
l
ly

t
in time

.ac.il

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector
Journal of Discrete Algorithms 1 (2003) 409–421

www.elsevier.com/locate/jda

Efficient text fingerprinting via Parikh mapping

Amihood Amira,f , Alberto Apostolicob,c, Gad M. Landaud,e,∗,
Giorgio Sattab

a Department of Mathematics and Computer Science, Bar-Ilan University, 52900 Ramat-Gan, Israe
b Dipartimento di Elettronica e Informatica, Università di Padova, Via Gradenigo 6/A, 35131 Padova, Ita

c Department of Computer Sciences, Purdue University, Computer Sciences Building,
West Lafayette, IN 47907, USA

d Department of Computer Science, Haifa University, Haifa 31905, Israel
e Department of Computer and Information Science, Polytechnic University, Six MetroTech Center,

Brooklyn, NY 11201-3840, USA
f College of Computing, Georgia Institute of Technology, Atlanta, GA 30332-0280, USA

Abstract

We consider the problem of fingerprinting text by sets of symbols. Specifically, ifS is a string,
of length n, over a finite, ordered alphabetΣ , andS′ is a substring ofS, then thefingerprint of
S′ is the subsetφ of Σ of precisely the symbols appearing inS′. In this paper we show efficien
methods of answering various queries on fingerprint statistics. Our preprocessing is done
O(n|Σ | logn log |Σ |) and enables answering the following queries:

(1) Given an integerk, compute the number of distinct fingerprints of sizek in time O(1).
(2) Given a setφ ⊆ Σ , compute the total number of distinct occurrences inS of substrings with

fingerprintφ in time O(|Σ | logn).

 2003 Elsevier B.V. All rights reserved.

Keywords:Design and analysis of algorithms; Combinatorial algorithms on words

* Corresponding author.
E-mail addresses:amir@cs.biu.ac.il (A. Amir), axa@cs.purdue.edu (A. Apostolico), landau@cs.haifa

(G.M. Landau), satta@dei.unipd.it (G. Satta).

1570-8667/$ – see front matter 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S1570-8667(03)00035-2

https://core.ac.uk/display/82185407?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jda

410 A. Amir et al. / Journal of Discrete Algorithms 1 (2003) 409–421

1. Introduction

ce the
elec-

ring
n sys-
tigate

guage

aning
Noun,

always
age
ories
ation
tions,
art-of-

cades
to our
tegory
Deter-
t form
nces
rns

t
ation.
Noun)
words
ly ef-
text of
se sur-
curacy.
s in the

ation
ics of
oblem
et

-

pe:
Automatic rule induction and rule discovery techniques have been applied sin
early 50s in several fields where data from physical observations were available in
tronic form [5,6]. Rule discovering is mainly concerned with the problem of infer
generalizations of the input data, to be further exploited by automatic classificatio
tems or by predictive models of the phenomena of interest. In this paper we inves
a problem that arises in the context of the induction of rules for certain natural lan
processing tools called part-of-speech taggers, as discussed below.

As is well known, natural languages have a high degree of lexical ambiguity, me
that most common words may belong to several lexical categories, as for instance
Verb, Adjective, etc. Despite this ambiguity, native language speakers can almost
determine a unique,intendedlexical category for each word occurrence in natural langu
texts. To give a simple example, the English word “rule” belongs to both lexical categ
Verb and Noun. But in the context of the sentence “This is a rule”, the correct classific
for the word “rule” is only one, namely Noun. In natural language processing applica
this classification task can be automatically performed by tools that are called p
speech taggers.

A common solution in the design of part-of-speech taggers is to exploit sets or cas
of rules that are automatically induced from classification examples. Coming back
example sentence “This is a rule”, a nice rule that we could adopt is to choose the ca
Noun whenever the preceding word has already been classified with the category
miner (this is the case for the word “a” in our sentence, when we process the inpu
left to right). But how would we generalize the observed rule to work also for sente
like “This is a good rule”, or “This is a slightly better rule”? In the general case, it tu
out that very high accuracy can be achieved by specifying asetof lexical categories tha
are allowed to occur in between some left trigger word and the word under classific
In our example, we could choose the category Noun (given the choice of Verb and
whenever a left triggering word has been classified as Determiner and is followed by
classified by categories in the set {Adjective, Adverb}. The use of sets is particular
fective because very specific category distributions are found in the surrounding con
several lexical categories to be discriminated, while the order of appearance of the
rounding categories is often unpredictable and does not affect the classification ac
We refer the interested reader to [2] for more details on the use of sets as constraint
task of lexical categorization.

In the above perspective, methods for the automatic induction of lexical classific
rules must rely on analysis of symbol distributions, more specifically on the statist
repetitive distributions of the same sets of symbols within some input strings. The pr
of interest can be formalized as follows. LetS be a string ofn symbols over some alphab
Σ . We say that a substringS′ occurring withinS hasfingerprintΣ ′ ⊆Σ if Σ ′ is the set
of all and only those symbols ofΣ that have at least one occurrence inS′. The fingerprint
Σ ′ is also called thealphabetof S′, and denoted byalph(S′). We are interested in com
puting statistics on the various fingerprints observed withinS, and would like to efficiently
construct data structures that allows for fast responses to queries of the following ty

A. Amir et al. / Journal of Discrete Algorithms 1 (2003) 409–421 411

• Givenk, how many distinct fingerprints of sizek exist inS?

erest in
feature
to
f com-
g is
s-

da-
refer

Sec-
its

es
hm to

with a
d open

-

time
• Given subsetφ ∈ Σ , how many substring occurrences exist inS that have finger-
print φ?

In addition to natural language processing, the above-mentioned problems are of int
several other domains and applications in which classifications strongly depend on
setsdistributions, as opposed to featuresequencesdistributions. In fact, the approach
fingerprint computation presented in this paper solves the more general problem o
puting theParikh Mappingof all substrings of a given text string. The Parikh mappin
a morphism fromΣ∗ to the set of ordered|Σ|-tuples of non-negative integers, that a
sociates with every stringS the arrayCOUNTER[1. .|Σ|] such thatCOUNTER[j] is the
number of occurrences inS of thej th alphabet letter. Parikh mappings enter some fun
mental constructions and properties in the theory of formal languages, for which we
to [7–9].

This paper is organized as follows. We begin with the problem definition in
tion 2. In Section 3 we provide a simple intuitive solution to the problem. While
time complexity of O(n|Σ|2) will be subsequently improved in Section 4, it still provid
an easy understanding of our solution. Section 4 improves the time of our algorit
O(n|Σ| logn log|Σ|). This improvement is possible by using anamingtechnique on the
fingerprints. Section 5 describes the implementation of the renaming. We conclude
discussion on how to answer various queries on fingerprint statistics (Section 6) an
problems (Section 7).

2. Problem definition

Definition 2.1. Let S = s1s2 · · · sn be a string over a finite, ordered alphabetΣ . Let S′ =
sisi+1 · · · sj be a substring ofS of lengthj − i + 1. Thefingerprint of S′ is the ordered
subsetΣ ′ ⊆Σ of symbols appearing inS′.

Formally we give an algorithm for the following problem:

The fingerprint computation problem.
INPUT: StringS = s1 · · · sn over finite, ordered alphabetΣ .
OUTPUT: The number of distinct fingerprints of all the substringssi · · · sj , ∀i, j, 1 � i �
j � n. This number is< n|Σ|.

Example 2.2. The number of distinct fingerprints of the substrings of the stringS =
dccbcbabbbc is 10—(a); (b); (c); (d); (c, d); (b, c); (a, b); (b, c, d); (a, b, c); (a, b, c, d).

For ease of exposition, throughout this paper we assumeΣ = {1, . . . , |Σ|}. This enables
us to treat a symbol as an index.

This assumption can be made without loss of generality, since a O(n logn) preprocess
ing of the text is sufficient to construct an equivalent text over alphabet{1, . . . , |Σ|}.
Translating queryφ to an equivalent query in the new alphabet can also be done in

412 A. Amir et al. / Journal of Discrete Algorithms 1 (2003) 409–421

O(|φ| logn). Both the added preprocessing time and query translation time are subsumed

r
.

ent

ht
ed,
n-

d

g:

e node

g

-

of

of
by the time of the algorithms we present for texts over alphabet{1, . . . , |Σ|}.

3. An O(n|Σ|2) algorithm

We start with an O(n|Σ|2) algorithm that finds all distinct fingerprints of sizek, for
everyk with 1 � k � |Σ|, of the substrings ofS. The intuition behind our idea is simila
to the linear algorithm for computing the sum of every consecutivek elements of an array
The idea there is to move a window of sizek along the array adding the rightmost elem
and subtracting the leftmost element.

In our application this window has variable size up ton since it must contain exactlyk
distinctelements, each of which may occur more than once.

Definition 3.1. A (variable length) windowis a pair(i, j), 1 � i � j � n. The substring
sisi+1 · · · sj is the substringwithin the window(i, j). A variable length windowdefines a
k sized fingerprintif there areexactlyk different alphabet symbols within that window.

Algorithm’s idea: Let window(i, j) define ak sized fingerprint. We may move the rig
boundary of the window to the right (increasej) as long as no new symbol is encounter
and the new window still defines the samek sized fingerprint. Once a new symbol is e
countered, we move the left boundary to the right (increasei) until one symbol is droppe
and we have a new window which defines ak sized fingerprint.

We use thetrie [10] data structure to compare fingerprints.

Definition 3.2. A trie T for a set of strings{S1, . . . , Sr } is a rooted directed tree satisfyin

(1) Each edge is labeled with a character, and no two edges emanating from the sam
have the same label.

(2) Each nodev is associated with a string, denoted byL(v), obtained by concatenatin
the labels on the path from the root tov, L(root) is the empty string.

(3) There is a nodev in T if and only if L(v) is a prefix of some stringSj in the set.

Algorithm’s implementation: The algorithm maintains the following data structures:

• Two pointersileft andiright. At every iteration(ileft, iright) is the window under consid
eration.
• An arrayCOUNTER[1 . . |Σ|], whereCOUNTER[j] is the number of occurrences

letterj in the stringsileft · · · siright .
• A binary array LIFE[1 . . |Σ|] that represents the letters of the fingerprint

sileft · · · siright :

LIFE[j] =
{

0, if COUNTER[j] = 0;
1, otherwise.

A. Amir et al. / Journal of Discrete Algorithms 1 (2003) 409–421 413

The LIFE array is an implementation device to easily allow representing the finger-
rint
erprint
e

e-

he

each
l
be

d
ds.
ed
.

of
t

n their
s we
xist in
print. It is a “bit-vector” of all alphabet symbols, with the symbols in the fingerp
set to 1, and the other symbols set to 0. Other schemes to represent the fing
could have been used. We choose using theLIFE array for its simplicity, and becaus
we will use it in more sophisticated schemes in later sections.
• A variablenumberthat counts the number of distinct letters insileft · · · siright .
• A trie of all fingerprints of sizek in S.

We are now ready for the algorithm:
In the initialization stage we construct(ileft, iright), the smallest leftmost window that d

fines ak sized fingerprint. See Algorithm 1. At each stepCOUNTER[siright] is incremented
by one. When it is changed from 0,numberis incremented by one, andLIFE[siright] is
changed to 1. The move stops whennumber= k, and then the fingerprint is added to t
trie.

The main part of the algorithm consists of pairs of moves. See Algorithm 2. In
oneiright is moved to the right untilnumberexceedsk, thenileft is moved to the right unti
numbergoes down tok. At that point a newk sized fingerprint is achieved and should
updated in the trie.

– A move ofiright: At each stepCOUNTER[siright] is incremented by one. If it is change
from 0,numberis incremented by one,LIFE[siright] is changed to 1, and the move en

– A move ofileft: At each stepCOUNTER[sileft] is decremented by one. If it is chang
to 0,numberis decremented by one,LIFE[sileft] is changed to 0, and the move ends

In Algorithm 3 we present a straightforward but inefficient implementation
HandleFingerprint. This is done using theLIFE array.LIFE represents the fingerprin
in a manner that does not depend on the order of the letters in the string but only o
lexicographical order. The trie may hold extra information depending on the querie
are to answer. For example, to be able to answer how many different fingerprints e

Initialization

ileft← 1
COUNTER,LIFE,number, iright← 0

Repeat until number= k:
iright← iright + 1
COUNTER[siright]←COUNTER[siright] + 1
if COUNTER[siright] = 1 then number← number+ 1

LIFE[siright]← 1

{SubroutineHandleFingerprintadds thek sized fingerprint defined by(ileft, iright) to the fingerprint trie.}
Call HandleFingerprint

end Initialization

Algorithm 1.

414 A. Amir et al. / Journal of Discrete Algorithms 1 (2003) 409–421

Main Part of Algorithm

many
that is

kes

is
Repeat until iright = n

{iright Move}
Repeat until number= k+ 1 or iright = n

iright← iright + 1
COUNTER[siright]←COUNTER[siright] + 1
if COUNTER[siright] = 1 then number← number+ 1

LIFE[siright]← 1

{ileft Move}
If iright = n and number� k then end
Repeat until number= k

COUNTER[sileft]←COUNTER[sileft] − 1
if COUNTER[sileft] = 0 then number← number− 1

LIFE[sileft]← 0
ileft← ileft + 1

Call HandleFingerprint

end Main Part of Algorithm

Algorithm 2.

Subroutine HandleFingerprint

fingerprint← λ {λ represents the null string.}
For i = 1 to |Σ | do:

if LIFE[i] = 1 then concatenate Symbol i to the right of string fingerprint

Add string fingerprint to trie, with its leaf’s counter set to 1. If it is already there then increment its leaf’s
counter by 1.

end Subroutine

Algorithm 3.

S, all that is necessary is to count the number of leaves in the trie. To answer how
substrings have a given fingerprint, we may add to every leaf in the trie a counter
incremented every time a fingerprint is found.

Time: At every iteration, eitheriright or ileft is incremented, thus, for a givenk, moving
on S takes O(n) time. In the current implementation, adding a fingerprint to the trie ta
O(|Σ|) time. For a fixedk there are O(n) calls to HandleFingerprint. Thus for a fixed
k the running time is O(n|Σ|). k ranges from 1 to|Σ|; hence, the total running time
O(n|Σ|2).

A. Amir et al. / Journal of Discrete Algorithms 1 (2003) 409–421 415

4. An O(n|Σ| log(n) log(|Σ|)) algorithm

s. We
n-

nique
d

y,

epeated
iginal

hen

e
of size

ll refer
rray.
.
on

g on
uch
of

ndow,
gets

sents
bol,

ate in
In this section we present a different idea for the bookkeeping of the fingerprint
present a new subroutineHandleFingerprint. The other parts of the algorithm remain u
changed.

Instead of keeping the fingerprints in a trie, each distinct fingerprint is given a u
name. The names are given by using thenaming technique [1,4], which is a modifie
version of the algorithm of Karp, Miller and Rosenberg [3].

The naming technique:Let A be an array of sizem. Assume, for the sake of simplicit
thatm is a power of 2, i.e., there is someb such thatm= 2b. (If m is not a power of 2,A
can be extended to an appropriate size by concatenating to its end a substring of a r
single symbol. The size of the resulting string is no more than twice the size of the or
string.)

A name is given to each subarray of size 2i that starts on a position�2i + 1 in the
array, where 0� i � b and 0� � < m/2i . Names are given first to subarrays of size 1 t
2,4, . . . ,2b−1, at the end a name is given to the entire array.

A subarray of size 2i is a concatenation of 2 subarrays of size 2i−1. The names of thes
2 subarrays are used as the input for the computation of the name of the subarray
2i . The process may be viewed as constructing a complete binary tree, which we wi
to as anaming tree. The leaves of the tree (level 0) are the elements of the initial a
Nodex in level i is the parent of nodes 2x − 1 and 2x in level i − 1. See Example 4.1
Note that for an array of lengthm, at most 2m− 1 names are given. Our implementati
of the naming technique is shown in Section 5.

Example 4.1. Below is the result of naming string 0110001010110010:

11

9 10

6 7 8 7

2 3 4 3 3 5 4 3

0 1 1 0 0 0 1 0 1 0 1 1 0 0 1 0

We will use naming for handling the fingerprints. However, we do not use namin
the fingerprint itself, since the changes from fingerprint to fingerprint require too m
effort. Rather, we use naming on theLIFE array. As previously mentioned, an instance
LIFE represents a fingerprint. During one successful move of the variable length wi
LIFE changesexactly twice, one bit is added (the new alphabet symbol) and one bit
deleted (the deleted symbol).

Example 4.2. Assume that the string 0110001010110010 from Example 4.1 repre
an instance of theLIFE array. Suppose the window move adds the 10th alphabet sym
i.e., theLIFE array changes to 0110001011110010. In the diagram below we indic
boldface the names that changed as a result of the change to the string.

416 A. Amir et al. / Journal of Discrete Algorithms 1 (2003) 409–421

14

t
ally:

e,

ndow,
.

ing
is

of
routine

tion of
eds to
9 13

6 7 12 7

2 3 4 3 5 5 4 3

0 1 1 0 0 0 1 0 1 1 1 1 0 0 1 0

From Example 4.2 one can see that a single change in an array of sizem causes at mos
logm names to change, since there is at most one name change in every level. Form

Observation 4.3. Let A be an array of lengthm and letB be an array of lengthm derived
by changing the value of a single element ofA. Then for every level in the naming tre
there is a single name that requires a change. Since there are logm levels, then only logm
names need to be changed in order to compute the name ofB.

We conclude from Observation 4.3 that at every change of the variable length wi
only O(log|Σ|) names need to be handled, since only two locations ofLIFE are changed

The subroutineHandleFingerprintwill now look as is shown in Algorithm 4.

Subroutine HandleFingerprint(High Level)

Compute name life of array LIFE
If life is a new name, then set its counter to 1
If life appeared previously, then increment its counter by 1

end Subroutine

Algorithm 4.

Time: In Section 5 we show an implementation ofHandleFingerprint in time
O(logn log|Σ|). This means that for a fixed fingerprint size our algorithm’s runn
time is O(n logn log|Σ|). k ranges from 1 to|Σ|; hence, the total running time
O(n|Σ| log(n) log(|Σ|)).

5. Computing names

We have seen in Section 4 that the name of theLIFE array can be maintained at a cost
O(log|Σ|) per change, which is the number of queries to the name data base. Sub
HandleFingerprintrequires the knowledge of whether the updatedLIFE array gets a new
name, or a name that appeared previously. Before we show an efficient implementa
this task, let us bound the maximum number of different names our algorithm ne
generate for a fixed fingerprint sizek.

A. Amir et al. / Journal of Discrete Algorithms 1 (2003) 409–421 417

Lemma 5.1. The maximum number of different names generated by our algorithm’s nam-
f

in the
refore,

mes

-
rder.
use at

osing
ir. Oth-

ically
olution

ery

nition
irs of
ct
lows
e

ing of sizek fingerprints on a text of lengthn is O(n log|Σ|). The maximum number o
names generated at a fixed leveli in the naming tree isO(n).

Proof. The first fingerprint initializes theLIFE array. Naming the initialLIFE array re-
quires at most 2|Σ| − 1 names (O(n)). Throughout the algorithm, at mostn changes to
the initial fingerprint are possible. Observation 4.3 guarantees that for every change
LIFE array, no more than one change occurs in every level of the naming tree. The
the maximum number of different possible names at every level is 2n + Σ . Since there
are O(log|Σ|) levels in the tree, then the maximum possible number of different na
necessary for a fixed fingerprint sizek is O(n log|Σ|). ✷

Our naming strategy is as follows. A name is a pair of previous names. At leveli of the
naming, we compute the name of subarrayA1A2 of size 2i , whereA1 andA2 are consecu
tive subarrays of size 2i−1 each. We give as names the natural numbers in increasing o
Notice that every level only uses the names of the level below it, thus the names we
every level are numbers from the set{1, . . . , n}.

To give an array a name, we need only to know if the pair of names of the comp
subarrays has appeared previously. If it did, then the array gets the name of this pa
erwise, it gets a new name. It is necessary, therefore, to show a quick way to dynam
access pairs of numbers from a bounded range universe. Formally, we would like a s
to the following problem:

Definition 5.2. The dynamic pair recognition problemis the following:
INPUT: A sequence of queries{(aj , bj)}∞j=1, whereaj , bj ∈ {1, . . . , j }.
OUTPUT: Dynamically decide, for every query(aj , bj), whether there existc, c < i such
that(aj , bj)= (ac, bc).

We will present a solution that requires, for solving each query(aj , bj), time O(logx),
wherex is the number of previous queries whose first pair element isaj . In our case, since
in every level there are at most O(n) different numbers, a dynamic pair recognition qu
is solved in time O(logn). A dynamic pair recognition query is asked O(log|Σ|) times for
each fingerprint. We conclude:

Claim 5.3. The running time of HandleFingerprint isO(log|Σ| logn).

In the remainder of this section we present the solution to the dynamic pair recog
problem. Note that our pair recognition problem is not really dynamic, since all pa
level i − 1 are available before processing of leveli begins. Thus it is possible to constru
ann× n matrix initialized as 0, and fill in all pairs as they are encountered. This al
solving each pair query in constant time but the initial cost is O(n2). We presented th
problem as a dynamic problem. While every query will take time O(logn), there are only
a total of O(n) queries, so our total time is O(n logn), which is faster.

418 A. Amir et al. / Journal of Discrete Algorithms 1 (2003) 409–421

Pair Recognition Algorithm

t no
direct
wever,
can find

ted

hing

eme

of the

of
string
e

if (a, b) ∈ BAL[a] then output “occurred previously, name is name(a, b)”
else:

j← j + 1
add (a, b) to BAL[a]
name(a, b)← j

initialize empty BAL[j]

end Algorithm

Algorithm 5.

Intuition: At any point j the pairs we are considering all have their first elemen
greater thanj . Thus, accessing the first element can be done in constant time by
access. This suggest “gathering” all pairs in trees rooted at their first element. Ho
if we make sure these trees are ordered by the second element and balanced, we
elements by binary search in time that is logarithmic in the tree size.

Algorithm’s implementation: The algorithm maintains the following data structure:

• BAL[a] is a balanced binary tree of all pairs(a, b) that have been named so far, sor
by b. Sincea, b are increasing natural numbers, starting from 1,BAL[a] is directly
accessed bya.

The algorithm is now straightforward. We are given pair(a, b) at timej and need to
recognize if it has appeared so far. See Algorithm 5.

Time: It is clear that the time for the pair recognition algorithm is the time for searc
the balanced tree, i.e., O(log|BAL[a]|)=O(log(n)).

6. Fingerprint statistics

Algorithm 5 allows us to efficiently name every fingerprint encountered. This sch
easily allows answering a number of queries on fingerprint statistics.

Query 1.
INPUT: k.
OUTPUT: The number of different sizek fingerprints inS.

The answer to the above query can be provided immediately if one keeps count
number of top level names for everyk.

Another type of query that interests us is providing the number of substringsS
that have a given fingerprint. This query requires some discussion. Consider the
xabcabcabcy and supposek = 3. Clearly the window(2,10) defines a substring whos

A. Amir et al. / Journal of Discrete Algorithms 1 (2003) 409–421 419

fingerprint isabc. However, so does every substring ofabcabcabc (that is, every subwin-
trings
f the

-
g

ne

d
’s
r
g

r

ing it.
trings.
o-
dow of(2,10)) whose length is at least 3. When we want to count the number of subs
whose fingerprint isabc, which number do we count? This brings us to a sharpening o
definition. (We assumes0 andsn+1 are defined and do not belong toΣ .)

Definition 6.1. Let S = s1s2 · · · sn be a string over finite, ordered alphabetΣ . Let φ be a
fingerprint. We call substringsi · · · sj φ-maximalif si−1 andsj+1 do not belong to finger
printφ. We say thatsi · · · sj is φ-minimalif both si andsj appear only once in the substrin
(i.e., removal of either of them will change the fingerprint).

If si · · · sj is φ-maximal (φ-minimal) andφ has sizek then we say thatsi · · · sj is k-
maximal(k-minimal).

We can now formally phrase Query 2:

Query 2.
INPUT: Fingerprintφ.
OUTPUT: The number ofφ-maximal (φ-minimal) substrings inS.

Maximal substrings:
The movements of theiright andileft pointers in the main algorithm of Section 3 defi

the maximality of the substring. If we letiright continue as long asnumber= k + 1 (rather
than untilnumber= k + 1) and we leave the advance ofileft as originally written, then we
will get windows that provide maximal substrings.

Minimal substrings:

Lemma 6.2. For k � 3, substringsi · · · sj is a k-minimal substring iffsi+1 · · · sj−1 is a
(k − 2)-maximal substring andsi �= sj .

Proof. Assumesi · · · sj is k-minimal. Then clearlysi �= sj , otherwise one of them coul
be dropped without changing the fingerprint which would contradict the substringk-
minimality. For the same reasonsi does not appear insi+1 · · · sj andsj does not appea
in si · · · sj−1. This means thatsi+1 · · · sj−1 has fingerprintk − 2. Extending the substrin
on any side raises its fingerprint size. Therefore by Definition 6.1si+1 · · · sj−1 is (k − 2)

maximal.
Conversely, ifsi+1 · · · sj−1 is (k−2) maximal then by Definition 6.1si does not appea

in si+1 · · · sj−1 and sj does not appear insi+1 · · · sj−1. If, in addition, si �= sj then the
fingerprint of si · · · sj is of sizek, and is minimal since droppingsi or sj reduces the
fingerprint size by 1.

Using Lemma 6.2, to findk-minimal substrings we simply check, for any(k − 2)-
maximal substring, if the letter preceding the substring is not equal to the letter follow
Hence, the main algorithm gives the mechanism to count maximal or minimal subs
Note that the(k − 2)-maximal substrings and thek-minimal substrings are computed t
gether.

420 A. Amir et al. / Journal of Discrete Algorithms 1 (2003) 409–421

We are now ready to tackle Query 2. At the time of fingerprint naming maintain, for
ber of
ided by

rs

r-
g

s

f

r

n of

he al-
if

y in-
rse to

pos-

bets
biose-
Some
lations
every name (representing a maximal or minimal fingerprint), a counter for the num
times it was encountered. Subsequently, the answer to the above query can be prov
computing the name of fingerprintφ. The time for mappingφ to its LIFE bit notation is
O(|Σ|). The name is then computed in time O(|Σ| logn). The number of times it appea
is denoted by the name.

A similar problem that could be of interest is findingall substrings with a given finge
print φ. The total number of substrings with fingerprintφ can be easily computed usin
the following immediate observations.

Observation 6.3.

(1) No two differentφ-maximal substrings overlap.
(2) If S1 is a φ-maximal substring andS2 is a φ-minimal substring then eitherS2 is a

substring ofS1 or S1 andS2 do not overlap.
(3) Every substring with fingerprintφ is contained in aφ-maximal substring and contain

at least oneφ-minimal substring.

According to the above observation eachφ-maximal substringS1 = si · · · sj contains a
set (at least one) ofφ-minimal substringsS21S22 · · ·S2k . LetS2y = si+ly · · · sj−ry . The total

number of substrings with fingerprintφ in S1 is (l1+ 1)(r1+ 1)+∑k
d=2(ld − ld−1)rd .

7. Open problems

Recall that we can only solve Query 2 (for input fingerprintφ count the number o
substring occurrences whose fingerprint isφ) by mappingφ to its LIFE notation. This
automatically lower bounds the time by O(|Σ|), even for small|φ|. Is it possible to answe
Query 2 in time O(|φ| × polylogn)?

It may be possible to improve the algorithm by a constant factor if the positio
ileft only moves after computing fingerprints ofall sizes starting at locationileft, rather
than the proposed method of computing the fingerprints size by size. However, t
gorithm will still have |Σ| as a multiplicative factor. It would be interesting to see
the |Σ| factor can also be reduced. If such a reduction is possible, it will probabl
volve a different idea, perhaps one that computes the fingerprints without recou
the greater amount of information provided by the Parikh vector. Is such a method
sible?

Finally, Parikh vectorsper seand their natural generalizations to weighted alpha
find possible use in a number of applications, e.g., approximate string searching in
quences and other textfiles in which the individual symbols carry some weight.
problems thus revolve around the existence of non-trivial extensions to these formu
of the techniques developed in this paper.

A. Amir et al. / Journal of Discrete Algorithms 1 (2003) 409–421 421

Acknowledgements

he first
rsities

ed by

-

are

dation
ce and
ientist

i

tree

ystem

trees,

M J.

Hall,
This research was performed during exchange visits conducted, respectively, by t
and third authors at the University of Padova, and by the second author at the Unive
of Bar-Ilan and Haifa, as part of an Israel–Italy exchange scientist grant jointly fund
the Israel Ministry of Science and the National Research Council of Italy.

Amihood Amir was partially supported by NSF grantCCR-01-04494, BSF grant 96
00509, and an Israel–Italy exchange scientist grant.

Alberto Apostolico’s work was supported in part by NSF GrantCCR-9700276, by
MURST under projectPRIN: BioInformatica e Ricerca Genomica, by the University of
Padova under projectDevelopment of Novel Pattern Discovery Algorithms and Softw,
and by an Israel–Italy exchange scientist grant.

Gad Landau was partially supported by NSF grantsCCR-9610238, andCCR-0104307,
by NATO Science Programme grant PST.CLG.977017, by the Israel Science Foun
grants 173/98 and 282/01, by the FIRST Foundation of the Israel Academy of Scien
Humanities, and by IBM Faculty Partnership Award, and an Israel–Italy exchange sc
grant.

Giorgio Satta’s work was supported in part by MURST under projectPRIN: BioInfor-
matica e Ricerca Genomicaand by University of Padova, under projectSviluppo di Sistem
ad Addestramento Automatico per l’Analisi del Linguaggio Naturale.

References

[1] A. Apostolico, C. Iliopoulos, G.M. Landau, B. Schieber, U. Vishkin, Parallel construction of a suffix
with applications, Algorithmica 3 (1988) 347–365.

[2] F. Karlsson, A. Voutilainen, J. Heikkilä, A. Anttila, Constraint Grammar. A Language Independent S
for Parsing Unrestricted Text, de Gruyter, Berlin, 1995.

[3] R. Karp, R. Miller, A. Rosenberg, Rapid identification of repeated patterns in strings, arrays and
Sympos. Theory Comput. 4 (1972) 125–136.

[4] Z.M. Kedem, G.M. Landau, K.V. Palem, Parallel suffix-prefix matching algorithm and application, SIA
Comput. 25 (5) (1996) 998–1023.

[5] P. Langley, Elements of Machine Learning, Morgan Kaufmann, San Francisco, CA, 1995.
[6] T.M. Mitchell, Machine Learning, McGraw-Hill, New York, 1997.
[7] C.H. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Prentice-

Englewood Cliffs, NJ, 1982.
[8] R.J. Parikh, On context-free languages, J. ACM 14 (4) (1966) 570–581.
[9] A. Salomaa, Formal Languages, Academic Press, New York, 1973.

[10] R. Sedgewick, Algorithms, 2nd Edition, Addison-Wesley, Reading, MA, 1988.

	Efficient text fingerprinting via Parikh mapping
	Introduction
	Problem definition
	An O(n|Sigma|2) algorithm
	Algorithm's idea:
	Algorithm's implementation:
	Time:

	An O(n|Sigma|log(n) log(|Sigma|)) algorithm
	The naming technique:
	Time:

	Computing names
	Intuition:
	Algorithm's implementation:
	Time:

	Fingerprint statistics
	Open problems
	Acknowledgements
	References

