18 research outputs found

    Contributions to the analysis and segmentation of remote sensing hyperspectral images

    Get PDF
    142 p.This PhD Thesis deals with the segmentation of hyperspectral images from the point of view of Lattice Computing. We have introduced the application of Associative Morphological Memories as a tool to detect strong lattice independence, which has been proven equivalent to affine independence. Therefore, sets of strong lattice independent vectors found using our algorithms correspond to the vertices of convex sets that cover most of the data. Unmixing the data relative to these endmembers provides a collection of abundance images which can be assumed either as unsupervised segmentations of the images or as features extracted from the hyperspectral image pixels. Besides, we have applied this feature extraction to propose a content based image retrieval approach based on the image spectral characterization provided by the endmembers. Finally, we extended our ideas to the proposal of Morphological Cellular Automata whose dynamics are guided by the morphological/lattice independence properties of the image pixels. Our works have also explored the applicability of Evolution Strategies to the endmember induction from the hyperspectral image data

    Innovative applications of associative morphological memories for image processing and pattern recognition

    Get PDF
    Morphological Associative Memories have been proposed for some image denoising applications. They can be applied to other less restricted domains, like image retrieval and hyper spectral image unsupervised segmentation. In this paper we present these applications. In both cases the key idea is that Autoassociative Morphological Memories selective sensitivity to erosive and dilative noise can be applied to detect the morphological independence between patterns. Linear unmixing based on the sets of morphological independent patterns define a feature extraction process that is the basis for the image processing applications. We discuss some experimental results on the fish shape data base and on a synthetic hyperspectral image, including the comparison with other linear feature extraction algorithms (ICA and CCA)

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    PCE: Piece-wise Convex Endmember Detection

    Get PDF
    DOI: 10.1109/TGRS.2010.2041062 This item also falls under IEEE copyright. "© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works."A new hyperspectral endmember detection method that represents endmembers as distributions, autonomously partitions the input data set into several convex regions, and simultaneously determines endmember distributions and proportion values for each convex region is presented. Spectral unmixing methods that treat endmembers as distributions or hyperspectral images as piece-wise convex data sets have not been previously developed

    A Novel Densenet-324 Densely Connected Convolution Neural Network for Medical Crop Classification using Remote Sensing Hyperspectral Satellite Images

    Get PDF
    In the past few decades, importance of the medicinal Crops is extending to a large extent due to its benefits in treating life-threatening diseases. Medicinal Crop has excellent medicinal properties on its roots, stem, and leaves to prevent human and animal health. Particularly detection and identification of the Crop classes are effectively carried out using hyperspectral images as discrimination of the target feature or objects is simple and it contains rich information containing the spatial and temporal details of underlying the land cover. However, Crop classification using machine learning architectures concerning spectral characteristics obtained on the anatomical features and morphological features. Extracted features towards classification lead to several challenges such as large spatial and temporal variability and spectral signatures similarity between different objects. A further hyperspectral image poses several difficulties with changes in illumination, environment, and atmospheric aspects. To tackle those non-trivial challenges, DenseNet-324 Densely Connected convolution neural network architecture has been designed in this work to discriminate the crop and medical Crop effectively in the interested areas.  Initially, the Hyperspectral image is pre-processed against a large number of noises through the employment of the noise removal technique and bad line replacement techniques. Pre-processed image is explored to image segmentation using the global thresholding method to segment it into various regions based on spatial pieces of information on grouping the neighboring similar pixels intensity or textures. Further regions of the image are processed using principle component analysis to extract spectral features of the image. That extracted feature is employed to ant colony optimization technique to obtain the optimal features. Computed optimal features are classified using Convolution Neural Network with a hyper parameter setup. The convolution Layer of the CNN architecture process spatial, temporal, and spectral feature and generates the feature map in various context, generated feature map is max pooled in the pooling layer and classified into crops and medicinal Crop in the SoftMax layer. Experimental analysis of the proposed architecture is carried out on the Indiana Pines dataset using cross-fold validation to analyze the representation ability to discriminate the features with large variance between the different classes. From the results, it is confirmed that the proposed architecture exhibits higher performance in classification accuracy of 98.43% in classifying the Crop species compared with conventional approaches.&nbsp

    Accélération algorithmique et matérielle des méthodes d’estimation de cartes d’abondances en imagerie hyperspectrale

    Get PDF
    Hyperspectral imaging consists in collecting the reflectance spectrum for each pixel of an image. This measurement technique is used in airborne remote sensing, astrophysics, or microscopy. Processing the large data volume of a hyperspectral image requires a method with both restrained computational cost and limited memory usage. The method proposed in this thesis aims at estimating the abundance maps (component's proportions in each image pixel) by constrained least squares criterion minimization with the addition of a penalization term to ensure the maps spatial regularity. The work done intends to reduce the computing time of an interior point optimization method. Algorithmic modifications based on separable majorization are proposed. It results in a method both faster and more adapted to parallel computing tools. An implementation on Graphics Processing Units (GPU) is achieved and applied in a large scale experiment where a high number of hyperspectral images from Mars Express exploration mission are processed. The developed method is also used in a vegetation monitoring project on the french atlantic coast.L'imagerie hyperspectrale consiste en une mesure du spectre de réflectance en chacun des pixels d'une image. Cette technique de mesure est utilisée pour la télédétection aéroportée, en astrophysique ou encore en microscopie. Le traitement du grand volume de données que représente une image hyperspectrale nécessite à la fois des méthodes présentant un coût de calcul maîtrisé et un besoin mémoire raisonnable. Le traitement proposé dans cette thèse a pour objectif l'estimation de cartes d'abondances (proportions de plusieurs constituants dans chaque pixel de l'image) par minimisation d'un critère de type moindres carrés sous des contraintes de positivité et de somme à un, additionné d'un terme de pénalisation pour assurer une régularité spatiale des cartes. Les travaux réalisés ont pour objectif la réduction du temps de calcul d'une méthode d'optimisation de type points-intérieurs. Des modifications algorithmiques basées sur la notion d'approximation majorante séparable sont proposées. Il en résulte une méthode à la fois plus rapide et plus adaptée aux outils de calcul parallèle. Une implémentation sur processeurs de cartes graphiques (GPU) est réalisée et appliquée à grande échelle pour traiter un grand nombre d'images hyperspectrales issues de la mission d'exploration spatiale Mars Express. La méthode développée est également utilisée dans un projet de suivi de la végétation sur la côte atlantique française

    IMAGE UNDERSTANDING OF MOLAR PREGNANCY BASED ON ANOMALIES DETECTION

    Get PDF
    Cancer occurs when normal cells grow and multiply without normal control. As the cells multiply, they form an area of abnormal cells, known as a tumour. Many tumours exhibit abnormal chromosomal segregation at cell division. These anomalies play an important role in detecting molar pregnancy cancer. Molar pregnancy, also known as hydatidiform mole, can be categorised into partial (PHM) and complete (CHM) mole, persistent gestational trophoblastic and choriocarcinoma. Hydatidiform moles are most commonly found in women under the age of 17 or over the age of 35. Hydatidiform moles can be detected by morphological and histopathological examination. Even experienced pathologists cannot easily classify between complete and partial hydatidiform moles. However, the distinction between complete and partial hydatidiform moles is important in order to recommend the appropriate treatment method. Therefore, research into molar pregnancy image analysis and understanding is critical. The hypothesis of this research project is that an anomaly detection approach to analyse molar pregnancy images can improve image analysis and classification of normal PHM and CHM villi. The primary aim of this research project is to develop a novel method, based on anomaly detection, to identify and classify anomalous villi in molar pregnancy stained images. The novel method is developed to simulate expert pathologists’ approach in diagnosis of anomalous villi. The knowledge and heuristics elicited from two expert pathologists are combined with the morphological domain knowledge of molar pregnancy, to develop a heuristic multi-neural network architecture designed to classify the villi into their appropriated anomalous types. This study confirmed that a single feature cannot give enough discriminative power for villi classification. Whereas expert pathologists consider the size and shape before textural features, this thesis demonstrated that the textural feature has a higher discriminative power than size and shape. The first heuristic-based multi-neural network, which was based on 15 elicited features, achieved an improved average accuracy of 81.2%, compared to the traditional multi-layer perceptron (80.5%); however, the recall of CHM villi class was still low (64.3%). Two further textural features, which were elicited and added to the second heuristic-based multi-neural network, have improved the average accuracy from 81.2% to 86.1% and the recall of CHM villi class from 64.3% to 73.5%. The precision of the multi-neural network II has also increased from 82.7% to 89.5% for normal villi class, from 81.3% to 84.7% for PHM villi class and from 80.8% to 86% for CHM villi class. To support pathologists to visualise the results of the segmentation, a software tool, Hydatidiform Mole Analysis Tool (HYMAT), was developed compiling the morphological and pathological data for each villus analysis

    Handbook of Mathematical Geosciences

    Get PDF
    This Open Access handbook published at the IAMG's 50th anniversary, presents a compilation of invited path-breaking research contributions by award-winning geoscientists who have been instrumental in shaping the IAMG. It contains 45 chapters that are categorized broadly into five parts (i) theory, (ii) general applications, (iii) exploration and resource estimation, (iv) reviews, and (v) reminiscences covering related topics like mathematical geosciences, mathematical morphology, geostatistics, fractals and multifractals, spatial statistics, multipoint geostatistics, compositional data analysis, informatics, geocomputation, numerical methods, and chaos theory in the geosciences
    corecore