29,679 research outputs found

    Evolutionary cell biology: Functional insight from β€œEndless forms most beautiful”

    Get PDF
    In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective, we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking

    The Origin and Evolution of Viruses as Molecular Organisms

    Get PDF
    Viruses are the most abundant life forms and the repertoire of viral genes is greater than that of cellular genes. It is also evident that viruses have played a major role in driving cellular evolution, and yet, viruses are not part of mainstream biology, nor are they included in the Tree of Life. A reason for this major paradox in biology is the misleading dogma of viruses as viral particles and their enigmatic evolutionary origin. This article presents an alternative view about the nature of viruses based on their properties during the intracellular stage of their life cycle, when viruses express features comparable to those of many parasitic cellular species. Supporting this view about the nature of viruses is a novel hypothetical evolutionary model for their origin from parasitic cellular species that fused with their host cells. By losing their membrane and cellular structure within the host cell, these new types of parasitic species gained full access to precursors for the synthesis of their specific molecules and to the host’s information processing machineries, such as translation, which created unique parasitic and evolutionary opportunities. To identify viruses during their intracellular stage of their life cycle, in which their specific molecules are free or dispersed within the host cell, this paper introduces the concept of “molecular structure” and labels viruses as “molecular organisms.” Among the extant viruses, the life cycle of poxviruses and other complex viruses that fuse with their host cells provides compelling evidence for the fusion model. One of the most remarkable implications of fusion model is that new viral lineages originated from parasitic cellular species throughout the history of life, and that this process might still be active. Surprisingly, it appears that several parasitic cellular species are currently evolving into molecular organisms. More remarkably though, according to this model, several parasites that are currently classified as cellular organisms are in fact genuine molecular organisms. The current evidence for the fusion hypothesis is strong and it is fully testable using both experimental and phylogenetic approaches. The academic and research implications of this model, which supports the inclusion of viruses in the Tree of Life, are highly significant. Some of these implications are discussed in more detail in two other articles of this series, which presents a unifying model for the origin and evolution of cellular and viral domains, including the origin of life

    A Unifying Scenario on the Origin and Evolution of Cellular and Viral Domains

    Get PDF
    The cellular theory on the nature of life has been one of the first major advancements in biology. Viruses, however, are the most abundant life forms, and their exclusion from mainstream biology and the Tree of Life (TOL) is a major paradox in biology. This article presents a broad, unifying scenario on the origin and evolution of cellular and viral domains that challenges the conventional views about the history of life and supports a TOL that includes viruses. Co-evolution of viruses and their host cells has led to some of the most remarkable developments and transitions in the evolution of life, including the origin of non-coding DNA as a genomic protective device against viral insertion damage. However, one of the major fundamental evolutionary developments driven by viruses was probably the origin of cellular domains - Bacteria, Archaea and Eukarya - from the Last Universal Common Ancestor (LUCA) lineage, by evolving anti-fusion mechanisms. Consistent with a novel fusion/fission model for the population mode of evolution of LUCA, this paper presents a “cell-like world” model for the origin of life. According to this model the evolution of coupled replication, transcription and translation system (RT&T) occurred within non-living cell-like compartments (CCs). In this model, the ancestral ribosome originated as template-based RNA synthesizing machinery. The origin of the cellular genome as a centralized unit for storage and replication of genetic information within the CCs facilitated the evolution of the ancestral ribosome into a powerful translation machinery - the modern ribosome. After several hundred millions of years of providing an enclosed environment and fusion/fission based exchanges necessary for the population mode of evolution of the basic metabolism and the RT&T, the CCs evolved into the first living entities on earth - the LUCA lineage. The paper concludes with a proposal for a TOL that integrates the co-evolution of cellular and viral domains. This is one of a series of three articles that present a unifying scenario on the origin and evolution of viral and cellular domains, including the origin of life, which has significant t bio-medical implications and could lead to a significant paradigm shift in biology

    Gene loss and lineage specific restriction-modification systems associated with niche differentiation in the Campylobacter jejuni Sequence Type 403 clonal complex

    Get PDF
    Campylobacter jejuni is a highly diverse species of bacteria commonly associated with infectious intestinal disease of humans and zoonotic carriage in poultry, cattle, pigs, and other animals. The species contains a large number of distinct clonal complexes that vary from host generalist lineages commonly found in poultry, livestock, and human disease cases to host-adapted specialized lineages primarily associated with livestock or poultry. Here, we present novel data on the ST403 clonal complex of C. jejuni, a lineage that has not been reported in avian hosts. Our data show that the lineage exhibits a distinctive pattern of intralineage recombination that is accompanied by the presence of lineage-specific restriction-modification systems. Furthermore, we show that the ST403 complex has undergone gene decay at a number of loci. Our data provide a putative link between the lack of association with avian hosts of C. jejuni ST403 and both gene gain and gene loss through nonsense mutations in coding sequences of genes, resulting in pseudogene formation

    Evolutionary origins of ultrasonic hearing and laryngeal echolocation in bats inferred from morphological analyses of the inner ear

    Get PDF
    PMCID: PMC3598973This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Molecular phylogeny and evolution of <i>Parabasalia</i> with improved taxon sampling and new protein markers of actin and elongation factor-1Ξ±

    Get PDF
    Background: Inferring the evolutionary history of phylogenetically isolated, deep-branching groups of taxaβ€”in particular determining the rootβ€”is often extraordinarily difficult because their close relatives are unavailable as suitable outgroups. One of these taxonomic groups is the phylum Parabasalia, which comprises morphologically diverse species of flagellated protists of ecological, medical, and evolutionary significance. Indeed, previous molecular phylogenetic analyses of members of this phylum have yielded conflicting and possibly erroneous inferences. Furthermore, many species of Parabasalia are symbionts in the gut of termites and cockroaches or parasites and therefore formidably difficult to cultivate, rendering available data insufficient. Increasing the numbers of examined taxa and informative characters (e.g., genes) is likely to produce more reliable inferences. Principal Findings: Actin and elongation factor-1a genes were identified newly from 22 species of termite-gut symbionts through careful manipulations and seven cultured species, which covered major lineages of Parabasalia. Their protein sequences were concatenated and analyzed with sequences of previously and newly identified glyceraldehyde-3-phosphate dehydrogenase and the small-subunit rRNA gene. This concatenated dataset provided more robust phylogenetic relationships among major groups of Parabasalia and a more plausible new root position than those previously reported. Conclusions/Significance: We conclude that increasing the number of sampled taxa as well as the addition of new sequences greatly improves the accuracy and robustness of the phylogenetic inference. A morphologically simple cell is likely the ancient form in Parabasalia as opposed to a cell with elaborate flagellar and cytoskeletal structures, which was defined as most basal in previous inferences. Nevertheless, the evolution of Parabasalia is complex owing to several independent multiplication and simplification events in these structures. Therefore, systematics based solely on morphology does not reflect the evolutionary history of parabasalids

    Selection at a single locus leads to widespread expansion of toxoplasma gondii lineages that are virulent in mice

    Get PDF
    The determinants of virulence are rarely defined for eukaryotic parasites such as T. gondii, a widespread parasite of mammals that also infects humans, sometimes with serious consequences. Recent laboratory studies have established that variation in a single secreted protein, a serine/threonine kinase known as ROPO18, controls whether or not mice survive infection. Here, we establish the extent and nature of variation in ROP18among a collection of parasite strains from geographically diverse regions. Compared to other genes, ROP18 showed extremely high levels of diversification and changes in expression level, which correlated with severity of infection in mice. Comparison with an out-group demonstrated that changes in the upstream region that regulates expression of ROP18 led to an historical increase in the expression and exposed the protein to diversifying selective pressure. Surprisingly, only three atypically distinct protein variants exist despite marked genetic divergence elsewhere in the genome. These three forms of ROP18 are likely adaptations for different niches in nature, and they confer markedly different virulence to mice. The widespread distribution of a single mouse-virulent allele among geographically and genetically disparate parasites may have consequences for transmission and disease in other hosts, including humans
    • …
    corecore