71 research outputs found

    On Fast and Robust Information Spreading in the Vertex-Congest Model

    Full text link
    This paper initiates the study of the impact of failures on the fundamental problem of \emph{information spreading} in the Vertex-Congest model, in which in every round, each of the nn nodes sends the same O(logn)O(\log{n})-bit message to all of its neighbors. Our contribution to coping with failures is twofold. First, we prove that the randomized algorithm which chooses uniformly at random the next message to forward is slow, requiring Ω(n/k)\Omega(n/\sqrt{k}) rounds on some graphs, which we denote by Gn,kG_{n,k}, where kk is the vertex-connectivity. Second, we design a randomized algorithm that makes dynamic message choices, with probabilities that change over the execution. We prove that for Gn,kG_{n,k} it requires only a near-optimal number of O(nlog3n/k)O(n\log^3{n}/k) rounds, despite a rate of q=O(k/nlog3n)q=O(k/n\log^3{n}) failures per round. Our technique of choosing probabilities that change according to the execution is of independent interest.Comment: Appears in SIROCCO 2015 conferenc

    Algorithms and Models for the Web Graph

    Get PDF

    Pulse propagation, graph cover, and packet forwarding

    Get PDF
    We study distributed systems, with a particular focus on graph problems and fault tolerance. Fault-tolerance in a microprocessor or even System-on-Chip can be improved by using a fault-tolerant pulse propagation design. The existing design TRIX achieves this goal by being a distributed system consisting of very simple nodes. We show that even in the typical mode of operation without faults, TRIX performs significantly better than a regular wire or clock tree: Statistical evaluation of our simulated experiments show that we achieve a skew with standard deviation of O(log log H), where H is the height of the TRIX grid. The distance-r generalization of classic graph problems can give us insights on how distance affects hardness of a problem. For the distance-r dominating set problem, we present both an algorithmic upper and unconditional lower bound for any graph class with certain high-girth and sparseness criteria. In particular, our algorithm achieves a O(r·f(r))-approximation in time O(r), where f is the expansion function, which correlates with density. For constant r, this implies a constant approximation factor, in constant time. We also show that no algorithm can achieve a (2r + 1 − δ)-approximation for any δ > 0 in time O(r), not even on the class of cycles of girth at least 5r. Furthermore, we extend the algorithm to related graph cover problems and even to a different execution model. Furthermore, we investigate the problem of packet forwarding, which addresses the question of how and when best to forward packets in a distributed system. These packets are injected by an adversary. We build on the existing algorithm OED to handle more than a single destination. In particular, we show that buffers of size O(log n) are sufficient for this algorithm, in contrast to O(n) for the naive approach.Wir untersuchen verteilte Systeme, mit besonderem Augenmerk auf Graphenprobleme und Fehlertoleranz. Fehlertoleranz auf einem System-on-Chip (SoC) kann durch eine fehlertolerante Puls- Weiterleitung verbessert werden. Das bestehende Puls-Weiterleitungs-System TRIX toleriert Fehler indem es ein verteiltes System ist das nur aus sehr einfachen Knoten besteht. Wir zeigen dass selbst im typischen, fehlerfreien Fall TRIX sich weitaus besser verhält als man naiverweise erwarten würde: Statistische Analysen unserer simulierten Experimente zeigen, dass der Verzögerungs-Unterschied eine Standardabweichung von lediglich O(log logH) erreicht, wobei H die Höhe des TRIX-Netzes ist. Das Generalisieren einiger klassischer Graphen-Probleme auf Distanz r kann uns neue Erkenntnisse bescheren über den Zusammenhang zwischen Distanz und Komplexität eines Problems. Für das Problem der dominierenden Mengen auf Distanz r zeigen wir sowohl eine algorithmische obere Schranke als auch eine bedingungsfreie untere Schranke für jede Klasse von Graphen, die bestimmte Eigenschaften an Umfang und Dichte erfüllt. Konkret erreicht unser Algorithmus in Zeit O(r) eine Annäherungsgüte von O(r · f(r)). Für konstante r bedeutet das, dass der Algorithmus in konstanter Zeit eine Annäherung konstanter Güte erreicht. Weiterhin zeigen wir, dass kein Algorithmus in Zeit O(r) eine Annäherungsgüte besser als 2r + 1 erreichen kann, nicht einmal in der Klasse der Kreis-Graphen von Umfang mindestens 5r. Weiterhin haben wir das Paketweiterleitungs-Problem untersucht, welches sich mit der Frage beschäftigt, wann genau Pakete in einem verteilten System idealerweise weitergeleitetwerden sollten. Die Paketewerden dabei von einem Gegenspieler eingefügt. Wir bauen auf dem existierenden Algorithmus OED auf, um mehr als ein Paket-Ziel beliefern zu können. Dadurch zeigen wir, dass Paket-Speicher der Größe O(log n) für dieses Problem ausreichen, im Gegensatz zu den Paket-Speichern der Größe O(n) die für einen naiven Ansatz nötig wären

    Broadcast CONGEST Algorithms against Adversarial Edges

    Get PDF
    We consider the corner-stone broadcast task with an adaptive adversary that controls a fixed number of tt edges in the input communication graph. In this model, the adversary sees the entire communication in the network and the random coins of the nodes, while maliciously manipulating the messages sent through a set of tt edges (unknown to the nodes). Since the influential work of [Pease, Shostak and Lamport, JACM'80], broadcast algorithms against plentiful adversarial models have been studied in both theory and practice for over more than four decades. Despite this extensive research, there is no round efficient broadcast algorithm for general graphs in the CONGEST model of distributed computing. We provide the first round-efficient broadcast algorithms against adaptive edge adversaries. Our two key results for nn-node graphs of diameter DD are as follows: 1. For t=1t=1, there is a deterministic algorithm that solves the problem within O~(D2)\widetilde{O}(D^2) rounds, provided that the graph is 3 edge-connected. This round complexity beats the natural barrier of O(D3)O(D^3) rounds, the existential lower bound on the maximal length of 33 edge-disjoint paths between a given pair of nodes in GG. This algorithm can be extended to a O~(DO(t))\widetilde{O}(D^{O(t)})-round algorithm against tt adversarial edges in (2t+1)(2t+1) edge-connected graphs. 2. For expander graphs with minimum degree of Ω(t2logn)\Omega(t^2\log n), there is an improved broadcast algorithm with O(tlog2n)O(t \log ^2 n) rounds against tt adversarial edges. This algorithm exploits the connectivity and conductance properties of G-subgraphs obtained by employing the Karger's edge sampling technique. Our algorithms mark a new connection between the areas of fault-tolerant network design and reliable distributed communication.Comment: accepted to DISC2

    Only Time Will Tell: Modelling Information Diffusion in Code Review with Time-Varying Hypergraphs

    Full text link
    Background: Modern code review is expected to facilitate knowledge sharing: All relevant information, the collective expertise, and meta-information around the code change and its context become evident, transparent, and explicit in the corresponding code review discussion. The discussion participants can leverage this information in the following code reviews; the information diffuses through the communication network that emerges from code review. Traditional time-aggregated graphs fall short in rendering information diffusion as those models ignore the temporal order of the information exchange: Information can only be passed on if it is available in the first place. Aim: This manuscript presents a novel model based on time-varying hypergraphs for rendering information diffusion that overcomes the inherent limitations of traditional, time-aggregated graph-based models. Method: In an in-silico experiment, we simulate an information diffusion within the internal code review at Microsoft and show the empirical impact of time on a key characteristic of information diffusion: the number of reachable participants. Results: Time-aggregation significantly overestimates the paths of information diffusion available in communication networks and, thus, is neither precise nor accurate for modelling and measuring the spread of information within communication networks that emerge from code review. Conclusion: Our model overcomes the inherent limitations of traditional, static or time-aggregated, graph-based communication models and sheds the first light on information diffusion through code review. We believe that our model can serve as a foundation for understanding, measuring, managing, and improving knowledge sharing in code review in particular and information diffusion in software engineering in general.Comment: 10 pages, 6 figure
    corecore