ORE

ided by Elsevier - Publisher Connector

Metadata, citation and similar papers at core.3

Available at OURNAL OF
www.ElsevierComputerScience.com JOU
POWERED BY SCIENCE @DIRECT° Dl&RETE
= ALGORITH
ELSEVIER Journal of Discrete Algorithms 1 (2003) 409421 Go Ms

www.elsevier.com/locate/jda

Efficient text fingerprinting via Parikh mapping

Amihood Amir?f, Alberto Apostolicd*¢, Gad M. Landad®*,
Giorgio Satt&

@ Department of Mathematics and Computer Science, Bar-llan University, 52900 Ramat-Gan, Israel
b Dipartimento di Elettronica e Informatica, Universita di Padova, Via Gradenigo 6/A, 35131 Padova, Italy
€ Department of Computer Sciences, Purdue University, Computer Sciences Building,
West Lafayette, IN 47907, USA
d Department of Computer Science, Haifa University, Haifa 31905, Israel
€ Department of Computer and Information Science, Polytechnic University, Six MetroTech Center,
Brooklyn, NY 11201-3840, USA
f College of Computing, Georgia Institute of Technology, Atlanta, GA 30332-0280, USA

Abstract

We consider the problem of fingerprinting text by sets of symbols. Specificalfyjsfa string,
of lengthn, over a finite, ordered alphabét, and S’ is a substring ofS, then thefingerprint of
S’ is the subset of X of precisely the symbols appearing $h. In this paper we show efficient
methods of answering various queries on fingerprint statistics. Our preprocessing is done in time
O |X|lognlog|X|) and enables answering the following queries:

(1) Given an integek, compute the number of distinct fingerprints of skzia time O(1).
(2) Given a setp C X, compute the total number of distinct occurrences iof substrings with
fingerprintg in time O(| X'|logn).

0 2003 Elsevier B.V. All rights reserved.

Keywords:Design and analysis of algorithms; Combinatorial algorithms on words

* Corresponding author.

E-mail addressesamir@cs.biu.ac.il (A. Amir), axa@cs.purdue.edu (A. Apostolico), landau@cs.haifa.ac.il
(G.M. Landau), satta@dei.unipd.it (G. Satta).

1570-8667/$ — see front mattét 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S1570-8667(03)00035-2

https://core.ac.uk/display/82185407?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jda

410 A. Amir et al. / Journal of Discrete Algorithms 1 (2003) 409-421
1. Introduction

Automatic rule induction and rule discovery techniques have been applied since the
early 50s in several fields where data from physical observations were available in elec-
tronic form [5,6]. Rule discovering is mainly concerned with the problem of inferring
generalizations of the input data, to be further exploited by automatic classification sys-
tems or by predictive models of the phenomena of interest. In this paper we investigate
a problem that arises in the context of the induction of rules for certain natural language
processing tools called part-of-speech taggers, as discussed below.

As is well known, natural languages have a high degree of lexical ambiguity, meaning
that most common words may belong to several lexical categories, as for instance Noun,
Verb, Adjective, etc. Despite this ambiguity, native language speakers can almost always
determine a uniquéntendedexical category for each word occurrence in natural language
texts. To give a simple example, the English word “rule” belongs to both lexical categories
Verb and Noun. But in the context of the sentence “This is a rule”, the correct classification
for the word “rule” is only one, namely Noun. In natural language processing applications,
this classification task can be automatically performed by tools that are called part-of-
speech taggers.

A common solution in the design of part-of-speech taggers is to exploit sets or cascades
of rules that are automatically induced from classification examples. Coming back to our
example sentence “This is a rule”, a nice rule that we could adopt is to choose the category
Noun whenever the preceding word has already been classified with the category Deter-
miner (this is the case for the word “a” in our sentence, when we process the input form
left to right). But how would we generalize the observed rule to work also for sentences
like “This is a good rule”, or “This is a slightly better rule™? In the general case, it turns
out that very high accuracy can be achieved by specifyiagtaf lexical categories that
are allowed to occur in between some left trigger word and the word under classification.
In our example, we could choose the category Noun (given the choice of Verb and Noun)
whenever a left triggering word has been classified as Determiner and is followed by words
classified by categories in the set {Adjective, Adverb}. The use of sets is particularly ef-
fective because very specific category distributions are found in the surrounding context of
several lexical categories to be discriminated, while the order of appearance of these sur-
rounding categories is often unpredictable and does not affect the classification accuracy.
We refer the interested reader to [2] for more details on the use of sets as constraints in the
task of lexical categorization.

In the above perspective, methods for the automatic induction of lexical classification
rules must rely on analysis of symbol distributions, more specifically on the statistics of
repetitive distributions of the same sets of symbols within some input strings. The problem
of interest can be formalized as follows. L&be a string of: symbols over some alphabet
X. We say that a substrin§/ occurring withinS hasfingerprint ¥’ C ¥ if ¥’ is the set
of all and only those symbols &f that have at least one occurrenceSinThe fingerprint
X is also called thalphabetof S’, and denoted bglph(S’). We are interested in com-
puting statistics on the various fingerprints observed wishiand would like to efficiently
construct data structures that allows for fast responses to queries of the following type:

A. Amir et al. / Journal of Discrete Algorithms 1 (2003) 409-421 411

e Givenk, how many distinct fingerprints of siZeexist inS?
e Given subsetp € X', how many substring occurrences existSrthat have finger-
print¢?

In addition to natural language processing, the above-mentioned problems are of interest in
several other domains and applications in which classifications strongly depend on feature
setsdistributions, as opposed to featusequencedistributions. In fact, the approach to
fingerprint computation presented in this paper solves the more general problem of com-
puting theParikh Mappingof all substrings of a given text string. The Parikh mapping is

a morphism fromX™* to the set of ordere¢>|-tuples of non-negative integers, that as-
sociates with every strin§ the arrayCOUNTERL. .| X'|] such thatCOUNTER/] is the
number of occurrences ifi of the jth alphabet letter. Parikh mappings enter some funda-
mental constructions and properties in the theory of formal languages, for which we refer
to [7-9].

This paper is organized as follows. We begin with the problem definition in Sec-
tion 2. In Section 3 we provide a simple intuitive solution to the problem. While its
time complexity of @n|X|?) will be subsequently improved in Section 4, it still provides
an easy understanding of our solution. Section 4 improves the time of our algorithm to
O(n|X|lognlog|X|). This improvement is possible by usingnamingtechnique on the
fingerprints. Section 5 describes the implementation of the renaming. We conclude with a
discussion on how to answer various queries on fingerprint statistics (Section 6) and open
problems (Section 7).

2. Problem definition

Definition 2.1. Let § = s152-- -5, be a string over a finite, ordered alphat&tLet ' =
sisi+1---s; be a substring of of length j — i + 1. Thefingerprintof S is the ordered
subsety’ C ¥ of symbols appearing ifi'.

Formally we give an algorithm for the following problem:

Thefingerprint computation problem.

INPUT: String S = s1 - - - s, over finite, ordered alphabét.

OUTPUT: The number of distinct fingerprints of all the substrizgs -s;, Vi, j, 1 <i <
Jj <n.This numberis< n|X|.

Example 2.2. The number of distinct fingerprints of the substrings of the stishg
dccbebabbbeis 10—a); (b); (¢); (d); (¢, d); (b, ¢); (a, b); (b, c,d); (a,b,c); (a,b,c,d).

For ease of exposition, throughout this paper we assime(1, ..., | X|}. This enables
us to treat a symbol as an index.

This assumption can be made without loss of generality, sincg#oQn) preprocess-
ing of the text is sufficient to construct an equivalent text over alphéhet ., |X|}.
Translating queryp to an equivalent query in the new alphabet can also be done in time

412 A. Amir et al. / Journal of Discrete Algorithms 1 (2003) 409-421

O(|¢|logn). Both the added preprocessing time and query translation time are subsumed
by the time of the algorithms we present for texts over alphghbet ., | X|}.

3. An O(n|X|?) algorithm

We start with an @:| X |?) algorithm that finds all distinct fingerprints of size for
everyk with 1 < k < | X, of the substrings of. The intuition behind our idea is similar
to the linear algorithm for computing the sum of every consecutigkements of an array.
The idea there is to move a window of sizalong the array adding the rightmost element
and subtracting the leftmost element.

In our application this window has variable size umtsince it must contain exactly
distinctelements, each of which may occur more than once.

Definition 3.1. A (variable length windowis a pair(i, j), 1 <i < j < n. The substring
sisiy1---s; is the substringvithin the window(i, ;). A variable length windovdefines a
k sized fingerprintf there areexactlyk different alphabet symbols within that window.

Algorithm’s idea: Let window (i, j) define ak sized fingerprint. We may move the right
boundary of the window to the right (increageas long as no new symbol is encountered,
and the new window still defines the sarneized fingerprint. Once a new symbol is en-
countered, we move the left boundary to the right (incréasatil one symbol is dropped
and we have a new window which definek sized fingerprint.

We use therie [10] data structure to compare fingerprints.

Definition 3.2. A trie T for a set of string$S1, ..., S;} is a rooted directed tree satisfying:

(1) Eachedgeis labeled with a character, and no two edges emanating from the same node
have the same label.

(2) Each nodev is associated with a string, denoted by), obtained by concatenating
the labels on the path from the rootidpL (root) is the empty string.

(3) Thereis anode in T if and only if L(v) is a prefix of some string; in the set.

Algorithm’s implementation: The algorithm maintains the following data structures:

e Two pointersies andirgnt. At every iteration(iier, irignt) 1S the window under consid-
eration.

e An arrayCOUNTERL..||], whereCOUNTER/] is the number of occurrences of
letter j in the Stringsi - - - Sign -

e A binary array LIFE[1..|X|] that represents the letters of the fingerprint of

Sileft e siright'

0, if COUNTER/]=0;

LIFEL/1= { 1, otherwise

A. Amir et al. / Journal of Discrete Algorithms 1 (2003) 409-421 413

The LIFE array is an implementation device to easily allow representing the finger-
print. It is a “bit-vector” of all alphabet symbols, with the symbols in the fingerprint
set to 1, and the other symbols set to 0. Other schemes to represent the fingerprint
could have been used. We choose usingd i array for its simplicity, and because
we will use it in more sophisticated schemes in later sections.

¢ A variablenumberthat counts the number of distinct letterssjg, - - - sy, -

e Atrie of all fingerprints of size in S.

We are now ready for the algorithm:

In the initialization stage we constru@fr, irigh), the smallest leftmost window that de-
fines ak sized fingerprint. See Algorithm 1. At each sS€@PUNTERs;] is incremented
by one. When it is changed from @umberis incremented by one, andFE[s;,,,] is
changed to 1. The move stops whauimber= k, and then the fingerprint is added to the
trie.

The main part of the algorithm consists of pairs of moves. See Algorithm 2. In each
oneirgnt is moved to the right untihumberexceeds, theniier is moved to the right until
numbergoes down td. At that point a new sized fingerprint is achieved and should be
updated in the trie.

— A move ofirgnt: At each ste®COUNTERs;,,,] is incremented by one. If it is changed
from 0,numberis incremented by on&|FE[s;,,,] is changed to 1, and the move ends.

— A move ofijer: At each stefCOUNTERs;,,] is decremented by one. If it is changed
to 0,numberis decremented by onk|FE[s;,,] is changed to 0, and the move ends.

In Algorithm 3 we present a straightforward but inefficient implementation of
HandleFingerprint This is done using th&IFE array. LIFE represents the fingerprint
in a manner that does not depend on the order of the letters in the string but only on their
lexicographical order. The trie may hold extra information depending on the queries we
are to answer. For example, to be able to answer how many different fingerprints exist in

Initialization

ileft <1
COUNTERLIFE, numbet iight <— 0
Repeat until number=k:
iright < iright + 1
COUNTEng,-rigm] <« COUNTEng,-rigm] +1
if COUNTEF{s,-rigm] =1 then number< number+ 1
LIFE[s,-right] ~1

{SubroutineHandleFingerprintadds thek sized fingerprint defined bffjet, iright) to the fingerprint trigj.
Call HandleFingerprint

end I nitialization

Algorithm 1.

414 A. Amir et al. / Journal of Discrete Algorithms 1 (2003) 409-421

Main Part of Algorithm

Repeat until iright =n
{iright Move}
Repeat until number= k + 1 or ifight =n

iright < fright +1

COUNTEng,-rigm] <« COUNTERs,-rigm] +1

if COUNTEF{s,-rigm] = 1 then number< number+ 1
LlFE[Sirigm] ~1

{ilet Move}
If iright = n and number< k then end
Repeat until number= k
COUNTERs;] <~ COUNTERs;, 1 — 1
if COUNTERS;,,;] = O then number< number— 1
LIFE[sj] <0
ileft < lleft +1

Call HandleFingerprint

end Main Part of Algorithm

Algorithm 2.

Subroutine HandleFingerprint
fingerprint «<— A {A represents the null string.
Fori =1to |X]| do:
if LIFE[i] = 1 then concatenate Symbol i to the right of string fingerprint

Add string fingerprintto trie, with its leaf's counter set to 1. If it is already there then increment its leaf's
counter by 1.

end Subroutine

Algorithm 3.

S, all that is necessary is to count the number of leaves in the trie. To answer how many
substrings have a given fingerprint, we may add to every leaf in the trie a counter that is
incremented every time a fingerprint is found.

Time: At every iteration, eithefygn: Or iler; iS incremented, thus, for a giveén moving

on S takes Qnr) time. In the current implementation, adding a fingerprint to the trie takes
O(|X1) time. For a fixedk there are @) calls to HandleFingerprint Thus for a fixed

k the running time is @:|X|). k ranges from 1 tdX'|; hence, the total running time is
om|X|?).

A. Amir et al. / Journal of Discrete Algorithms 1 (2003) 409-421 415

4. An O(n|X|log(n)log(] X)) algorithm

In this section we present a different idea for the bookkeeping of the fingerprints. We
present a new subroutifdandleFingerprint The other parts of the algorithm remain un-
changed.

Instead of keeping the fingerprints in a trie, each distinct fingerprint is given a unique
name. The names are given by using ttemingtechnique [1,4], which is a modified
version of the algorithm of Karp, Miller and Rosenberg [3].

The naming technique:Let A be an array of size:. Assume, for the sake of simplicity,
thatm is a power of 2, i.e., there is somesuch thain = 2. (If m is not a power of 24
can be extended to an appropriate size by concatenating to its end a substring of a repeated
single symbol. The size of the resulting string is no more than twice the size of the original
string.)

A name is given to each subarray of siZetBat starts on a positiof2’ + 1 in the
array, where & i < b and 0< ¢ < m/2'. Names are given first to subarrays of size 1 then
2,4,...,2b=1 atthe end a name is given to the entire array.

A subarray of size 2is a concatenation of 2 subarrays of sizel2 The names of these
2 subarrays are used as the input for the computation of the name of the subarray of size
2!, The process may be viewed as constructing a complete binary tree, which we will refer
to as anaming tree The leaves of the tree (level 0) are the elements of the initial array.
Nodex in leveli is the parent of nodesx2- 1 and & in leveli — 1. See Example 4.1.
Note that for an array of lengttr, at most 2: — 1 names are given. Our implementation
of the naming technique is shown in Section 5.

Example4.1. Below is the result of naming string 0110001010110010:

| 11 |
| 9 | 10 |
| 6 | 7 | 8 | 7 |
| |
| |

2 | 3] 4] 38 1 383] 5 | 471 3
O[1[1J0JOJOJt[OoJ1]JOJ1[1]O0]JO]1]O

We will use naming for handling the fingerprints. However, we do not use naming on
the fingerprint itself, since the changes from fingerprint to fingerprint require too much
effort. Rather, we use naming on thH-E array. As previously mentioned, an instance of
LIFE represents a fingerprint. During one successful move of the variable length window,
LIFE changesxactly twice one bit is added (the new alphabet symbol) and one bit gets
deleted (the deleted symbol).

Example 4.2. Assume that the string 0110001010110010 from Example 4.1 represents
an instance of thelFE array. Suppose the window move adds the 10th alphabet symbol,
i.e., theLIFE array changes to 0110001011110010. In the diagram below we indicate in
boldface the names that changed as a result of the change to the string.

416 A. Amir et al. / Journal of Discrete Algorithms 1 (2003) 409-421

14

| |
| J | 13 |
| 6 | 7 | 12 | 7 |
L2 [3 [4 [3 [5 [5 | 4] 3 |
[0f1]2]ofoJof1Jof1[1]1[1]0f0]1[0]

0

From Example 4.2 one can see that a single change in an array of saeses at most
logm names to change, since there is at most one name change in every level. Formally:

Observation 4.3. Let A be an array of lengt and letB be an array of length derived
by changing the value of a single elementAfThen for every level in the naming tree,
there is a single name that requires a change. Since there atddggls, then only log:
names need to be changed in order to compute the name of

We conclude from Observation 4.3 that at every change of the variable length window,
only O(log|X'|) names need to be handled, since only two locationdfE are changed.
The subroutinédandleFingerprintwill now look as is shown in Algorithm 4.

Subroutine HandleFingerprint(High Level)
Compute name life of array LIFE
If life is a new name, then set its counter to 1

If life appeared previously, then increment its counter by 1

end Subroutine

Algorithm 4.

Time: In Section 5 we show an implementation éfandleFingerprint in time
O(lognlog|X|). This means that for a fixed fingerprint size our algorithm’s running
time is Qnlognlog|X|). k ranges from 1 toX|; hence, the total running time is
O(n| X log(n) log(| Z1)).

5. Computing names

We have seen in Section 4 that the name ol array can be maintained at a cost of
Odlog|X|) per change, which is the number of queries to the name data base. Subroutine
HandleFingerprintrequires the knowledge of whether the upddtdeE array gets a new
name, or a name that appeared previously. Before we show an efficient implementation of
this task, let us bound the maximum number of different names our algorithm needs to
generate for a fixed fingerprint size

A. Amir et al. / Journal of Discrete Algorithms 1 (2003) 409-421 417

Lemma 5.1. The maximum number of different names generated by our algorithm’s nam-
ing of sizek fingerprints on a text of length is O(nlog|X|). The maximum number of
names generated at a fixed leveh the naming tree i©(n).

Proof. The first fingerprint initializes th&IFE array. Naming the initiaLIFE array re-
quires at most &’| — 1 names (@1)). Throughout the algorithm, at mostchanges to

the initial fingerprint are possible. Observation 4.3 guarantees that for every change in the
LIFE array, no more than one change occurs in every level of the naming tree. Therefore,
the maximum number of different possible names at every levet is Z. Since there

are Qlog|X|) levels in the tree, then the maximum possible number of different names
necessary for a fixed fingerprint sikzés O(nlog|X|). O

Our naming strategy is as follows. A name is a pair of previous names. Atile¥¢he
naming, we compute the name of subarfay » of size 2, whereA; andA» are consecu-
tive subarrays of size’ 2 each. We give as names the natural numbers in increasing order.
Notice that every level only uses the names of the level below it, thus the names we use at
every level are numbers from the $ét. .., n}.

To give an array a name, we need only to know if the pair of names of the composing
subarrays has appeared previously. If it did, then the array gets the name of this pair. Oth-
erwise, it gets a new name. It is necessary, therefore, to show a quick way to dynamically
access pairs of numbers from a bounded range universe. Formally, we would like a solution
to the following problem:

Definition 5.2. The dynamic pair recognition probleis the following:

INPUT: A sequence of querigga;, bj)}j?ozl, wherea;, b; € {1,..., j}.

OUTPUT: Dynamically decide, for every quely;, b;), whether there exist, ¢ < i such
that(a;, b;) = (ac, be).

We will present a solution that requires, for solving each quefyb;), time Ologx),
wherex is the number of previous queries whose first pair element.ig1 our case, since
in every level there are at most(®@) different numbers, a dynamic pair recognition query
is solved in time @ogn). A dynamic pair recognition query is askedl@|X'|) times for
each fingerprint. We conclude:

Claim 5.3. The running time of HandleFingerprint {3(log| X'| logn).

In the remainder of this section we present the solution to the dynamic pair recognition
problem. Note that our pair recognition problem is not really dynamic, since all pairs of
leveli — 1 are available before processing of leveegins. Thus it is possible to construct
ann x n matrix initialized as 0, and fill in all pairs as they are encountered. This allows
solving each pair query in constant time but the initial cost g% We presented the
problem as a dynamic problem. While every query will take tinieo®n), there are only
a total of Qn) queries, so our total time is@logn), which is faster.

418 A. Amir et al. / Journal of Discrete Algorithms 1 (2003) 409-421

Pair Recognition Algorithm

if (a, b) € BAL[a] then output “occurred previously, name is nanie, b)”
else:
j<—j+1
add (a, b) to BAL{a]
name(a, b) < j
initialize empty BAL[;]

end Algorithm

Algorithm 5.

Intuition: At any point j the pairs we are considering all have their first element no
greater thanj. Thus, accessing the first element can be done in constant time by direct
access. This suggest “gathering” all pairs in trees rooted at their first element. However,

if we make sure these trees are ordered by the second element and balanced, we can find
elements by binary search in time that is logarithmic in the tree size.

Algorithm’s implementation: The algorithm maintains the following data structure:

e BAL[a] is a balanced binary tree of all paiis,) that have been named so far, sorted
by b. Sincea, b are increasing natural numbers, starting fronBAL{a] is directly
accessed by.

The algorithm is now straightforward. We are given pairb) at time j and need to
recognize if it has appeared so far. See Algorithm 5.

Time: Itis clear that the time for the pair recognition algorithm is the time for searching
the balanced tree, i.e.,(0g|BALa]|) = O(log(n)).

6. Fingerprint statistics

Algorithm 5 allows us to efficiently name every fingerprint encountered. This scheme
easily allows answering a number of queries on fingerprint statistics.

Query 1.
INPUT: k.
OUTPUT: The number of different size fingerprints inS.

The answer to the above query can be provided immediately if one keeps count of the
number of top level names for evety

Another type of query that interests us is providing the number of substrings of
that have a given fingerprint. This query requires some discussion. Consider the string
xabcabcabcy and supposé = 3. Clearly the window2, 10) defines a substring whose

A. Amir et al. / Journal of Discrete Algorithms 1 (2003) 409-421 419

fingerprint isabc. However, so does every substringadicabcabc (that is, every subwin-

dow of (2, 10)) whose length is at least 3. When we want to count the number of substrings
whose fingerprint igbc, which number do we count? This brings us to a sharpening of the
definition. (We assume) ands, 11 are defined and do not belongn)

Definition 6.1. Let S = 5152 - - s, be a string over finite, ordered alphal¥et Let ¢ be a
fingerprint. We call substring - - -s; ¢-maximalif s;_1 ands;1 do not belong to finger-
printg. We say that; - - - s; is ¢-minimalif both s; ands; appear only once in the substring
(i.e., removal of either of them will change the fingerprint).

If s;---s; is g-maximal p-minimal) and¢ has sizek then we say thai; - - -s; is k-
maximal(k-minimal).

We can now formally phrase Query 2:

Query 2.
INPUT: Fingerprinte.
OUTPUT: The number ofh-maximal g-minimal) substrings irs.

Maximal substrings:

The movements of thgign: andiier pointers in the main algorithm of Section 3 define
the maximality of the substring. If we léggn: continue as long asumber=k + 1 (rather
than untilnumber= k + 1) and we leave the advanceigf; as originally written, then we
will get windows that provide maximal substrings.

Minimal substrings:

Lemma 6.2. For k > 3, substrings; - --s; is a k-minimal substring iffs;;1---s;_1 is a
(k — 2)-maximal substring ans} # s;.

Proof. Assumes; - --s; is k-minimal. Then clearly; # s;, otherwise one of them could
be dropped without changing the fingerprint which would contradict the substing’s
minimality. For the same reasep does not appear i1 ---s; ands; does not appear
ins;---sj—1. This means thag; 1 ---s;_1 has fingerprink — 2. Extending the substring
on any side raises its fingerprint size. Therefore by Definitionsg.1- --s;_1 is (k — 2)
maximal.

Conversely, ifs; 1 ---s;_1 is (k — 2) maximal then by Definition 6.3 does not appear
in s;iy1---s;—1 ands; does not appear is1---s;_1. If, in addition, s; # s; then the
fingerprint ofs; - - -s; is of sizek, and is minimal since dropping or s; reduces the
fingerprint size by 1.

Using Lemma 6.2, to find-minimal substrings we simply check, for ay — 2)-
maximal substring, if the letter preceding the substring is not equal to the letter following it.
Hence, the main algorithm gives the mechanism to count maximal or minimal substrings.
Note that thek — 2)-maximal substrings and theminimal substrings are computed to-
gether.

420 A. Amir et al. / Journal of Discrete Algorithms 1 (2003) 409-421

We are now ready to tackle Query 2. At the time of fingerprint naming maintain, for
every name (representing a maximal or minimal fingerprint), a counter for the number of
times it was encountered. Subsequently, the answer to the above query can be provided by
computing the name of fingerprigit The time for mapping to its LIFE bit notation is
O(|¥]). The name is then computed in tim&|®| logn). The number of times it appears
is denoted by the name.

A similar problem that could be of interest is findialj substrings with a given finger-
print ¢. The total number of substrings with fingerprifitcan be easily computed using
the following immediate observations.

Observation 6.3.

(1) No two differentp-maximal substrings overlap.

(2) If $1 is a¢-maximal substring and, is a ¢-minimal substring then eithes, is a
substring ofS1 or S1 and S, do not overlap.

(3) Every substring with fingerprint is contained in @-maximal substring and contains
at least on@-minimal substring.

According to the above observation eagimaximal substring; =s; - - - s; contains a
set (at least one) @f-minimal substringsz, S, - - - S, . Let Sy = s44, - - -5, . The total

number of substrings with fingerprigtin Sy is (i1 + 1)(r1 + 1) + Zfz:z(ld —lg_rq.

7. Open problems

Recall that we can only solve Query 2 (for input fingerpgntount the number of
substring occurrences whose fingerpringlsby mappinge to its LIFE notation. This
automatically lower bounds the time by(|&¥'|), even for small|¢|. Is it possible to answer
Query 2 in time Q|¢| x polylogn)?

It may be possible to improve the algorithm by a constant factor if the position of
et ONly moves after computing fingerprints dll sizes starting at locatioiy, rather
than the proposed method of computing the fingerprints size by size. However, the al-
gorithm will still have | ¥| as a multiplicative factor. It would be interesting to see if
the | X'| factor can also be reduced. If such a reduction is possible, it will probably in-
volve a different idea, perhaps one that computes the fingerprints without recourse to
the greater amount of information provided by the Parikh vector. Is such a method pos-
sible?

Finally, Parikh vectorper seand their natural generalizations to weighted alphabets
find possible use in a number of applications, e.g., approximate string searching in biose-
guences and other textfiles in which the individual symbols carry some weight. Some
problems thus revolve around the existence of non-trivial extensions to these formulations
of the techniques developed in this paper.

A. Amir et al. / Journal of Discrete Algorithms 1 (2003) 409-421 421

Acknowledgements

This research was performed during exchange visits conducted, respectively, by the first
and third authors at the University of Padova, and by the second author at the Universities
of Bar-llan and Haifa, as part of an Israel-Italy exchange scientist grant jointly funded by
the Israel Ministry of Science and the National Research Council of Italy.

Amihood Amir was partially supported by NSF grab€R-0104494, BSF grant 96-
00509, and an Israel-Italy exchange scientist grant.

Alberto Apostolico’s work was supported in part by NSF Gr&E€R-9700276, by
MURST under projecPRIN: Biolnformatica e Ricerca Genomichy the University of
Padova under proje@evelopment of Novel Pattern Discovery Algorithms and Software
and by an Israel-Italy exchange scientist grant.

Gad Landau was partially supported by NSF gr&®R-9610238, aneCCR-0104307,
by NATO Science Programme grant PST.CLG.977017, by the Israel Science Foundation
grants 173/98 and 282/01, by the FIRST Foundation of the Israel Academy of Science and
Humanities, and by IBM Faculty Partnership Award, and an Israel-Italy exchange scientist
grant.

Giorgio Satta’s work was supported in part by MURST under prdpiiiN: Biolnfor-
matica e Ricerca Genomi@nd by University of Padova, under proj&stiluppo di Sistemi
ad Addestramento Automatico per I’Analisi del Linguaggio Naturale.

References

[1] A. Apostolico, C. lliopoulos, G.M. Landau, B. Schieber, U. Vishkin, Parallel construction of a suffix tree
with applications, Algorithmica 3 (1988) 347—-365.

[2] F. Karlsson, A. Voutilainen, J. Heikkild, A. Anttila, Constraint Grammar. A Language Independent System
for Parsing Unrestricted Text, de Gruyter, Berlin, 1995.

[3] R. Karp, R. Miller, A. Rosenberg, Rapid identification of repeated patterns in strings, arrays and trees,
Sympos. Theory Comput. 4 (1972) 125-136.

[4] Z.M. Kedem, G.M. Landau, K.V. Palem, Parallel suffix-prefix matching algorithm and application, SIAM J.
Comput. 25 (5) (1996) 998-1023.

[5] P. Langley, Elements of Machine Learning, Morgan Kaufmann, San Francisco, CA, 1995.

[6] T.M. Mitchell, Machine Learning, McGraw-Hill, New York, 1997.

[7] C.H. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Prentice-Hall,
Englewood Cliffs, NJ, 1982.

[8] R.J. Parikh, On context-free languages, J. ACM 14 (4) (1966) 570-581.

[9] A. Salomaa, Formal Languages, Academic Press, New York, 1973.

[10] R. Sedgewick, Algorithms, 2nd Edition, Addison-Wesley, Reading, MA, 1988.

	Efficient text fingerprinting via Parikh mapping
	Introduction
	Problem definition
	An O(n|Sigma|2) algorithm
	Algorithm's idea:
	Algorithm's implementation:
	Time:

	An O(n|Sigma|log(n) log(|Sigma|)) algorithm
	The naming technique:
	Time:

	Computing names
	Intuition:
	Algorithm's implementation:
	Time:

	Fingerprint statistics
	Open problems
	Acknowledgements
	References

