31 research outputs found

    On Distributive Subalgebras of Qualitative Spatial and Temporal Calculi

    Full text link
    Qualitative calculi play a central role in representing and reasoning about qualitative spatial and temporal knowledge. This paper studies distributive subalgebras of qualitative calculi, which are subalgebras in which (weak) composition distributives over nonempty intersections. It has been proven for RCC5 and RCC8 that path consistent constraint network over a distributive subalgebra is always minimal and globally consistent (in the sense of strong nn-consistency) in a qualitative sense. The well-known subclass of convex interval relations provides one such an example of distributive subalgebras. This paper first gives a characterisation of distributive subalgebras, which states that the intersection of a set of n≄3n\geq 3 relations in the subalgebra is nonempty if and only if the intersection of every two of these relations is nonempty. We further compute and generate all maximal distributive subalgebras for Point Algebra, Interval Algebra, RCC5 and RCC8, Cardinal Relation Algebra, and Rectangle Algebra. Lastly, we establish two nice properties which will play an important role in efficient reasoning with constraint networks involving a large number of variables.Comment: Adding proof of Theorem 2 to appendi

    On redundant topological constraints

    Full text link
    © 2015 Elsevier B.V. All rights reserved. Redundancy checking is an important task in the research of knowledge representation and reasoning. In this paper, we consider redundant qualitative constraints. For a set Γ of qualitative constraints, we say a constraint (xRy) in Γ is redundant if it is entailed by the rest of Γ. A prime subnetwork of Γ is a subset of Γ which contains no redundant constraints and has the same solution set as Γ. It is natural to ask how to compute such a prime subnetwork, and when it is unique. We show that this problem is in general intractable, but becomes tractable if Γ is over a tractable subalgebra S of a qualitative calculus. Furthermore, if S is a subalgebra of the Region Connection Calculus RCC8 in which weak composition distributes over nonempty intersections, then Γ has a unique prime subnetwork, which can be obtained in cubic time by removing all redundant constraints simultaneously from Γ. As a by-product, we show that any path-consistent network over such a distributive subalgebra is minimal and globally consistent in a qualitative sense. A thorough empirical analysis of the prime subnetwork upon real geographical data sets demonstrates the approach is able to identify significantly more redundant constraints than previously proposed algorithms, especially in constraint networks with larger proportions of partial overlap relations

    Efficient path consistency algorithm for large qualitative constraint networks

    Full text link
    We propose a new algorithm called DPC+ to enforce partial path consistency (PPC) on qualitative constraint networks. PPC restricts path consistency (PC) to a triangulation of the underlying constraint graph of a network. As PPC retains the sparseness of a constraint graph, it can make reasoning tasks such as consistency checking and minimal labelling of large qualitative constraint networks much easier to tackle than PC. For qualitative constraint networks defined over any distributive subalgebra of well-known spatio-temporal calculi, such as the Region Connection Calculus and the Interval Algebra, we show that DPC+ can achieve PPC very fast. Indeed, the algorithm enforces PPC on a qualitative constraint network by processing each triangle in a triangulation of its underlying constraint graph at most three times. Our experiments demonstrate significant improvements of DPC+ over the state-of-the-art PPC enforcing algorithm

    Qualitative spatial and temporal representation and reasoning : efficiency in time and space

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Qualitative Spatial and Temporal Reasoning (QSTR) provides a human-friendly abstract way to describe and to interpret spatial and temporal information. To describe the qualitative information, QSTR makes use of qualitative relations between entities and usually stores them in a qualitative constraint network (QCN). The QCNs are then used as the basis to process qualitative spatial and temporal information, including qualitative reasoning and query answering. Time efficiency of reasoning techniques in QSTR is critical for applications to deal with qualitative spatial and temporal information in large-scale datasets. In this thesis, we present a special family of tractable subclasses of relations, called distributive subalgebras. We show that several efficient algorithms are applicable to the QCNs over distributive subalgebras for solving important reasoning problems. We also identify maximal distributive subalgebras for popular relation models in QSTR and point out their connections with several previously identified important subclasses. Regarding the network representation in QSTR, there are two important problems, which in turn affect the time efficiency of other applications. First, the network representation can have redundant relations, which will significantly increase the efforts needed for tasks whose efficiency is strongly related to the number of relations in a network. Fortunately, for any QCN over distributive subalgebras of qualitative calculi PA, RCC5, and RCC8, we show that essentially it has a unique subset consisting of non-redundant relations, which expresses the same qualitative information as the original QCN. We also devise an efficient algorithm to construct such subsets. Second, the network representation sometimes requires a large storage space when encoding large-scale data. This could severely limit the ability of relation retrieval for any two given spatial entities. In fact, when the size of a QCN becomes large, it might be too costly or even infeasible to fit the QCN into fast accessible storage and relation retrieval will become inefficient. We propose two alternative representation techniques to compactly encode qualitative spatial relations between regions. For this purpose, the first technique uses minimum bounding rectangles (MBRs) to encode both topological relations and directional relations, while the second technique focuses on encoding topological relations by generating axis-aligned rectangles for spatial entities. We show that for large real-world datasets of regions, these two techniques can significantly reduce the storage size of qualitative spatial information and in the meantime the relations between regions can be efficiently inferred from those simple geometric shapes

    Efficiently reasoning about qualitative constraints through variable elimination

    Full text link
    © 2016 ACM. We introduce, study, and evaluate a novel algorithm in the context of qualitative constraint-based spatial and temporal reasoning, that is based on the idea of variable elimination, a simple and general exact inference approach in probabilistic graphical models. Given a qualitative constraint network M, our algorithm enforces a particular directional local consistency on M, which we denote by ←-consistency. Our discussion is restricted to distributive subclasses of relations, i.e., sets of relations closed under converse, intersection, and weak composition and for which weak composition distributes over non-empty intersections for all of their relations. We demonstrate that enforcing ←-consistency on a given qualitative constraint network defined over a distributive subclass of relations allows us to decide its satisfiability. The experimentation that we have conducted with random and real-world qualitative constraint networks defined over a distributive subclass of relations of the Region Connection Calculus, shows that our approach exhibits unparalleled performance against competing state-of-the-art approaches for checking the satisfiability of such constraint networks

    Collective Singleton-Based Consistency for Qualitative Constraint Networks

    Get PDF
    Partial singleton closure under weak composition, or partial singleton (weak) path-consistency for short, is essential for approximating satisfiability of qualitative constraints networks. Briefly put, partial singleton path-consistency ensures that each base relation of each of the constraints of a qualitative constraint network can define a singleton relation in the corresponding partial closure of that network under weak composition, or in its corresponding partially (weak) path-consistent subnetwork for short. In particular, partial singleton path-consistency has been shown to play a crucial role in tackling the minimal labeling problem of a qualitative constraint network, which is the problem of finding the strongest implied constraints of that network. In this paper, we propose a stronger local consistency that couples partial singleton path-consistency with the idea of collectively deleting certain unfeasible base relations by exploiting singleton checks. We then propose an efficient algorithm for enforcing this consistency that, given a qualitative constraint network, performs fewer constraint checks than the respective algorithm for enforcing partial singleton path-consistency in that network. We formally prove certain properties of our new local consistency, and motivate its usefulness through demonstrative examples and a preliminary experimental evaluation with qualitative constraint networks of Interval Algebra

    Temporal Sequences of Qualitative Information: Reasoning about the Topology of Constant-Size Moving Regions

    Full text link
    International audienceRelying on the recently introduced multi-algebras, we present a general approach for reasoning about temporal sequences of qualitative information that is generally more efficient than existing techniques. Applying our approach to the specific case of sequences of topological information about constant-size regions, we show that the resulting formalism has a complete procedure for deciding consistency, and we identify its three maximal tractable sub-classes containing all basic relations

    Spatial representability of neuronal activity

    Get PDF
    A common approach to interpreting spiking activity is based on identifying the firing fields—regions in physical or configuration spaces that elicit responses of neurons. Common examples include hippocampal place cells that fire at preferred locations in the navigated environment, head direction cells that fire at preferred orientations of the animal’s head, view cells that respond to preferred spots in the visual field, etc. In all these cases, firing fields were discovered empirically, by trial and error. We argue that the existence and a number of properties of the firing fields can be established theoretically, through topological analyses of the neuronal spiking activity. In particular, we use Leray criterion powered by persistent homology theory, Eckhoff conditions and Region Connection Calculus to verify consistency of neuronal responses with a single coherent representation of space
    corecore