2,496 research outputs found

    An Efficient Algorithm for Delay and Delay- Variation Bounded Core Based Tree Generation

    Get PDF
    Many multimedia group applications require the construction of multicast tree satisfying the quality of service (QoS) requirements. To support real time communication, computer networks need to optimize the Delay and Delay-Variation Bounded Multicast Tree (DVBMT). The problem is to satisfy the end-to-end delay and delay-variation within an upper bound. The DVBMT problem is known to be NP complete. In this paper, we propose an efficient core selection algorithm for satisfying the end-to-end delay and delay-variation within an upper bound. The efficiency of the proposed algorithm is validated through the simulation. The simulation results reveal that our algorithm performs better than the existing heuristic algorithms

    QoS-VNS-CS: QoS constraints Core Selection Algorithm based on Variable Neighborhood Search Algorithm

    Get PDF
    Within the development of network multimedia technology, more and more real-time multimedia applications arrive with the need to transmit information using multicast communication. Multicast IP routing is an important topic, covering both theoretical and practical interest in different networks layers. In network layer, there are several multicast routing protocols using multicast routing trees different in the literature. However PIM-SM and CBT protocols remains the most used multicast routing protocols; they propose using a shared Core-based Tree CBT. This kind of tree provides efficient management of multicast path in changing group memberships, scalability and performance. The prime problem concerning construction of a shared tree is to determine the best position of the core. QoS-CS’s problem (QoS constraints core Selection) consists in choosing an optimal multicast router in the network as core of the Shared multicast Tree (CBT) within specified QoS constraints associated. The choice of this specific router, called RP in PIM-SM protocol and core in CBT protocol, affects the structure of multicast routing tree, and therefore influences performances of both multicast session and routing scheme. QoS-CS is an NP complete problem need to be solved through a heuristic algorithm, in this paper, we propose a new core Selection algorithm based on Variable Neighborhood Search algorithm and new CMP fitness function. Simulation results show that good performance is achieved in multicast cost, end-to-end delay, tree construction delay and others metrics

    QoS multicast routing protocol oriented to cognitive network using competitive coevolutionary algorithm

    Get PDF
    The human intervention in the network management and maintenance should be reduced to alleviate the ever-increasing spatial and temporal complexity. By mimicking the cognitive behaviors of human being, the cognitive network improves the scalability, self-adaptation, self-organization, and self-protection in the network. To implement the cognitive network, the cognitive behaviors for the network nodes need to be carefully designed. Quality of service (QoS) multicast is an important network problem. Therefore, it is appealing to develop an effective QoS multicast routing protocol oriented to cognitive network. In this paper, we design the cognitive behaviors summarized in the cognitive science for the network nodes. Based on the cognitive behaviors, we propose a QoS multicast routing protocol oriented to cognitive network, named as CogMRT. It is a distributed protocol where each node only maintains local information. The routing search is in a hop by hop way. Inspired by the small-world phenomenon, the cognitive behaviors help to accumulate the experiential route information. Since the QoS multicast routing is a typical combinatorial optimization problem and it is proved to be NP-Complete, we have applied the competitive coevolutionary algorithm (CCA) for the multicast tree construction. The CCA adopts novel encoding method and genetic operations which leverage the characteristics of the problem. We implement and evaluate CogMRT and other two promising alternative protocols in NS2 platform. The results show that CogMRT has remarkable advantages over the counterpart traditional protocols by exploiting the cognitive favors

    Design of Overlay Networks for Internet Multicast - Doctoral Dissertation, August 2002

    Get PDF
    Multicast is an efficient transmission scheme for supporting group communication in networks. Contrasted with unicast, where multiple point-to-point connections must be used to support communications among a group of users, multicast is more efficient because each data packet is replicated in the network – at the branching points leading to distinguished destinations, thus reducing the transmission load on the data sources and traffic load on the network links. To implement multicast, networks need to incorporate new routing and forwarding mechanisms in addition to the existing are not adequately supported in the current networks. The IP multicast are not adequately supported in the current networks. The IP multicast solution has serious scaling and deployment limitations, and cannot be easily extended to provide more enhanced data services. Furthermore, and perhaps most importantly, IP multicast has ignored the economic nature of the problem, lacking incentives for service providers to deploy the service in wide area networks. Overlay multicast holds promise for the realization of large scale Internet multicast services. An overlay network is a virtual topology constructed on top of the Internet infrastructure. The concept of overlay networks enables multicast to be deployed as a service network rather than a network primitive mechanism, allowing deployment over heterogeneous networks without the need of universal network support. This dissertation addresses the network design aspects of overlay networks to provide scalable multicast services in the Internet. The resources and the network cost in the context of overlay networks are different from that in conventional networks, presenting new challenges and new problems to solve. Our design goal are the maximization of network utility and improved service quality. As the overall network design problem is extremely complex, we divide the problem into three components: the efficient management of session traffic (multicast routing), the provisioning of overlay network resources (bandwidth dimensioning) and overlay topology optimization (service placement). The combined solution provides a comprehensive procedure for planning and managing an overlay multicast network. We also consider a complementary form of overlay multicast called application-level multicast (ALMI). ALMI allows end systems to directly create an overlay multicast session among themselves. This gives applications the flexibility to communicate without relying on service provides. The tradeoff is that users do not have direct control on the topology and data paths taken by the session flows and will typically get lower quality of service due to the best effort nature of the Internet environment. ALMI is therefore suitable for sessions of small size or sessions where all members are well connected to the network. Furthermore, the ALMI framework allows us to experiment with application specific components such as data reliability, in order to identify a useful set of communication semantic for enhanced data services
    • …
    corecore