721 research outputs found

    Dynamic Polymorphic Reconfiguration to Effectively “CLOAK” a Circuit’s Function

    Get PDF
    Today\u27s society has become more dependent on the integrity and protection of digital information used in daily transactions resulting in an ever increasing need for information security. Additionally, the need for faster and more secure cryptographic algorithms to provide this information security has become paramount. Hardware implementations of cryptographic algorithms provide the necessary increase in throughput, but at a cost of leaking critical information. Side Channel Analysis (SCA) attacks allow an attacker to exploit the regular and predictable power signatures leaked by cryptographic functions used in algorithms such as RSA. In this research the focus on a means to counteract this vulnerability by creating a Critically Low Observable Anti-Tamper Keeping Circuit (CLOAK) capable of continuously changing the way it functions in both power and timing. This research has determined that a polymorphic circuit design capable of varying circuit power consumption and timing can protect a cryptographic device from an Electromagnetic Analysis (EMA) attacks. In essence, we are effectively CLOAKing the circuit functions from an attacker

    Machine-learning-based side-channel evaluation of elliptic-curve cryptographic FPGA processor

    Get PDF
    Security of embedded systems is the need of the hour. A mathematically secure algorithm runs on a cryptographic chip on these systems, but secret private data can be at risk due to side-channel leakage information. This research focuses on retrieving secret-key information, by performing machine-learning-based analysis on leaked power-consumption signals, from Field Programmable Gate Array (FPGA) implementation of the elliptic-curve algorithm captured from a Kintex-7 FPGA chip while the elliptic-curve cryptography (ECC) algorithm is running on it. This paper formalizes the methodology for preparing an input dataset for further analysis using machine-learning-based techniques to classify the secret-key bits. Research results reveal how pre-processing filters improve the classification accuracy in certain cases, and show how various signal properties can provide accurate secret classification with a smaller feature dataset. The results further show the parameter tuning and the amount of time required for building the machine-learning models

    Side Channel Attacks on IoT Applications

    Get PDF

    Compromising emissions from a high speed cryptographic embedded system

    Get PDF
    Specific hardware implementations of cryptographic algorithms have been subject to a number of “side channel” attacks of late. A side channel is any information bearing emission that results from the physical implementation of a cryptographic algorithm. Smartcard realisations have been shown to be particularly vulnerable to these attacks. Other more complex embedded cryptographic systems may also be vulnerable, and each new design needs to be tested. The vulnerability of a recently developed high speed cryptographic accelerator is examined. The purpose of this examination is not only to verify the integrity of the device, but also to allow its designers to make a determination of its level of conformance with any standard that they may wish to comply with. A number of attacks were reviewed initially and two were chosen for examination and implementation - Power Analysis and Electromagnetic Analysis. These particular attacks appeared to offer the greatest threat to this particular system. Experimental techniques were devised to implement these attacks and a simulation and micrcontroller emulation were setup to ensure these techniques were sound. Each experimental setup was successful in attacking the simulated data and the micrcontroller circuit. The significance of this was twofold in that it verified the integrity of the setup and proved that a real threat existed. However, the attacks on the cryptographic accelerator failed in all cases to reveal any significant information. Although this is considered a positive result, it does not prove the integrity of the device as it may be possible for an adversary with more resources to successfully attack the board. It does however increase the level of confidence in this particular product and acts as a stepping stone towards conformance of cryptographic standards. The experimental procedures developed can also be used by designers wishing to test the vulnerability of their own products to these attacks

    Parallel FPGA Implementation of RSA with Residue Number Systems - Can side-channel threats be avoided? - Extended version

    Get PDF
    In this paper, we present a new parallel architecture to avoid side-channel analyses such as: timing attack, simple/differential power analysis, fault induction attack and simple/differential electromagnetic analysis. We use a Montgomery Multiplication based on Residue Number Systems. Thanks to RNS, we develop a design able to perform an RSA signature in parallel on a set of identical and independent coprocessors. Of independent interest, we propose a new DPA countermeasure in the framework of RNS. It is only (slightly) memory consuming (1.5 KBytes). Finally, we synthesized our new architecture on FPGA and it presents promising performance results. Even if our aim is to sketch a secure architecture, the RSA signature is performed in less than 160 ms, with competitive hardware resources. To our knowledge, this is the first proposal of an architecture counteracting electromagnetic analysis apart from hardware countermeasures reducing electromagnetic radiations

    A Network-based Asynchronous Architecture for Cryptographic Devices

    Get PDF
    Institute for Computing Systems ArchitectureThe traditional model of cryptography examines the security of the cipher as a mathematical function. However, ciphers that are secure when specified as mathematical functions are not necessarily secure in real-world implementations. The physical implementations of ciphers can be extremely difficult to control and often leak socalled side-channel information. Side-channel cryptanalysis attacks have shown to be especially effective as a practical means for attacking implementations of cryptographic algorithms on simple hardware platforms, such as smart-cards. Adversaries can obtain sensitive information from side-channels, such as the timing of operations, power consumption and electromagnetic emissions. Some of the attack techniques require surprisingly little side-channel information to break some of the best known ciphers. In constrained devices, such as smart-cards, straightforward implementations of cryptographic algorithms can be broken with minimal work. Preventing these attacks has become an active and a challenging area of research. Power analysis is a successful cryptanalytic technique that extracts secret information from cryptographic devices by analysing the power consumed during their operation. A particularly dangerous class of power analysis, differential power analysis (DPA), relies on the correlation of power consumption measurements. It has been proposed that adding non-determinism to the execution of the cryptographic device would reduce the danger of these attacks. It has also been demonstrated that asynchronous logic has advantages for security-sensitive applications. This thesis investigates the security and performance advantages of using a network-based asynchronous architecture, in which the functional units of the datapath form a network. Non-deterministic execution is achieved by exploiting concurrent execution of instructions both with and without data-dependencies; and by forwarding register values between instructions with data-dependencies using randomised routing over the network. The executions of cryptographic algorithms on different architectural configurations are simulated, and the obtained power traces are subjected to DPA attacks. The results show that the proposed architecture introduces a level of non-determinism in the execution that significantly raises the threshold for DPA attacks to succeed. In addition, the performance analysis shows that the improved security does not degrade performance

    A New Exponentiation Algorithm Resistant to Combined Side Channel Attack

    Get PDF
    Abstract Since two different types of side channel attacks based on passive information leakage and active fault injection are independently considered as implementation threats on cryptographic modules, most countermeasures have been separately developed according to each attack type. But then, Amiel et al. proposed a combined side channel attack in which an attacker combines these two methods to recover the secret key in an RSA implementation. In this paper, we show that the BNP (Boscher, Naciri, and Prouff) algorithm for RSA, which is an SPA/FA-resistant exponentiation method, is also vulnerable to the combined attack. In addition, we propose a new exponentiation algorithm resistant to power analysis and fault attack as well as the combined attack. The proposed secure exponentiation algorithm can be employed to strengthen the security of CRT-RSA

    AES Side-Channel Countermeasure using Random Tower Field Constructions

    No full text
    International audienceMasking schemes to secure AES implementations against side-channel attacks is a topic of ongoing research. The most sensitive part of the AES is the non-linear SubBytes operation, in particular, the inversion in GF(2^8), the Galois field of 2^8 elements. In hardware implementations, it is well known that the use of the tower of extensions GF(2) ⊂ GF(2^2) ⊂ GF(2^4) ⊂ GF(2^8) leads to a more efficient inversion. We propose to use a random isomorphism instead of a fixed one. Then, we study the effect of this randomization in terms of security and efficiency. Considering the field extension GF(2^8)/GF(2^4), the inverse operation leads to computation of its norm in GF(2^4). Hence, in order to thwart side-channel attack, we manage to spread the values of norms over GF(2^4). Combined with a technique of boolean masking in tower fields, our countermeasure strengthens resistance against first-order differential side-channel attacks

    Lightweight Architectures for Reliable and Fault Detection Simon and Speck Cryptographic Algorithms on FPGA

    Get PDF
    The widespread use of sensitive and constrained applications necessitates lightweight (lowpower and low-area) algorithms developed for constrained nano-devices. However, nearly all of such algorithms are optimized for platform-based performance and may not be useful for diverse and flexible applications. The National Security Agency (NSA) has proposed two relatively-recent families of lightweight ciphers, i.e., Simon and Speck, designed as efficient ciphers on both hardware and software platforms. This paper proposes concurrent error detection schemes to provide reliable architectures for these two families of lightweight block ciphers. The research work on analyzing the reliability of these algorithms and providing fault diagnosis approaches has not been undertaken to date to the best of our knowledge. The main aim of the proposed reliable architectures is to provide high error coverage while maintaining acceptable area and power consumption overheads. To achieve this, we propose a variant of recomputing with encoded operands. These low-complexity schemes are suited for lowresource applications such as sensitive, constrained implantable and wearable medical devices. We perform fault simulations for the proposed architectures by developing a fault model framework. The architectures are simulated and analyzed on recent field-programmable grate array (FPGA) platforms, and it is shown that the proposed schemes provide high error coverage. The proposed low-complexity concurrent error detection schemes are a step forward towards more reliable architectures for Simon and Speck algorithms in lightweight, secure applications
    • 

    corecore