134 research outputs found

    Blind Multilinear Identification

    Full text link
    We discuss a technique that allows blind recovery of signals or blind identification of mixtures in instances where such recovery or identification were previously thought to be impossible: (i) closely located or highly correlated sources in antenna array processing, (ii) highly correlated spreading codes in CDMA radio communication, (iii) nearly dependent spectra in fluorescent spectroscopy. This has important implications --- in the case of antenna array processing, it allows for joint localization and extraction of multiple sources from the measurement of a noisy mixture recorded on multiple sensors in an entirely deterministic manner. In the case of CDMA, it allows the possibility of having a number of users larger than the spreading gain. In the case of fluorescent spectroscopy, it allows for detection of nearly identical chemical constituents. The proposed technique involves the solution of a bounded coherence low-rank multilinear approximation problem. We show that bounded coherence allows us to establish existence and uniqueness of the recovered solution. We will provide some statistical motivation for the approximation problem and discuss greedy approximation bounds. To provide the theoretical underpinnings for this technique, we develop a corresponding theory of sparse separable decompositions of functions, including notions of rank and nuclear norm that specialize to the usual ones for matrices and operators but apply to also hypermatrices and tensors.Comment: 20 pages, to appear in IEEE Transactions on Information Theor

    Efficient text fingerprinting via Parikh mapping

    Get PDF
    AbstractWe consider the problem of fingerprinting text by sets of symbols. Specifically, if S is a string, of length n, over a finite, ordered alphabet Σ, and S′ is a substring of S, then the fingerprint of S′ is the subset φ of Σ of precisely the symbols appearing in S′. In this paper we show efficient methods of answering various queries on fingerprint statistics. Our preprocessing is done in time O(n|Σ|lognlog|Σ|) and enables answering the following queries: (1)Given an integer k, compute the number of distinct fingerprints of size k in time O(1).(2)Given a set φ⊆Σ, compute the total number of distinct occurrences in S of substrings with fingerprint φ in time O(|Σ|logn)

    Detecting One-variable Patterns

    Full text link
    Given a pattern p=s1x1s2x2sr1xr1srp = s_1x_1s_2x_2\cdots s_{r-1}x_{r-1}s_r such that x1,x2,,xr1{x,x}x_1,x_2,\ldots,x_{r-1}\in\{x,\overset{{}_{\leftarrow}}{x}\}, where xx is a variable and x\overset{{}_{\leftarrow}}{x} its reversal, and s1,s2,,srs_1,s_2,\ldots,s_r are strings that contain no variables, we describe an algorithm that constructs in O(rn)O(rn) time a compact representation of all PP instances of pp in an input string of length nn over a polynomially bounded integer alphabet, so that one can report those instances in O(P)O(P) time.Comment: 16 pages (+13 pages of Appendix), 4 figures, accepted to SPIRE 201

    Distributed Processing Methods for Extra Large Scale MIMO

    Get PDF

    Building Efficient and Compact Data Structures for Simplicial Complexes

    Get PDF
    The Simplex Tree (ST) is a recently introduced data structure that can represent abstract simplicial complexes of any dimension and allows efficient implementation of a large range of basic operations on simplicial complexes. In this paper, we show how to optimally compress the Simplex Tree while retaining its functionalities. In addition, we propose two new data structures called the Maximal Simplex Tree (MxST) and the Simplex Array List (SAL). We analyze the compressed Simplex Tree, the Maximal Simplex Tree, and the Simplex Array List under various settings.Comment: An extended abstract appeared in the proceedings of SoCG 201

    Deleting and Testing Forbidden Patterns in Multi-Dimensional Arrays

    Get PDF
    Understanding the local behaviour of structured multi-dimensional data is a fundamental problem in various areas of computer science. As the amount of data is often huge, it is desirable to obtain sublinear time algorithms, and specifically property testers, to understand local properties of the data. We focus on the natural local problem of testing pattern freeness: given a large dd-dimensional array AA and a fixed dd-dimensional pattern PP over a finite alphabet, we say that AA is PP-free if it does not contain a copy of the forbidden pattern PP as a consecutive subarray. The distance of AA to PP-freeness is the fraction of entries of AA that need to be modified to make it PP-free. For any ϵ[0,1]\epsilon \in [0,1] and any large enough pattern PP over any alphabet, other than a very small set of exceptional patterns, we design a tolerant tester that distinguishes between the case that the distance is at least ϵ\epsilon and the case that it is at most adϵa_d \epsilon, with query complexity and running time cdϵ1c_d \epsilon^{-1}, where ad<1a_d < 1 and cdc_d depend only on dd. To analyze the testers we establish several combinatorial results, including the following dd-dimensional modification lemma, which might be of independent interest: for any large enough pattern PP over any alphabet (excluding a small set of exceptional patterns for the binary case), and any array AA containing a copy of PP, one can delete this copy by modifying one of its locations without creating new PP-copies in AA. Our results address an open question of Fischer and Newman, who asked whether there exist efficient testers for properties related to tight substructures in multi-dimensional structured data. They serve as a first step towards a general understanding of local properties of multi-dimensional arrays, as any such property can be characterized by a fixed family of forbidden patterns

    Terahertz Communications and Sensing for 6G and Beyond: A Comprehensive View

    Full text link
    The next-generation wireless technologies, commonly referred to as the sixth generation (6G), are envisioned to support extreme communications capacity and in particular disruption in the network sensing capabilities. The terahertz (THz) band is one potential enabler for those due to the enormous unused frequency bands and the high spatial resolution enabled by both short wavelengths and bandwidths. Different from earlier surveys, this paper presents a comprehensive treatment and technology survey on THz communications and sensing in terms of the advantages, applications, propagation characterization, channel modeling, measurement campaigns, antennas, transceiver devices, beamforming, networking, the integration of communications and sensing, and experimental testbeds. Starting from the motivation and use cases, we survey the development and historical perspective of THz communications and sensing with the anticipated 6G requirements. We explore the radio propagation, channel modeling, and measurements for THz band. The transceiver requirements, architectures, technological challenges, and approaches together with means to compensate for the high propagation losses by appropriate antenna and beamforming solutions. We survey also several system technologies required by or beneficial for THz systems. The synergistic design of sensing and communications is explored with depth. Practical trials, demonstrations, and experiments are also summarized. The paper gives a holistic view of the current state of the art and highlights the issues and challenges that are open for further research towards 6G.Comment: 55 pages, 10 figures, 8 tables, submitted to IEEE Communications Surveys & Tutorial
    corecore