30 research outputs found

    Transmit design for MIMO wiretap channel with a malicious jammer

    Full text link
    In this paper, we consider the transmit design for multi-input multi-output (MIMO) wiretap channel including a malicious jammer. We first transform the system model into the traditional three-node wiretap channel by whitening the interference at the legitimate user. Additionally, the eavesdropper channel state information (ECSI) may be fully or statistically known, even unknown to the transmitter. Hence, some strategies are proposed in terms of different levels of ECSI available to the transmitter in our paper. For the case of unknown ECSI, a target rate for the legitimate user is first specified. And then an inverse water-filling algorithm is put forward to find the optimal power allocation for each information symbol, with a stepwise search being used to adjust the spatial dimension allocated to artificial noise (AN) such that the target rate is achievable. As for the case of statistical ECSI, several simulated channels are randomly generated according to the distribution of ECSI. We show that the ergodic secrecy capacity can be approximated as the average secrecy capacity of these simulated channels. Through maximizing this average secrecy capacity, we can obtain a feasible power and spatial dimension allocation scheme by using one dimension search. Finally, numerical results reveal the effectiveness and computational efficiency of our algorithms.Comment: 2015 IEEE 81st Vehicular Technology Conference (VTC Spring

    Power Allocation in MIMO Wiretap Channel with Statistical CSI and Finite-Alphabet Input

    Full text link
    In this paper, we consider the problem of power allocation in MIMO wiretap channel for secrecy in the presence of multiple eavesdroppers. Perfect knowledge of the destination channel state information (CSI) and only the statistical knowledge of the eavesdroppers CSI are assumed. We first consider the MIMO wiretap channel with Gaussian input. Using Jensen's inequality, we transform the secrecy rate max-min optimization problem to a single maximization problem. We use generalized singular value decomposition and transform the problem to a concave maximization problem which maximizes the sum secrecy rate of scalar wiretap channels subject to linear constraints on the transmit covariance matrix. We then consider the MIMO wiretap channel with finite-alphabet input. We show that the transmit covariance matrix obtained for the case of Gaussian input, when used in the MIMO wiretap channel with finite-alphabet input, can lead to zero secrecy rate at high transmit powers. We then propose a power allocation scheme with an additional power constraint which alleviates this secrecy rate loss problem, and gives non-zero secrecy rates at high transmit powers

    Integration of Signal and Artificial Noise in MIMO Wiretap Channel

    Get PDF
    In this paper, the integrated signal-to-artificial noise (ISAN) design is applied in MIMO wiretap channel to ensure wireless communication security. When the information of eavesdropper is unknown, the total power is divided into two parts: signal and artificial noise. The signal can secure certain quality at the legitimate receiver. The artificial noise which is in the null space of the receiver channel matrix can deteriorate eavesdropper channel by the method of beam forming. The artificial noise power is distributed evenly in other space, so that the eavesdropper channel is deteriorated in all directions. The signal to interface and noise ratio (SINR) is regarded as the efficient parameter on measuring reliability and security of information at the legitimate receiver. The simulations reveal that ISAN can deteriorate the eavesdropper channel and safeguard the information transmission on the premise of the given SINR of the legitimate receiver

    On the Transmit Beamforming for MIMO Wiretap Channels: Large-System Analysis

    Full text link
    With the growth of wireless networks, security has become a fundamental issue in wireless communications due to the broadcast nature of these networks. In this work, we consider MIMO wiretap channels in a fast fading environment, for which the overall performance is characterized by the ergodic MIMO secrecy rate. Unfortunately, the direct solution to finding ergodic secrecy rates is prohibitive due to the expectations in the rates expressions in this setting. To overcome this difficulty, we invoke the large-system assumption, which allows a deterministic approximation to the ergodic mutual information. Leveraging results from random matrix theory, we are able to characterize the achievable ergodic secrecy rates. Based on this characterization, we address the problem of covariance optimization at the transmitter. Our numerical results demonstrate a good match between the large-system approximation and the actual simulated secrecy rates, as well as some interesting features of the precoder optimization.Comment: Published in Lecture Notes in Computer Science 8317, pp. 90-102, 2014. (Proceedings of International Conference on Information-Theoretic Security (ICITS), Singapore, November 2013

    Waveform Design for Secure SISO Transmissions and Multicasting

    Full text link
    Wireless physical-layer security is an emerging field of research aiming at preventing eavesdropping in an open wireless medium. In this paper, we propose a novel waveform design approach to minimize the likelihood that a message transmitted between trusted single-antenna nodes is intercepted by an eavesdropper. In particular, with knowledge first of the eavesdropper's channel state information (CSI), we find the optimum waveform and transmit energy that minimize the signal-to-interference-plus-noise ratio (SINR) at the output of the eavesdropper's maximum-SINR linear filter, while at the same time provide the intended receiver with a required pre-specified SINR at the output of its own max-SINR filter. Next, if prior knowledge of the eavesdropper's CSI is unavailable, we design a waveform that maximizes the amount of energy available for generating disturbance to eavesdroppers, termed artificial noise (AN), while the SINR of the intended receiver is maintained at the pre-specified level. The extensions of the secure waveform design problem to multiple intended receivers are also investigated and semidefinite relaxation (SDR) -an approximation technique based on convex optimization- is utilized to solve the arising NP-hard design problems. Extensive simulation studies confirm our analytical performance predictions and illustrate the benefits of the designed waveforms on securing single-input single-output (SISO) transmissions and multicasting
    corecore