch between the nets vi and vj 2 V .
Note that an edge is directed from Li to Liþ1 to represent
a switch with a unidirectional and forward interconnec-
tion, where Li represents the ith layer and is not the
terminal layer. Also, it is assumed that each switch (i.e.,
edge) connects two adjacent and consecutive layers. To
represent the connectivity of each node, the degree of a
node is defined as equal to the outdegree of a node if it is
not zero; or indegree, otherwise. Also, note that the
definition of the degree is only valid for this particular
type of networks, i.e., the indegree and outdegree of a
node are equal when none of them is zero. If, in G, the
jV j ¼ N nodes are arranged over L (L � 2) layers, then V

can be expressed as a function of the layers as
V ¼ VIN [ VOUT [ V1 [ V2 [ . . . [ VL�2, where, in the input
(terminal) layer VIN ¼ fvINi g, all nodes have an indegree
(the number of input edges) equal to zero (a node vINi in
VIN is called an input node); in the output (terminal)
layer VOUT ¼ fvOUT

i g, all nodes have an outdegree (the
number of output edges) equal to zero (equivalently, a
node vOUT

i in VOUT is called an output node); for all other
internal layers Vj ¼ fvjig (1 � j � L� 2), the indegree of
each node is equal to its outdegree (and a node vji in the
internal layer Vj is called an internal node). The maximal
degree Dp of G is the maximal degree of all nodes, i.e.,
Dp ¼ MAXðdp1; d

p
2; . . . ; d

p
NÞ, where dpi (1 � i � N) is the

degree of node vi. The first layer is VIN and the last layer
is VOUT .

Note that an LIN is a generalization of an MIN; for
example, a K-stage MIN [24] (such as a delta network) with
switches with two inputs and two outputs is topologically
equivalent to an LIN with N ¼ LK, L� 1 ¼ log2K and
2K ¼ W (the switching patterns of the elements are ar-
ranged accordingly, such as the perfect shuffle [23], [24]).

The above graph model can be extended with no loss of
correctness to the case of internal or local input/output
nets. The following features are assumed with respect to the
operation and structure of the LIN:

1. One-to-one switching and routing are assumed.
2. The layout of the nets of the LIN is known.
3. The state of each switch can be individually set (either

ON or OFF) using an appropriate mechanism.
4. The logically disconnected output value of a switch

is assumed to be 0 (nonfloating state) [21].

The layout information is represented by an undirected
graph Gad ¼ ðVad; EadÞ referred to as the adjacency graph.
Every node in V is also a node in Vad, i.e., V ¼ Vad. If two
nodes vi and vj are adjacent in the physical layout and a
bridge fault can exist [5], then there is an edge
eadðvi; vjÞ 2 Ead. It is assumed that, for a bridge to exist,
there is no constraint on the involved two nets to be in two
different disjoint paths and two adjacent nets to be in the
same layer. The degree Dad is the maximal degree of all
nodes in Vad of Gad, i.e., Dad ¼ MAXðdad1 ; dad2 ; . . . ; dadN Þ,
where dadi (1 � i � N) is the degree of node vadi . Fig. 3
shows a possible (randomly generated) Gad of G in Fig. 2.
No restriction is assumed on the adjacencies in Gad; for
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Fig. 1. An LIN with three layers.
Fig. 2. The LIN graph G.



example, v0 and v9 (v4 and v5) are connected in Fig. 3; they

are in the first and third (same) layers, respectively.
Two types of faults are considered: net faults and switch

faults. Net faults are defined as follows in the graph

representation:

1. For each vertex (net) vi in G: stuck-at-1, stuck-at-0.
2. For each pair of vertices (nets) vi and vj connected in

Gad by an edge: short (bridge).

For a switch fault, a behavioral model is assumed as in

previous papers [6], [7], [8], [22], i.e., testing a switch is

equivalent to testing its ON state to connect two nets in the

layers. No restriction is placed on the number of faults

existing in the LIN. Hereafter, the following additional

assumptions are valid in the analysis.

1. A structural bridge fault model based on Gad is
applicable to the shorts. The OR short is assumed for
simplicity. This is an assumption that affects only the
test vector generation process [5].

2. Probing is only allowed at the input and output pins
of the LIN.

3. Dad � N , i.e., Gad is relatively sparse (as commonly
found in practice).

For compatibility with existing literature, the following

terminology is used [5], [22] (included for completeness):

1. Node Disjoint Path (NDP): Two node sets, Sp and Sq

(consisting of nodes from the input layer to the
output layer), are said to be disjoint if they have no
node in common, i.e., Sp \ Sq ¼ ;. The paths which
cover the nodes in each set and the edges between
the nodes make up the node disjoint paths.

2. Configuration: This is a set of paths from the input to
the output pins by programming the switches.

3 REVIEW

This section presents a brief review of behavioral and

structural testing approaches for wiring interconnects as

well as interconnection networks.

No switch is present in a wiring interconnect. In
behavioral testing, it is commonly postulated that every
net can be shorted to any other net, so the Counting Sequence
Algorithm of [12] can be used to detect all bridge faults with
a test length of dlog2 Ne, where N is the number of nets. A
modified counting sequence of length dlog2ðN þ 2Þe can be
used to detect stuck-at faults too. The walking-1 test set
proposed by [18] can be used to diagnose all bridge faults.
The drawback to this method is that large test sets are
generated as a sequence of length N is required; however,
test generation is simple.

For structural testing, the wiring layout of the network
must be specified. Chen and Lombardi [5] have proposed a
new structural approach. This approach utilizes different
graph coloring techniques and appropriate codes to generate
a test set; [5] has shown that graph coloring is an efficient
technique for interconnect testing by utilizing a method
which relates the size of the shorts and the adjacency
information of the interconnect to the codes for the tests.
First, a simple graph technique is utilized for color generation
and fault detection. By simulation, [5] has also shown that, for
benchmarks and random interconnects, this approach re-
quires a smaller number of tests than previous approaches; it
has also been proven that its time complexity is
OðmaxfN2; N �D3

adgÞ. This structural approach generates a
test set whose cardinality is upper bounded by 2Dad þ 2.

Testing of interconnection networks such as MINs has
been extensively analyzed [6], [7], [8], [22] either for online
and/ormanufacturing testing [7], [21]. It has been proven [6]
that, under a single fault assumption in a behavioral model
(based on the combinatorial analysis of the switching states),
a baseline interconnection network with log2K stages (each
stage consists of K=2 switching elements, each switching
element consists of two input and two output nets) can be
diagnosed usingmaxf12; 6þ 2dlog2ðlog2KÞeg vectors, where
K is the number of input (output) pins of the MIN.

Also, it has been proven [8] that a baseline interconnec-
tion network made of switching elements with two input
and two output nets can be diagnosed under a single fault
assumption and the behavioral model of [6] using only 12
tests, i.e., in a testing complexity independent of network
size [7]. A similar result has been also obtained in [22]:
Under a functional fault model (consisting of conflict
resolution and data multiplexing faults) for the operation
of the MIN and a stuck-at and bridge fault model for the
control lines and nets, [22] has proven that f � f switches in
a homogeneous MIN can be tested using a number of test
vectors independent of size (the complexity for diagnosing
the MIN is still Oðlog2KÞ).

Few papers have addressed multiple fault diagnosis of
MINs [6], [8]. Multiple fault diagnosis is needed for
manufacturing. In [6], it has been proven that 2ð1þ log2K)
tests may detect, in most cases, multiple faults under a full
combinatorial fault model for the switching elements and a
stuck-at model for the nets. The MIN must be configured
1þ log2K times. Feng et al. [8] have presented an algorithm
for multiple fault diagnosis in interconnection networks
made of baseline switching elements. This approach
requires the execution of ð1þ log2KÞ phases, each made of
two tests. It is applicable provided that there exist no
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logically erroneous outputs or no logically unidentified
outputs in the faulty switching elements; also, multiple link
faults (of the stuck-at-0 or stuck-at-1 type) are assumed not
to exist in the network.

4 MAXIMUM FLOW

In this section, two novel fundamental results as applicable
to the maximum flow [10] will be presented. The maximum
flow algorithm is based on the following theorem, generally
known as Hoffman’s Theorem [11], [13].

Theorem 1 (The Circulation or Hoffman’s Theorem). In a
network G ¼ ðV ;EÞ with lower edge capacity bounds Bl ¼
flðvi; vjÞg and upper edge capacity bounds Bc ¼ fcðvi; vjÞg,
a feasible integer circulation exists if and only ifP

i2S;j2T lðvi; vjÞ �
P

i2S;j2T cðvj; viÞ for every cutset S : T ,
where T ¼ V � S.

The following new theorem proves a fundamental
property of an LIN.

Theorem 2 (Node disjoint Paths Theorem). For an LIN
graph G ¼ ðV ;EÞ with maximal degree Dp, it is possible to
find a set of node-disjoint paths (from the input layer to the
output layer) which cover all nodes of degree Dp. Or,
alternatively, for an LIN graph G with maximal degree Dp,
it is possible to find a flow to cover all nodes with degree Dp.

Proof. This theorem will be proven by construction of
different graphs. First, add edges feðvOUT

i ; vINj Þg from
VOUT to VIN such that, for every node, the indegree is
equal to the outdegree. Then, split each original node vi
into two nodes (denoted as v0i1 and v0i2) and place an edge
between v0i1 and v0i2. Each original edge eðvi; vjÞ is
replaced by a new edge eðv0i2; v0j1Þ in G0 ¼ ðV 0; E0Þ. So,
for example, the graph G in Fig. 4 is transformed into G0

of Fig. 5. An edge in G0 is given as follows:

1. A return edge e0rðv0OUT
i2 ; v0INj1 Þ, if it connects an

output node V 0OUT
i2 to an input node V 0IN

j1 ; its

lower capacity is lðv0OUT
i2 ; v0INj1 Þ ¼ 0, while the

upper capacity is cðv0OUT
i2 ; v0INj1 Þ ¼ 1.

2. A path edge e0pðv0i2; v0j1Þ, if this edge exists in the
original network G as eðvi; vjÞ; its lower capacity
is lðv0i2; v0j1Þ ¼ 0, while its upper capacity is
cðv0i2; v0j1Þ ¼ 1.

3. A pseudoedge e0sðv0i1; v0i2Þ, if this is the edge between
the two split nodes v0i1 and v0i2 of the original node
vi; its upper capacity is cðv0i1; v0i2Þ ¼ 1, while its
lower capacity is lðv0i1; v0i2Þ ¼ 1 (provided the node
has maximal degree), otherwise lðv0i1; v0i2Þ ¼ 0.

As V 0 ¼ fv0i1; v0i2g;

E0 ¼ fe0sðv0i1; v0i2Þg [ fe0pðv0i2; v0j1Þg [ fe0rðv0OUT
i2 ; v0INj1 Þg;

and fe0rðv0OUT
i2 ; v0INj1 Þg satisfies the definition of LIN as

given previously.
We are interested in proving that a circulation exists

in G0. Based on Hoffman’s Theorem, such a circulation
exists if and only if, for any cutset, the sum of the lower
capacities of the forward edges across each cut does not
exceed the sum of the upper capacities of the backward
edges across the cut (in this case, a cut is a partition of the
nodes into two sets, given by S and T ¼ V � S). The
forward edges are the edges from S to T , while the
backward edges are the edges from T to S. Also, note
that, in Fig. 5, the indegree of each node in the first layer
as circulations back from the last layer is arbitrary and
independent of the outdegree of each node in the first
layer.

In Fig. 6, a node vi of the original network G can be
denoted as follows:

1. An entry node, if v0i1 is in S, v0i2 is in T (for example,
node v).

2. An exit node, if v0i1 is in T , v0i2 is in S (for example,
node u).

3. An inner node, if v0i1 is in T , v0i2 is in T (for example,
node p).

4. An outer node, if v0i1 is in S, v0i2 is in S (for example,
node q).

So, it is also possible to designate all edges of G0 as
return, path, and pseudoedges and all nodes of the
original network G as entry, exit, inner, or outer nodes.
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Fig. 4. Example of LIN graph G with four layers.

Fig. 5. G0 constructed from G.



The following statements are valid: 1) The sum of the
lower capacities of the forward edges is given by A,
where A is the number of entry nodes with maximal
degree. 2) The sum of the upper capacities of the
backward edges across the cut is given by B, where B
is the number of exit nodes provided the original
network G contains no edge from an entry (or inner
node) to an entry (or outer node); otherwise, B is given
by infinity (i.e., if the cut makes at least a return or path
edge as the backward edge, then the sum of the upper
capacities of the backward edges is equal to infinity).

One of the following three scenarios must occur for
any cutset S : T : 1) No entry node has maximal degree.
In this case, the sum of the lower capacities of the
forward edges is zero. So, Hoffman’s Theorem is
satisfied. 2) The set of backward edges includes at least
one return edge or path edge. In this case, the sum of the
upper capacities of the backward edges is infinity. So,
Hoffman’s Theorem is satisfied. 3) The cut only crosses
the pseudoedges of the entry and exit nodes. Let O
denote the sum of the outdegrees of the entry nodes and
I denote the sum of the indegrees of the exit nodes. Then,
O ¼ I (based on the features of the graph). If the
maximal degree of the network is Dp, then DpA � O
and I � DpB, or DpA � DpB, i.e., A � B. Hoffman’s
Theorem is also satisfied.

From the above results, for any cutset S : T , Hoff-
man’s Theorem is always satisfied. Therefore, it is
possible to always find a feasible flow to cover all nodes
with maximal degree. tu

As per the above theorem, the next theorem is applicable

for testing an LIN.

Theorem 3 (Network Decomposition Theorem). For an LIN

graph G ¼ ðV ;EÞ with maximal degree Dp, it is always

possible to decompose G into Dp configurations (or NDP sets);

these sets cover all nodes and edges of the graph.

Proof. Based on Theorem 2, in a graph with maximal

degree Dp, we can find the NDP set (from the input layer

to theoutput layer) to cover all nodeswithdegreeDp.After

finding this set, all edges on these paths are removed and

then a new graph of maximal degree Dp � 1 is obtained.

This graph still satisfies the network definition. By

repeating this procedure, Dp NDP sets (from the input

layer to the output layer) are obtained to cover all nodes

(with reuse) and edges (without reuse) in G. tu

5 TEST GENERATION PROCEDURE

A divide-and-conquer procedure is employed. Given the
graph G of the LIN and an adjacency graph Gad, the
proposed approach consists of two parts.

1. Generation of LIN configurations by finding the
NDP sets.

2. Test vector generation.

The proposed approach is based on the equivalence
between LIN testing and the node-disjoint path (NDP) sets
problem. The NDP sets problem can be stated as follows:
Given an acyclic directed graph G, find the minimal
number of sets (each set made of disjoint paths from the
input to the output vertices) such that an edge in G is in at
least a node disjoint path set and no node is shared between
paths in each set. This is the simplest instance of
equivalence between these two problems because LIN
testing is also constrained by covering all edges in Gad (if
bridge detection is required). The minimal number of NDP
sets corresponds to the minimal number of configurations
of the LIN; in each phase, the LIN is configured by turning
ON the appropriate switches and establishing the desired
connections for the node disjoint paths.

5.1 Part 1: Generation of LIN Configurations

In the first part, the graph G is decomposed into a minimal
number of subgraphs (fGig denotes the set of the
subgraphs) by setting the switches (given by the edges in
E) as either open (OFF) or closed (ON). Each subgraph
corresponds to an NDP set (and an LIN configuration). By
considering all Gi, the corresponding subgraphs fGad

i g are
generated from the original Gad. fGad

i g is generated from
Gad to satisfy the new interconnection structure of each
fGig. If some net adjacencies are not covered by fGad

i g, a
residual adjacency graph Gad

R (consisting of all remaining
adjacencies) is used for postprocessing (note that the details
about postprocessing residual adjacency graph are ex-
plained at the end of this section, and a pseudocode can
be found in Appendix B). The number of subgraphs (Z)
must be as small as possible because this determines the
minimal number of configurations.

This process can be expressed as

GðV ;EÞ ¼
[Z
i¼1

GiðVi; EiÞ; E ¼
[Z
i¼1

Ei;

where Ei \ Ej ¼ ; for i; j ¼ 1; . . . ; Z;

GadðVad; EadÞ ¼
[Z
i¼1

Gad
i þGad

R ; Ead ¼
[Z
i¼1

Ead
i [Ead

R ;

where Ead
i \ Ead

j ¼ ; for i; j ¼ 1; . . . ; Z; or R.
The proposed algorithm tests a configuration in each

phase. As one-to-one switching and routing are assumed and
using theNetworkDecompositionTheorem(Theorem3), the
lower bound in the number of configurations (and,
equivalently, phases) is given by the maximal degree of
G (Dp). The proposed algorithm decomposes G into Z ¼ Dp

subgraphs by using the maximum flow algorithm with
upper and lower capacity bounds. Once the configurations
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are found, then a test vector generator is used, i.e., testing of
the LIN consists of testing each configuration at a time.

It is not possible to immediately use the maximum
flow algorithm on G (as in Fig. 2) because this graph may
have multiple sources (inputs) and sinks (outputs). Two
vertices are therefore added: a supersource (denoted by s)
and a supersink (denoted by t). Also, directed edges from
s to each original source node and from each original sink
node to t are added. This new graph converts a multiple
sources (sinks) network G into a single source (sink) flow
network G0

1 ¼ ðV 0
1 ; E

0
1Þ (G ! G0

1), where V 0
1 ¼ V [ fs; tg;

E0
1 ¼ E [ fe01ðs; vÞjv 2 VINg [ fe01ðv; tÞjv 2 VOUTg. The maxi-

mal degree of a graph in each phase must also be
considered. The flow must be directed to pass through all
the nodes with maximal degree so that the already
traversed paths are not considered in the next phases, i.e.,
to decrease the maximal degree of the graph in each phase.
Therefore, the maximum flow approach with upper and
lower capacity bounds [10] is employed. To calculate the
bounded maximum flow, a new graph must be constructed
from G0

1. Assume that each edge eðu; vÞ in G ¼ ðV ;EÞ has an
upper capacity bound cðu; vÞ on the net flow from u to v,
and a lower capacity bound lðu; vÞ, i.e., any flow f on the
network must satisfy lðu; vÞ � fðu; vÞ � cðu; vÞ. Let s and t

be the source and sink of G0
1. Construct from G0

1 the flow
network G0

2 ¼ ðV 0
2 ; E

0
2Þ with upper capacity bound c0, source

s0, and sink t0 as follows (G0
1 ! G0

2): V
0
2 ¼ V 0

1 [ fs0; t0g;

E0
2 ¼ E0

1 [ fe02ðs0; vÞ : v 2 V 0
1g [ fe02ðu; t0Þ : u 2 V 0

1g
[ fe02ðs; tÞ; e02ðt; sÞg:

For example, the flow graph shown in Fig. 8 is obtained
from the graph in Fig. 7.

To guarantee that a feasible flow will traverse all nodes
with maximal degree, each node vi (except s, t, s

0, and t0) is
split into two pseudonodes (v0i1 and v0i2). A feasible flow
may not traverse all nodes with maximal degree with no
pseudonodes; pseudonodes guarantee disjoint paths to
traverse adjacent layers using the max flow algorithm.
intact. A pseudoedge e0ðv0i1; v0i2Þ is added between them

(Fig. 9). After considering the capacity bounds, the final

auxiliary graph G0 ¼ ðV 0; E0Þ (Fig. 10) is constructed

(G0
2 ! G0) such that V 0 ¼ fv0i1; v0i2g [ fs; tg [ fs0; t0g;

E0 ¼ fe0ðv0i1; v0i2Þg [ fe0ðs0; v0i2Þg [ fe0ðv0i1; t0Þg
[ fe0ðs; tÞ; e0ðt; sÞg:

For the flow to move along the expected paths, the upper

capacities (denoted as c for G or c0 for G0) and lower

capacity (denoted as l for G) of the edges are given as

follows:

1. For each edge e0ðu; vÞ 2 E0,

cðu; vÞ ¼ 1;

lðu; vÞ ¼
1 if e0ðu; vÞ is a pseudoedge with maximal degree;

0 otherwise;

�

c0ðu; vÞ ¼ cðu; vÞ � lðu; vÞ:
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Fig. 7. Construction of G0
1.

Fig. 8. Construction of G0
2.

Fig. 9. Node splitting to set the flow path.



2. For each node u 2 V 0,

c0ðs0; uÞ ¼
Xall
v02V 0

lðv0; uÞ;

c0ðu; t0Þ ¼
Xall
v02V 0

lðu; v0Þ:

3. c0ðs; tÞ ¼ c0ðt; sÞ ¼ 1.

The next step consists of finding the feasible flow on the
final auxiliary graph G0 using the Preflow-Push algorithm
[10]. The pseudocode of this step is given in Appendix A.
Based on the network decomposition theorem (Theorem 3),
it is possible to always find a feasible flow in the LIN.

The Preflow-Push algorithm [10] has a complexity of
OðjV 0j2jE0jÞ for a G0 with jV 0j nodes and jE0j edges. The LIN
graph G has L layers and W switches per switching
element, so there are a total of W ðL� 1Þ switches (i.e.,
W ðL� 1Þ edges in G). Assume that the LIN has N nets (i.e.,
N nodes in G), then each node is split into two nodes and
three more edges are added to the graph. So, the total
number of edges in G0 for processing by the Preflow-Push
algorithm is WðL� 1Þ þ 3N þ 6 and the total number of
nodes is 2N þ 4. Therefore, the computational complexity
for each feasible flow search is OðN2WLÞ for WL � N . For
decomposing the LIN graph into subgraphs, the maximum
flow algorithm must be executed Dp times, then its
computational complexity is OðDpN

2WLÞ.
After decomposing the LIN graph into subgraphs and

finding the configurations, the maximum flow algorithm is
used for processing the residual adjacency graph (if
detection of bridge faults is required). By setting to 1 the
lower capacity of each net with a residual adjacency, it is
then possible to find a feasible flow to cover as many nets
with remaining adjacencies as possible. The pseudocode of
the residual adjacency graph processing algorithm can be

found in Appendix B. The residual adjacency graph must be
considered M times (i.e., M phases to cover all residual
adjacencies, bounds on M are given in a later section), then
the computational complexity for residual graph processing
is OðMN2WLÞ. So, the overall complexity for Part 1 is
OðmaxðM;DpÞN2WLÞ. Note that if G has disjoint compo-
nents, then the proposed approach must be applied to all
components and they can be tested in parallel.

5.2 Part 2: Test Vector Generation

In the second part, a test generator is used to obtain the
vectors for testing a LIN configuration in a phase. Many
structural algorithms have been proposed in the literature
[5]. For simplicity, the algorithm of [5], referred to as simple
coloring, is used for test vector generation and fault
detection. Fault detection using simple coloring is based
on a greedy condition in the adjacency graph: The node
with the highest degree is selected first using the lowest
number of possible colors. This coloring technique [5]
achieves a considerable reduction in the number of test
vectors compared with previous approaches based on
structural information; the reduction is more pronounced
when Dad is much smaller than N . However, simple
coloring does not guarantee full diagnosis (diagnosis
requires a more complex coloring of the graph with a
corresponding increase in phases and tests). The computa-
tional complexity of the simple coloring algorithm is
OðN2 þDad �N þDad �NÞ ¼ OðN2Þ (for N � Dad), which
implies that the simple coloring algorithm adds no further
complexity to the process of generating the adjacency
graph. Note that if diagnosis is the desired objective, more
sophisticated algorithms must be employed for test gen-
eration based on coloring [5].

The fault coverage of the proposed testing process is
given as follows:

1. At completion of all configurations, every switch in
the LIN is part of at least a path (i.e., it should be ON
at least once); under the behavioral model [6], [7], if a
switch is incorrectly OFF, then the selected path is
disconnected. These faults are detected.

2. All adjacencies in Gad are dealt using either the
Network Decomposition Algorithm (Appendix A) or
the Residual Graph Processing Algorithm (Appen-
dix B). Vectors are generated using graph coloring
[5]; hence, 100 percent coverage of all bridge faults is
achieved.

3. Every net is provided with a 0 and a 1 as inputs;
hence, all stuck-at faults are also detected.

Hence, 100 percent coverage of multiple faults in the
switches and nets is accomplished using the proposed
divide-and-conquer approach.

6 COMPLEXITY ANALYSIS

Consider test generation. There are at most Nc paths in a
configuration or NDP set (where Nc is the minimal number
of nets in a layer), so there are at most Nc nodes in the
adjacency graph. The complexity of fault detection by
coloring each configuration is OðN2

c Þ. For fault detection, it
has been shown [5] that the cardinality of the test set
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generated using simple coloring [5] is no more than the

modified counting sequence as the worst case for coding

the colors. Dp configurations are needed to test the LIN

and M configurations are needed for the residual

adjacency graph (if required); so, a total of (Dp þM)

configurations must be tested. The overall time complex-

ity is therefore OððDp þMÞN2
c Þ.

Consider next the test complexity of the proposed

approach. The total number of phases is the same as the

number of configurations, i.e., Dp þM. Assuming a com-

plete adjacency graph for a configuration (the same as in a

behavioral case), the number of colors needed is at most Nc.

This means that at most dlog2ðNc þ 2Þe tests will be used for

a configuration. Therefore, the total number of tests is

ðDp þMÞdlog2ðNc þ 2Þe. Note that Dp is determined by the

structure of the LIN, while M is determined by both the

structure of the LIN and the adjacency graph. Different

adjacency graphs will result in different values of M.
A more comprehensive analysis must be pursued with

respect to M. Consider the lower bound. As mentioned

previously, the LIN graph G ¼ ðV ;EÞ is guaranteed to be

decomposed into Dp NDP sets where Dp is the maximal

degree ofG, i.e.,GðV ;EÞ ¼ fNDPi ¼ GiðVi; EiÞj1 � i � Dpg;
E ¼ E1 [ E2 [ . . . [ EDp

, where Ei \Ej ¼ ;. As each NDP

set corresponds to a configuration and each configuration is

tested in a phase, then all switches are tested in Dp phases;

however, not necessarily all adjacencies are tested in Dp

phases as additional phases (whose number is given by M)

may be needed to cover the remaining adjacencies. There-

fore, the total number of phases (denoted by Np) for the

proposed approach to LIN testing is (Dp þM). When

M ¼ 0, then the lower bound for the number of phases is

Np ¼ Dp.
As for the upper bound, two cases must be distin-

guished, i.e., the worst and best cases. First, the definitions

of the maximal size of a layer Nx and the minimal size of a

layer Nc are introduced. For an LIN with L layers

G ¼ ðV ;EÞ, V ¼ VIN [ VOUT [ V1 [ V2 [ . . . [ VL�2. As jVij
represents the number of nodes in the ith layer, then

Nx ¼ MAXðjVIN j; jVOUT j; jV1j; . . . ; jVL�2jÞ;
Nc ¼ MINðjVIN j; jVOUT j; jV1j; . . . ; jVL�2jÞ:

The layer with Nx nodes is referred to as layer Vx. The layer

with Nc nodes is referred to as layer Vc.
The worst case occurs when the adjacency graph is a

complete graph and the adjacencies are tested one by one.

Therefore, the upper bound is given as

Np ¼
N

2

� �
¼ NðN � 1Þ

2
¼ OðN2Þ:

For an LIN with fully connected switching elements, a

different upper bound can be established as follows: Divide

the total adjacencies into two groups: fAig, the adjacencies

of nets within the ith layer, and fAijg, the adjacencies

between two different adjacent layers (i and j ¼ iþ 1). As

fAig of different layers can be tested in parallel, then fAijg
can be covered when fAig are tested. Therefore, the

maximal number of phases to test the adjacencies is

M ¼ NxðNx � 1Þ=2, i.e., the maximal number of adjacencies

in the layer Vx. In this case, the upper bound is

Np ¼ Dp þNxðNx � 1Þ=2 ¼ OðN2
xÞ.

The best case occurs when every layer has the same

cardinality, i.e., jVIN j ¼ jVOUT j ¼ jV1j ¼ . . . ¼ jVL�2j. In this

case, it is possible to find at least one NDP set to cover all

nodes in G (as there should be at least one NDP set from the

inputs to the outputs). This corresponds to a partially

homogeneous configuration for an LIN. Then, only one

phase is required for testing all adjacencies. Thus, the upper

bound is Np ¼ Dp þ 1. As M ¼ OðN2Þ and using [5], The

residual adjacency graph processing part is OðN2Þ, then the

overall complexity of the proposed approach is OðN4WLÞ.
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7 AN EXAMPLE

Consider the LIN graph G shown in Fig. 11. This is an
example of an LIN with 6 layers, 31 nets, and 75 switches
(15 switches per switching element). The maximal degree is
Dp ¼ 5. In this LIN, the number of input pins is not equal to
the number of output pins. The number of nets per layer is
also variable.

The adjacencies (and, therefore, Gad) are generated
randomly and are given in Table 1. In Part 1, the LIN is
initially decomposed into five NDP sets (Set 1-5) using the
algorithm in Appendix A. For example, the dark edges in
Fig. 11 show the first NDP set. Two additional NDP sets
(sets 6 and 7) are generated to cover the residual adjacencies
using the algorithm in Appendix B. The NDP sets are given
as follows (each path is identified by the nodes it traverses):

Set (Configuration) 1: 4 - 11 - 14 - 19 - 26 - 29

3 - 10 - 13 - 18 - 25 - 30

2 - 7 - 12 - 17 - 24 - 28

Set (Configuration) 2: 4 - 10 - 14 - 16 - 23 - 27

3 - 11 - 13 - 17 - 26 - 30

2 - 6 - 12 - 19 - 25 - 29

Set (Configuration) 3: 3 - 8 - 14 - 17 - 22 - 30

2 - 11 - 12 - 18 - 23 - 29

1 - 9 - 13 - 15 - 21 - 28

Set (Configuration) 4: 3 - 9 - 14 - 18 - 21 - 27

1 - 7 - 13 - 16 - 20 - 28

0 - 10 - 12 - 15 - 22 - 29

Set (Configuration) 5: 4 - 5 - 13 - 19 - 24 - 30

1 - 6 - 14 - 15 - 20 - 27

0 - 8 - 12 - 16 - 21 - 29

Set (Configuration) 6: 4 - 5 - 13 - 19 - 24 - 28

3 - 9 - 14 - 18 - 25 - 30

2 - 11 - 12 - 15 - 22 - 29

Set (Configuration) 7: 4 - 10 - 13 - 18 - 25 - 29

3 - 8 - 14 - 19 - 26 - 30

Using the simple coloring algorithm, in Part 2 we can

find that Sets 2, 5, and 7 need only teo colors; all other sets

need three colors. Then, using the modified counting

sequence, we need two tests for Sets 2, 5, and 7 each and

three tests for each of the other sets. Table 2 shows the tests

applied sequentially to each primary input pin (the STVs for

Nodes 0, 1, 2, 3, and 4) for all configurations (note that, in

this table, “X” means “don’t care,” i.e., 0 for OR type bridge

and 1 for AND type bridge).
Testing of this LIN requires seven configurations (or

phases) and a total of 18 tests. Note that none of the

previous approaches found in the literature [6], [7], [8], [22]

can be used to test this interconnection network.
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8 SIMULATION RESULTS

Several experiments have been performed to evaluate the

proposed approach. All LINs used in these experiments

have input and output layers with three nets each and some

random characteristics. All adjacency graphs are fully

connected (the worst case scenario). Different experiments

were conducted. Note that the number of adjacencies and

phases were used as the primary figure of merits as they are

the primary factors to determine the complexity of runtime

of each algorithm.

1. The variable is the number of internal layers (i.e.,
L� 2). The simulated LINs have seven nets per
internal layer, and 15 switches per switching
element. Fig. 12 shows the results. (Note that, in
Figs. 12, 13, and 14, the numbers of total and
remaining adjacencies for postprocessing are repre-
sented by solid and dotted lines, respectively.)

2. In this experiment, the variable is the numbers of
nets in the internal layers. The simulated LINs have
two internal layers and a 70 percent connectivity
(i.e., 70 percent of the switches of a fully connected
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switching element are present). Fig. 13 shows the
results. This experiment also corresponds to the case
of the largest algorithmic execution complexity as
the variable N is increased (the proposed algorithm
is OðN4WLÞ. Table 3 shows the average execution
time of the proposed algorithm for increasing values
of N for the LINS evaluated in Fig. 13.

3. In this experiment, the variable is the number of
switches in each switching element, i.e., W . The
simulated LINs have two internal layers of 10 nets
each, i.e., L ¼ 4 and N ¼ 26. Fig. 14 shows the
simulation results.

The following conclusions can be drawn:

1. For the first experiment, although most of the
adjacencies (over 75 percent of them) are covered
by the LIN decomposition process, the number of
residual adjacencies for postprocessing also in-
creases very rapidly. The number of phases in-
creases at a much lower rate than the number of
adjacencies, thus the required number of phases is
much less than the upper bound.

2. For the second experiment, the number of residual
adjacencies and the number of phases increase
considerably. This occurs because the maximal
number of paths per NDP set is fixed and more
path sets are needed to cover the adjacencies.

3. In the third experiment, the total number of
adjacencies is the same for every LIN, so there is
little variation for postprocessing.

4. The results for the number of phases are not
monotonic. This occurs because each NDP set may
cover a number of additional adjacencies. This
process cannot be fully controlled in the execution
of the algorithm. Therefore, a nonmonotonic situa-
tion is indeed possible.

9 CONCLUSION

This paper has presented an algorithmic approach for

testing layered interconnection networks (LINs). An LIN is

a nonhomogeneous multistage interconnection network; it

consists of nets and switching elements. Nets are arranged

in layers (of different cardinality); each switching element

has the same number of switches, but it may have different

patterns.
A divide-and-conquer approach is proposed under a

comprehensive fault model for both nets and switches (for

example, bridge faults are defined at a structural level using

an adjacency graph). This approach is based on the multiple

execution of the maximum flow algorithm; in particular, it

has been proven that, for an LIN graph G with maximal

degree Dp, it is possible to find a flow to cover all nodes

with degree Dp such that it is always possible to decompose

G into Dp node-disjoint path (NDP) sets to cover all nodes

(with reuse) and edges (without reuse) of the graph. By
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TABLE 3
Algorithm’s Execution Time



construction of various graphs, it is proven that this
decomposition can be achieved optimally.

The proposed approach employs a divide-and-conquer
procedure made of two parts (generation of LIN configura-
tions by graph decomposition and test vector generation)
and is based on the equivalence between the LIN testing
problem and the node-disjoint path (NDP) sets problem.
The minimal number of NDP sets corresponds to the
minimal number of configurations of the LIN; in each
phase, an LIN configuration is generated by turning ON
and OFF the switches and establishing the desired connec-
tions. Minimality is related to the successive decrease of the
maximal degree of the graph by establishing a feasible flow
and the appropriate circulation. This is achieved by
constructing an appropriate graph from G and using the
maximum flow algorithm with upper and lower capacity
bounds. Once the configurations of G are found, then a test
vector generator is used for the LIN, i.e., testing of the LIN
consists of testing each configuration at a time. In each
phase, the LIN is configured using an NDP set. Faults in the
switches and nets are detected. To guarantee 100 percent
coverage of the shorts, the maximum flow algorithm is used
for processing the residual adjacency graph. By setting the
lower capacity of the net with a remaining adjacency to 1, it
is then possible to find a feasible flow to cover as many nets
with remaining adjacencies. The complexity for decompos-
ing the LIN is OðmaxðM;DpÞN2WLÞ, where N is the total
number of nets, W is the number of switches per switching
element, M is the number of executions of the postproces-
sing algorithm, and L is the number of layers. As test vector
generation is OðN2Þ using [5], then the complexity of the
proposed approach is OðN4WLÞ.

Several experiments have been performed to evaluate
this algorithm by simulation; in general, although most of
the adjacencies (over 75 percent of them) are covered by the
LIN decomposition process, the number of adjacencies for
postprocessing can increase rapidly and it has been shown
that the required number of phases is much less than the
upper bound (as proven in this paper).

APPENDIX A

Network Decomposition Algorithm:

Decompose(G)

{

Construct the graph G’ from G

Using the original adjacency graph as the

initial residual adjacency graph

Initialize G’

Check current_maximal_degree

while (current_maximal_degree != 0)

{

Set the lower capacity bound l for

pseudoedges with maximal degree to 1

Set all c’ = c - l

Calculate the feasible flow using the

Preflow-Push algorithm

Record edges on the path of the feasible

flow

Update G’ by removing all edges traversed by

the feasible flow

Update residual adjacency graph

Generate the adjacency graph for the

current configuration.

Decrease current_maximal_degree by 1

Initialize the updated G’ for next

iteration use

}

}

APPENDIX B

Residual Adjacency Graph Processing Algorithm:

ResiGadProc(G)

{

Construct G’ from G

Initialize G’

Check the residual adjacency graph traversed

by the decomposition process

while (an adjacency exists in the residual

adjacency graph)

{

Set the lower capacity bound l for the

pseudoedges with untested

adjacencies to 1

Set all c’ = c - l

Calculate the feasible flow using the

Preflow-Push algorithm

Record the edges on the path of the feasible

flow

Update the residual adjacency graph

Initialize updated G’ for next iteration

use

}

}
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