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Abstract

The traditional model of cryptography examines the security of the cipher as a

mathematical function. However, ciphers that are secure when specified as mathemat-

ical functions are not necessarily secure in real-world implementations. The physical

implementations of ciphers can be extremely difficult to control and often leak so-

called side-channel information. Side-channel cryptanalysis attacks have shown to

be especially effective as a practical means for attacking implementations of crypto-

graphic algorithms on simple hardware platforms, such as smart-cards. Adversaries

can obtain sensitive information from side-channels, such as the timing of operations,

power consumption and electromagnetic emissions. Some of the attack techniques

require surprisingly little side-channel information to break some of the best known

ciphers. In constrained devices, such as smart-cards, straightforward implementations

of cryptographic algorithms can be broken with minimal work. Preventing these at-

tacks has become an active and a challenging area of research.

Power analysis is a successful cryptanalytic technique that extracts secret informa-

tion from cryptographic devices by analysing the power consumed during their oper-

ation. A particularly dangerous class of power analysis, differential power analysis

(DPA), relies on the correlation of power consumption measurements. It has been pro-

posed that adding non-determinism to the execution of the cryptographic device would

reduce the danger of these attacks. It has also been demonstrated that asynchronous

logic has advantages for security-sensitive applications. This thesis investigates the

security and performance advantages of using a network-based asynchronous architec-

ture, in which the functional units of the datapath form a network. Non-deterministic

execution is achieved by exploiting concurrent execution of instructions both with and

without data-dependencies; and by forwarding register values between instructions

with data-dependencies using randomised routing over the network. The executions of

cryptographic algorithms on different architectural configurations are simulated, and

the obtained power traces are subjected to DPA attacks. The results show that the

proposed architecture introduces a level of non-determinism in the execution that sig-

nificantly raises the threshold for DPA attacks to succeed. In addition, the performance

analysis shows that the improved security does not degrade performance.
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Chapter 1

Introduction

Cryptography in its traditional setting examines the security of the cipher as a mathe-

matical function. In addition, it assumes that the secret information can be physically

protected in tamper-proof locations and manipulated in closed, reliable computing en-

vironments. However, cryptographic systems are implemented on real electronic de-

vices that process, transmit and store data. While operating, these devices interact with

and influence the environment and leak a certain amount of information into so-called

side-channels. An attacker can potentially compromise the secret cryptographic key

stored in these devices by monitoring information that is leaked into side-channels.

This type of cryptanalysis is known as side-channel analysis.

Numerous techniques for testing cryptographic algorithms in isolation have been

designed. The most well known and studied methods, differential cryptanalysis [27]

and linear cryptanalysis [90], can exploit extremely small statistical characteristics

in the cipher’s inputs and outputs. However, these methods analyse only one part of

a cryptosystem’s architecture: the algorithm’s mathematical structure. On the other

hand, by employing side-channel analysis the attacker is able to exploit weaknesses of

physical implementations, rather than weaknesses of algorithmic aspects of a particular

cryptosystem. Ongoing research in the last ten years (since 1995) has shown that the

information transmitted via side-channels, such as execution time [76], computational

faults [30, 28], power consumption [78] and electromagnetic emissions [113, 53, 13],

can be detrimental to the security of ciphers.

Hundreds of millions of cryptographic devices, the vast majority being smart-cards,

are used today in a variety of applications. These cards execute cryptographic compu-

tations based on the secret key stored in their memories. The goal of an attacker is to

extract the secret key from a tamper-resistant card in order to modify its content, create

1
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duplicate cards or perform an unauthorised transaction. Two general types of attacks

can be distinguished:

1. Invasive attacks are attacks where the smart-card can be decomposed, its chip ex-

tracted, modified, probed, partially destroyed or used in a particular environmen-

tal setting. These attacks leave visible proof of tampering. They typically require

a considerable amount of time, sophisticated (often very expensive) equipment

and detailed knowledge of the card’s internals. Due to these factors, invasive

attacks are usually applied to extract information about the smart-card systems,

and rarely to extract information about individual users. These attacks include

fault attacks [30] and probing attacks [80].

2. Non-invasive attacks are attacks where the smart-card is passively monitored

during its operation and communication with a (possibly modified) smart-card

reader. No proof of tampering is evident from these attacks. They require mini-

mal investment and can be carried out in relatively short amounts of time. These

characteristics of non-invasive attacks have made them of great interest in re-

cent years. Non-invasive attacks include side-channel attacks [76, 77] and glitch

attacks [80]. The focus of this thesis is on side-channel attacks in particular.

Side-channel attacks were first discovered by Paul Kocher in 1995. The first side-

channel discovery was the timing attack [76] which uses timing information to deduce

the values of the secret keys. This attack exploits weaknesses in implementations of the

observed cryptosystem, and correlates the time needed to perform the cryptographic

operation with the operations performed and the input parameters. A typical example

of these weaknesses are branches in the code that depend on the values of the secret

key, found in square-and-multiply algorithm that is used in ciphers such as RSA [117].

The next attack to appear, the power analysis attack [78], was discovered in 1998

by Paul Kocher and his team of researchers from Cryptography Research in San Fran-

cisco. Kocher et al. described two types of attacks: simple power analysis (SPA)

and differential power analysis (DPA). Basic to these attacks is the observation that

the power consumed by the cryptographic device (in this case the smart-card) at any

particular time during the cryptographic operation is related to the instruction being

executed and to the data being processed. One of the ideas to prevent the timing attack

on the square-and-multiply algorithm was to pad the code with dummy computations,

such as empty loops. Kocher et al. noticed that the power consumption of these dummy
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computations was different from the power consumption of meaningful ones. By sim-

ply observing the power traces obtained from the RSA coprocessor, they were able to

determine which operations were performed, what enabled them to disclose the secret

exponent. This is the basis of simple power analysis.

A far more powerful attack, the differential power analysis (DPA), is based on per-

forming a statistical analysis of a large number of encryptions with known plaintexts

(or ciphertexts). There are variants of this attack that do not require the knowledge

of either plaintexts or the ciphertexts [29] and variants that use more sophisticated

statistical methods, known as higher-order DPA attacks [78].

Another type of very powerful side-channel analysis attacks is based on measur-

ing electromagnetic emissions, and is known as electromagnetic emission analysis

(EMA) [53, 113]. The techniques used in electromagnetic analysis are very similar

to those used in power analysis, although in some cases these attacks have proven to

be even more threatening than power analysis attacks [115].

Probably the most threatening and well studied side-channel attack is the DPA at-

tack. The DPA attack exploits the characteristic behaviour of transistor logic gates and

software running on today’s smart-cards and other cryptographic devices. The attack

is performed by monitoring the electrical activity of a device, and then using advanced

statistical methods secret information (such as secret keys and user PINs) stored in the

device is determined. Far from being a theoretical attack DPA has been successfully

carried out on a wide range of existing cryptographic devices and, therefore, represents

a real threat to the security of modern cryptographic systems. What makes the DPA at-

tack especially dangerous is the fact that it is inexpensive to perform (using cheap and

readily available equipment) and most implementations are vulnerable, unless specific

countermeasures are in place. The degree of security these countermeasures provide

can be different, but any countermeasure is valuable because it increases the cost and

the complexity of performing the attack. The complexity of power analysis attacks

can be increased by introducing software (algorithmic) and hardware (physical) coun-

termeasures. A general strategy to render side-channel attacks more difficult to apply

is to balance and randomise major computations which involve the secret key. These

attacks largely depend on the possibility to statistically correlate different runs of the

same algorithm with the same key and different plaintexts. This means to correlate

power consumption curves and the points on the curves that correspond to vulnerable

operations (i.e. those that involve the secret key).
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A number of countermeasures against the DPA attack and its variations have been

proposed in recent years. However, the vast majority of these countermeasures do not

guarantee security against these attacks, but rather raise the threshold for such attacks

to succeed or force the use of more complex and costly techniques. A general obser-

vation concerning software countermeasures is that they are easy and inexpensive to

implement (as they do not require the redesign of the existing hardware), but are not ap-

plicable to every cipher and are still susceptible to higher-order DPA attacks or signal

processing analysis [94]. Hardware countermeasures, similarly to software counter-

measures, focus on destroying the correlation between the power measurements and

the values of the secret key. Another target of hardware countermeasures is the align-

ment of operations in power consumption curves, an important property used by DPA.

Removing the correlation between features in the DPA profile and the algorithm source

code makes retrieving useful information from the power traces significantly harder.

Hardware countermeasures can generally provide a higher level of security but can

also be costly in terms of performance, power efficiency and memory requirements.

1.1 Thesis aims and contributions

With the discovery of side-channel attacks security at the physical level of crypto-

graphic hardware has become crucial. At the same time, low-power hand-held crypto-

graphic devices, such as smart-cards, have become ubiquitous. Today smart-cards are

used in a large number of applications including authentication and payment mecha-

nisms. They are harder to crack than their magnetic strip predecessors, but are, how-

ever, still threatened by the wide range of invasive and non-invasive attacks. In addi-

tion, cracking smart-cards has become increasingly profitable. The wide-spread use

of smart-cards provides those capable of reverse engineering or simply extracting the

secret key material from smart-cards with new opportunities for theft and fraud [102].

This is the type of environment in which modern smart-cards need to survive.

A critical question, addressed in this thesis, is how to secure the physical layer of

cryptographic devices against side-channel attacks without degrading performance. In

that direction, this thesis concentrates on the design of an architecture that is robust to

DPA attacks.

Asynchronous architectures have been suggested as an attractive platform for se-

cure cryptographic devices [113, 102]. The reduced power consumption of these de-

vices and the absence of the clock, the source of correlation in power consumption
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curves, suggest that these architectures could exhibit improved security characteris-

tics.

One of the proposed solutions to thwart the DPA attack was to introduce random-

ness and non-determinism in the execution [80, 78, 36, 91]. Due to the data-dependent

nature of delays in asynchronous circuits, the precise ordering of events is usually non-

deterministic. This thesis explores possibilities for increasing this already present level

of non-determinism in the execution.

The main contribution of this thesis is a novel architectural approach to thwart DPA

in the form of a network-based asynchronous architecture, in which the functional

units in the processor datapath are themselves connected as an asynchronous network,

rather than as a linear pipeline. The aim of this design is to decorrelate the power con-

sumption measurements by exploiting the inherent non-determinism of instructions

executing in parallel over a network in which routing of data is randomised. Data-

dependencies between instructions are identified at run-time and the dependency infor-

mation is used in data-forwarding in order to bypass the register file. The functional

units are organised in a structure that belongs to so-called graphs on alphabets [81].

Now, each forwarding operation requires routing of the data through the network. Ad-

ditionally, the routing is randomised and introduces random timing variations in the

execution of the algorithm. The term non-determinism, used throughout the thesis,

refers to the execution of instructions in a non-deterministic fashion, i.e., randomising

the order of instruction execution and, thus, their timings. Randomisation is achieved

through a randomised data-forwarding process. This process introduces different tim-

ing interleavings and, thus, randomises (or adds non-determinism to) (1) the order of

execution for different microinstructions and consequently instructions; (2) execution

times, making them different for different runs of the code; and (3) execution power

signatures, making them different for different runs of the code.

Similar concepts which use special mechanisms to randomise the execution of in-

structions to achieve similar goals, have been presented in [91, 92, 66]. But unlike

[91, 92], in which the randomisation process is an overhead, the asynchronous network

executes instructions in parallel to improve performance, while non-deterministic exe-

cution is a natural side-effect. The non-deterministic execution should result in power

signatures that are harder to correlate using statistical methods, which provides a level

of protection against power analysis attacks.

The main aim of this thesis is to investigate the validity of architectural ideas that

aim at improving the security of cryptographic devices by introducing non-determinism
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in the execution. In that direction, the main contribution of this thesis is provided evi-

dence that the network-based asynchronous architecture does improve the resistance of

cryptographic functions to DPA attacks. This makes the network-based asynchronous

architecture an attractive platform for security-sensitive applications.

1.2 Thesis structure

The summary of the remaining chapters is given next.

Chapter 2 presents the details of the cryptographic algorithms that were used in the

security investigations in this thesis. This includes the definition and specifi-

cation of the Data Encryption Standard (DES) and the Advanced Encryption

Standard (AES). It also presents well-known (non-side-channel) cryptanalytic

methods for attacking these two important ciphers.

Chapter 3 provides details of the main background area, side-channel analysis. This

includes details on three types of side-channel attacks: (1) timing analysis, (2)

simple and differential power analysis, and (3) electromagnetic emission analy-

sis; and the fault analysis as another important threat to cryptographic devices.

This chapter also gives background on power dissipation, and covers some of

the countermeasures proposed to defend cryptosystems against these attacks.

Chapter 4 introduces the second background area, asynchronous design. This chapter

also reviews related work on the asynchronous network-based architecture and

side-channel analysis attacks on asynchronous architectures.

Chapter 5 provides a detailed description of the design of the network-based asyn-

chronous architecture. In particular, this chapter presents the architecture or-

ganisation and its building blocks, instruction execution through its stages, data-

forwarding, routing in the network of functional units and data-sharing as used

in this design. It also provides the details of the network topologies and the

randomised routing techniques used in this design.

Chapter 6 presents the experimental evaluation of both security and performance of

the proposed architecture. It gives a detailed description of the simulation envi-

ronment, along with the results for several architectural configurations running

DES and AES.
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Chapter 7 summarises the work presented and discusses the contributions of the the-

sis. It also identifies overall conclusions are drawn and future work.





Chapter 2

Cryptographic Algorithms

2.1 Introduction

For more than 40 years Data Encryption Standard (DES) [10] has been the most widely

used commercial encryption algorithm for protecting financial transactions and elec-

tronic communications worldwide. Developed by the US Government and IBM in the

1970s, DES was the government-approved symmetric algorithm for protecting sen-

sitive information. The DES algorithm uses a 56-bit encryption key, which means

that there are 72,057,594,037,927,936 possible keys. Considering the computational

power level of the 1970s, exhaustive search on the key space of this size was infea-

sible. However, with the increase in computational power this has become feasible.

A machine jointly built by Cryptography Research, Advanced Wireless Technologies,

and Electronic Frontier Foundation can perform a fast key search on DES. This project

developed purpose-built hardware and software to search 90 billion keys per second,

and was able to determine the key after only 56 hours. This attack demonstrated that

the exhaustive search on DES is possible and that the 56-bit key length is not sufficient.

However, performing this attack is expensive. The major concern for smart-card manu-

factures are the attacks which can be performed with relatively inexpensive equipment

in a small amount of time, such as side-channel attacks.

In 1997 the US National Institute of Standards and Technology (NIST) made the

first call for proposals for an Advanced Encryption Standard (AES). The cipher key

size were specified to be 128, 196 and 256 bits with block lengths of 128 bits. In

October 2000, Rijndael [45] was announced as the choice for AES.

9
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2.2 Data encryption standard - DES

2.2.1 History

In 1972, the NIST identified the need for a standard for encryption of unclassified,

sensitive information. A cipher from IBM, based on an earlier algorithm Lucifer de-

veloped by Horst Feistel, was proposed. Although the cipher’s short key length and

the S-boxes were criticised, the algorithm was approved as a federal standard in 1976,

under the name Data Encryption Standard (DES) and soon afterwards as the Federal

Information Processing Standard (FIPS) PUB 46 [10]. Subsequent reaffirmation of

the standard were published in 1983 (FIPS PUB 46-1), 1988 (FIPS PUB 46-2) and

1998 (FIPS PUB 46-3) also known as “triple DES”. The most threatening theoreti-

cal attacks on DES were published in 1991, the differential cryptanalysis [27]; and in

1993, the linear cryptanalysis [90]. However, these attacks were only theoretical and

it was the brute force attacks in 1998 and 1999 that demonstrated that DES can be at-

tacked practically. These practical attacks also highlighted the need for a replacement

algorithm. DES was replaced as a standard in 2002 with the Advanced Encryption

Standard (AES) [9], but is, however, still in widespread use.

2.2.2 Algorithm

The DES algorithm uses 64-bit keys to encrypt and decrypt 64-bit blocks of data. The

56 bits of the key are generated randomly and used directly by the algorithm. The

remaining 8 bits are used for error detection and are set to make the parity of each

8-bit byte of the key odd. The operations of encrypting and decrypting in DES are

performed using the same key.

2.2.2.1 The overall structure

The algorithm’s overall structure is shown in Figure 2.1. The algorithm consists of the

following: the initial permutation (IP), 16 identical stages of processing called rounds,

and the final permutation (FP), which is the inverse of the initial permutation. After the

initial permutation, and before the main rounds, the resulting 64-bit block is divided

into two 32-bit halves, left (L) and right (R), which are then processed alternately.

This criss-crossing is known as the Feistel structure1 and ensures that encryption and

1In a Feistel structure parts of the intermediate state are simply transposed unchanged to another
position.
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decryption are symmetric. Namely, the only difference between encryption and de-

cryption is in the order in which the round keys are applied (during the decryption the

round keys are applied in the reverse order). The advantage of the Feistel structure

is that it simplifies the hardware implementation, as it removes the need for separate

encryption and decryption algorithms.

Figure 2.1: The Feistel structure of DES encryption algorithm.

The round function operates on two blocks: one consisting of the 32 bit right half

of the intermediate result (R) and one consisting of 48 bits of the key K; and produces

32-bit output. The key used in each round represents the selection of 48 distinct bits

from the original 64-bit key K, and is the product of the key schedule function (KS):

Kn = KS(K,n).
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The round function updates the left and the right sides of the intermediate result ac-

cording to the following rules:

Ln = Rn−1

Rn = Ln−1⊕F(Rn−1,Kn)

where n = 1,. . . ,16, and L0 and R0 are the left and the right half of the result of the ini-

tial permutation. Finally, the preoutput block R16L16 is subject to the final permutation,

FP. The cipher’s overall structure is also given in Algorithm 1.

Algorithm 1 DES encryption algorithm
INPUT: PT (Plaintext),K(CipherKey)

OUTPUT: CT (Ciphertext)

1: L0R0 = InitialPermutation(PT )

2: for i = 1 to 16 do

3: Ki = KS(K, i)

4: Li = Ri−1

5: Ri = Li−1 ⊕ F(Ri−1,Ki)

6: end for

7: CT = FinalPermutation(R16L16)

2.2.2.2 The round function

The round function (F) given in Figure 2.2, is defined as:

F(Ri−1,Ki) = P(S(E(Ri−1)⊕Ki)).

The round function consists of four different stages:

Expansion: in which the 32-bit half-block is expanded into 48 bits using the expan-

sion permutation (E), in which some of the bits are duplicated. (The E table is

given in Figure C.3 in Appendix C.)

Key addition: in which the result of the expansion E is XORed with a round key.

Sixteen 48-bit round keys (one for each round) are derived from the main key

using the key schedule, described in Section 2.2.2.3.

Substitution: in which the 48-bit block, result of the key addition, is divided into

eight 6-bit portions that are subjected to the substitution boxes, S-boxes. The
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transformation given by the S-boxes is a non-linear transformation, provided in

the form of a look-up table, and represents the core of the security of DES.

Without the S-boxes the cipher would be linear, and thus trivially breakable.

Each of the 8 S-boxes replaces its 6 input bits with 4 output bits, as follows. Let

Sk be one of the 8 selection boxes and b a 6-bit input. The first and the last bit

of b represent, in base 2, a number i in the range 0 to 3. The middle 4 bits of the

block b represent, in base 2, a number j in the range 0 to 15. The result of Sk(b)

is the 4-bit number given in row i and column j in the selection table Sk.

Permutation: in which the 32-bit outputs from the S-boxes are subject to a fixed per-

mutation P. This permutation is used to rearrange the outputs of the S-boxes

in order to make the input bits to each of the S-boxes in the following rounds

depend on the outputs of as many S-boxes as possible.

The alternation of substitution from the S-boxes, P-permutation of the bits and E-

expansion provide the so-called ”confusion and diffusion”, a concept introduced by

Claude Shannon [125], as a necessary condition for a secure and practical cipher.

Figure 2.2: The DES round function.
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2.2.2.3 Key schedule

The key schedule function (KS) is given in Figure 2.3. The function is defined by two

permuted choices: PC1 and PC2. The two parts, C0 and D0, are defined according

to the permuted choice PC1 (given in Figure C.4 in Appendix C). Permuted choice

PC1 selects 56 bits of the 64 bits of the key, and splits the selection into two halves

each containing 28 bits. In successive rounds, each half is rotated one or two bits to

the left, depending on the round. Finally, the round key bits are chosen according to

the permuted choice PC2, which selects 48 bits of the round key by selecting 24 bits

from the left half (C) and 24 bits from the right half (D) (as shown in Figure C.5 in

Appendix C).

Figure 2.3: DES key selection function.

2.2.3 Cryptanalysis of DES

2.2.3.1 Exhaustive key search

The simplest method to break the DES cipher is to try to decrypt the given encrypted

block with all possible keys. DES algorithm encrypts 64-bit blocks of data using 56-bit
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secret keys, which means there are 256 possible keys to be tried, making the average of

255 trials. On a single PC, this would take hundreds of years to process.

In 1998, Cryptography Research, Advanced Wireless Technologies, and Electronic

Frontier Foundation built a dedicated machine which demonstrated that exhaustive

search for DES is feasible. This project was a part of the DES Key Search Project

challenge, and developed purpose-built hardware and software to search 90 billion

keys per second, being able to determine the key in 56 hours. Although this type of

project may be possible only to well funded organisations, there are less expensive

ways to crack the DES key. In January 1999, Distributed.Net broke a DES key in 23

hours, by using the idle times of the machines on the Internet donated by volunteers.

More than 100,000 computers on the Internet received and computed part of the work,

checking 250 billion keys per second.

2.2.3.2 Dictionary method and time-memory tradeoff

Although the exhaustive search is extremely time consuming, it is not as demanding

in terms of memory requirements. Given a lot of memory, one can precompute all the

possible keys, K, and the encrypted blocks, Y , corresponding to a given block of data,

X , and store the pairs 〈Y,K〉. Given an encrypted block, Y ′, of the known block, X ,

with an unknown key, K ′, the right key could then be quickly found by searching this

kind of dictionary.

In 1980, Hellman [63] proposed a time-memory tradeoff algorithm, which needs

less time than the exhaustive search and less memory than the dictionary method.

2.2.3.3 Differential cryptanalysis

Biham and Shamir [27] in the late 1980s published a number of attacks against various

block ciphers and hash functions, including DES, termed differential cryptanalysis.

Differential cryptanalysis is a chosen plaintext attack which uses only the resulting

ciphertexts. The attack uses a chosen ciphertext pair whose dedicated plaintexts have

a particular difference. The two plaintexts do not have to be known to the attacker and

can be chosen at random, but their difference has to satisfy a predefined condition. The

differences in the plaintexts are used to assign probabilities to the possible keys and to

locate the most probable key. The attacker selects the input difference for which the

outputs difference occurs with high probability. In the case of DES, this difference is

chosen to be a fixed XOR value of the two plaintexts.
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In order to describe the attacks, recall that the round function (F) is defined as:

F(Ri−1,Ki) = P(S(E(Ri−1)⊕Ki)).

Due to their linearity, the expansion function (E) and permutation (P) satisfy the fol-

lowing:

E(X)⊕E(X∗) = E(X⊕X∗)

P(X)⊕P(X∗) = P(X⊕X∗)

Considering that the S-boxes are non-linear, the knowledge of the difference of the

input pair to the S-boxes does not guarantee the knowledge of the difference of the

output pair. Usually several different outputs are possible. However, an important

observation is that for any particular input XOR, not all the output XORs are possi-

ble. Furthermore, the possible ones do not appear uniformly, and some XORed values

appear more frequently.

Important properties of the S-boxes are derived from the analysis of the tables that

summarise the distribution of the input XORs and output XORs of all the possible input

and output pairs. These tables are called the pairs XOR distribution tables of the S-

boxes. In these tables each row corresponds to a particular input XOR and each column

corresponds to a particular output XOR. The entries themselves count the number of

possible pairs with such an input and such an output XOR. These tables are generated

for all eight S-boxes. For a particular input XOR to an S-box, possible output XORs

can also be determined.

The attack can be depicted with the following example, whose further details can

be found in [27]. Assume that two plaintext outputs from the E transformation and the

output from the first S-box are known. The XOR of two outputs from the E transfor-

mation is equal to the XOR of the two inputs to the S-box, and thus the input XOR

for the first S-box can be determined. By consulting the XOR distribution table for the

first S-box, it is possible to determine the number of possibilities for the input to the

S-box, which also determines the number of possible keys. Next, the possibilities for

the inputs and the corresponding keys can be determined, among which the right value

of the key must occur. Using additional output pairs, additional candidates for the key

can be obtained. Now the right key must occur among the possibilities for each chosen

pair. This narrows down the number of possibilities for the key. Using a pair with a

different input XOR helps determine the right key from the reduced set.

The differential cryptanalysis is, however, a theoretical attack and is infeasible to

mount in practice. The main results of the findings of Biham and Shamir can be sum-
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marised as follows: DES reduced to six rounds can be broken using 240 ciphertexts;

DES reduced to eight rounds can be broken using 15000 ciphertexts chosen from a

pool of 50000 candidate ciphertexts; DES reduced to up to 15 rounds can be broken

faster than exhaustive search, but DES with 16 rounds still requires 258 steps [27].

2.2.3.4 Linear cryptanalysis

Linear cryptanalysis is another theoretical attack on DES that was discovered by Mat-

sui [90] in 1993. Linear cryptanalysis is a known-plaintext attack, although in certain

cases can be applied as an only-ciphertexts attack. This method consists of obtaining

a linear approximate expression of a given cryptographic algorithm. For that purpose,

it constructs a statistical linear path between input and output bits for each S-box. This

path is then extended to the entire algorithm reaching the linear approximate expres-

sion without any intermediate values.

The purpose of linear cryptanalysis is to find the following linear expression:

P[i1, i2, . . . , ia]⊕C[ j1, j2, . . . , jb] = K[k1,k2, . . . ,kc] (2.1)

where A[a1,a2, . . . ,at ] denotes A[a1]⊕A[a2]⊕·· ·⊕A[at ]; A[ai] is the i-th bit of A; i1,

i2, . . . , ia, j1, j2, . . . , jb, k1, k2, . . . , kc denote fixed bit locations, and Equation 2.1

holds with probability p 6= 1
2 for randomly given plaintext P and the corresponding

ciphertext C. The magnitude of |p− 1
2 | represents the effectiveness of Equation 2.1.

Once the effective linear expression is obtained, one key bit K[k1,k2, . . . ,kc] can be

determined following the algorithm based on the maximum likelihood method:

Step 1 – Let T be a number of plaintexts for which the left-hand side of Equation 2.1

is equal to zero.

Step 2 – If T > N/2, where N denotes the number of plaintexts, then guess

K[k1,k2, . . . ,kc] = 0, i f p > 1/2 or K[k1,k2, . . . ,kc] = 1, i f p < 1/2,

else guess

K[k1,k2, . . . ,kc] = 1, i f p > 1/2 or K[k1,k2, . . . ,kc] = 0, i f p < 1/2.

To solve the problem, Matsui first studied the linear approximation of S-boxes.

The taken approach was to investigate the probability that a value of an input bit coin-

cides with a value of an output bit. Next, the effective approximation of the cipher is

obtained.
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For a practical known-plaintext attack on n-round DES cipher, the best expression

of (n− 1)-round DES cipher is used. This is equivalent to regarding the final round

as having been deciphered using Kn. A term of F function is accepted in the linear

expression, and consequently the following form of expression is obtained:

P[i1, i2, . . . , ia]⊕C[ j1, j2, . . . , jb]⊕Fn(Rn−1,Kn)[l1, l2, . . . , ld] = K[k1,k2, . . . ,kc] (2.2)

If an incorrect candidate is substituted for Kn in Equation 2.2, the effectiveness of this

equation decreases. Based on this fact a maximum likelihood method to deduce Kn

and K[k1,k2, . . . ,kc] is applied. Next, the linear approximation of the S-boxes and the

F function is extended to the entire algorithm. Detailed examples of this extension to

the 3-, 7- and 8-round DES are given in [90].

Although this attack is a theoretical one, it is the most powerful attack on DES

that is faster than the brute force attack. The main results presented in [90] can be

summarised as follows: DES reduced to 8 rounds can be broken with 221 known plain-

texts; DES reduced to 12 rounds can be broken with 233 known plaintexts and the full

16 round DES can be broken with 247 known plaintexts.

Matsui noticed that if the plaintexts are not random, there might even be a linear

approximate expression that does not have a plaintext bit in it. This suggests that this

method finally leads to an only-ciphertext attack. If the attack is regarded as only-

ciphertext attack then the results of [90] can be summarised as follows: if plaintexts

consists of natural English sentences, DES restricted to eight rounds can be broken

with 229 ciphertexts; if the plaintexts are random, DES restricted to eight rounds can

be broken with 237 ciphertexts only. The author also illustrated the situation in which

16-round DES is breakable faster than an exhaustive search for 56 key bits using the

only-ciphertext attack.

2.3 Advanced encryption standard - AES

2.3.1 History

In 1997 NIST announced the Advanced Encryption Standard (AES) development ef-

fort and made a formal call for algorithms. The call stated that the AES would spec-

ify an “unclassified, publicly disclosed encryption algorithm(s), available royalty-free,

worldwide. In addition, the algorithm(s) would implement symmetric key cryptogra-

phy as a block cipher and (at a minimum) support a block size of 128-bits and key

sizes of 128, 192, and 256 bits” [6].
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In 1998, fifteen AES candidates were announced at the First AES Candidate Con-

ference [2]. The Second AES Candidate Conference [4] was held in 1999. The results

and comments of this meeting were used to reduce the number of candidates to five

algorithms: MARS, RC6, Rijndael, Serpent, and Twofish. On October 2, 2000, NIST

announced that it had selected Rijndael (a portmanteau name composed of the names

of the inventors - two Belgian cryptographers - Joan Daemen and Vincent Rijnmen),

a refinement of an earlier design Square [7], as the new standard. Rijndael was pro-

nounced as a new standard (AES) on November 26, 2001 as FIPS PUB 197 [9], and

effectively became a new standard on May 26, 2002.

2.3.2 Algorithm

AES Rijndael [9] is a symmetric block cipher that processes block lengths of 128 bits

and key length that can be independently specified to 128, 192 and 256 bits. Actually,

AES is not precisely Rijndael [45], as Rijndael supports a larger range of block and

key sizes. Namely, the key and block sizes in Rijndael can be any multiple of 32 bits,

with a minimum of 128 bits and a maximum of 256 bits.

2.3.2.1 The overall structure

Unlike most ciphers, DES for instance, Rijndael does not have a Feistel structure, but

it is a so-called substitution-permutation network. A substitution-permutation network

is a series of linked mathematical operations used in block ciphers that consist of S-

boxes and P-boxes that transform blocks of input bits into output bits. AES operates

on a 4×4 array of bytes, termed the State. Each round of transformation is composed

of three different layers, which are designed to provide resistance against differential

and linear cryptanalysis [45]. These layers are:

Linear mixing layer: which guarantees a high degree of diffusion over multiple rounds.

Non-linear layer: which consists of parallel application of substitution tables (S-boxes)

that have optimum worst-case non-linearity properties.

Key addition layer: which involves a simple XOR of the round key to the intermediate

cipher result, called the State.
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For encryption each round transformation is composed of four different stages:

1. BytesSub – a non-linear substitution step where each byte of the State is re-

placed with another according to the lookup table.

2. ShiftRows – a transposition step where each row of the State is shifted cycli-

cally a certain number of steps.

3. MixColumns – a mixing operation which operates on the column of the State,

combining the four bytes in each column using a linear transformation.

4. AddRoundKey – each byte of the State is combined with the RoundKey, which

is derived from the CipherKey using a key schedule.

In order to make the decryption process symmetrical, the final round omits the MixColumns

stage. Finally, the cipher consists of the following steps (also given in Algorithm 2):

• Initial round key addition;

• Nr − 1 rounds, where Nr represents the total number of rounds and depends on

the key size (number of rounds for the original Rijndael is given in Figure C.1 in

Appendix C); Nb in Algorithm 2 represents the block length divided by 32. The

round transformation is given in Figure 2.4.

• Final round.

Algorithm 2 Rijndael encryption algorithm
INPUT: State(Plaintext),CipherKey

OUTPUT: State(Ciphertext)

1: KeyExpansion(CipherKey,ExpandedKey);

2: AddRoundKey(State,ExpandedKey);

3: for i = 1 to Nr do

4: Round(State,ExpandedKey+Nb∗ i);

5: end for

6: FinalRound(State,ExpandedKey+Nb∗Nr);

The steps of the round transformation can be combined together in a single set of

table lookups, allowing faster implementation on 32-bit processors and considerable

parallelism in the round transformation. As a result the number of operations used in

the cipher can be reduced to two: table lookups and XORs [45].
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2.3.2.2 The ByteSub transformation

The ByteSub transformation is a non-linear byte substitution, operating on each of

the State bytes independently. The substitution table (S-box) is invertible and is con-

structed by composing the following two transformations:

1. Taking the multiplicative inverse in GF(28).

2. Applying affine transformation over GF(28):

b(x) = (x7 + x6 + x2 + x)+(x7 + x6 + x5 + x4 +1) ·a(x) mod (x8 +1).

The inverse of ByteSub is the byte substitution with the inverse table applied, which is

obtained by the inverse of the affine transformation followed by taking the multiplica-

tive inverse in GF(28).

2.3.2.3 The ShiftRow transformation

In the ShiftRow transformation each row of the State is cyclically shifted over dif-

ferent offsets: row 0 is not shifted, row 1 is shifted by C1 = 1 bytes, row 2 by C2 = 2

bytes and row 3 by C3 = 3 bytes. (In the original Rijndael, the values of C1, C2 and C3

depend on the block length as shown in Figure C.2 in Appendix C.)

The inverse of ShiftRow is a cyclic shift of the three bottom rows by 4− 1 = 3,

4− 2 = 2, and 4− 3 = 1 bytes, respectively. (In the original Rijndael, the values of

offsets for the inverse operations are Nb−C1, Nb−C2, Nb−C3, Nb represents number

of columns in the block and is equal to the block length divided by 32.)

2.3.2.4 The MixColumn transformation

In the MixColumn transformation the columns of the State are considered as polyno-

mials over GF(28), and multiplied, modulo x4 +1, with a fixed polynomial c(x), given

by:

c(x) =′ 03′x3 +′ 01′x2 +′ 01′x+′ 02′

The inverse transformation is similar to MixColumn transformation, except the polyno-

mial used in the inverse operation is:

d(x) =′ 0B′x3 +′ 0D′x2 +′ 09′x+′ 0E ′

and satisfies c(x) ·d(x) =′ 01′.
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After two rounds of Rijndael, ShiftRow and MixColumn transformations provide

full diffusion, in the sense that every bit in the State depends on all state bits from two

previous rounds.

2.3.2.5 The AddRoundKey transformation

In the AddRoundKey transformation the RoundKey is simply XORed with the State.

The RoundKey is derived from the CipherKey by means of a key schedule. The length

of RoundKey is equal to the size of the State. The total length of all round keys is equal

to 4 · (Nr + 1), where Nr represents the number of rounds. The CipherKey is first ex-

panded into the ExpandedKey and each RoundKey is derived from the ExpandedKey in

the following way: the first 4 words of the ExpandedKey represent the first RoundKey,

and each further block of 4 words represent the second and subsequent keys.

2.3.3 Cryptanalysis of AES

The most common way to attack block ciphers is to try various attacks on versions

of the cipher with a reduced number of rounds. AES has 10 rounds for 128-bit keys,

12 rounds for 192-bit keys, and 14 rounds for 256-bit keys. According to [1], the best

known attacks are on 6 rounds for 128-bit keys, 6 rounds for 192-bit keys, and 7 rounds

for 256-bit keys.

2.3.3.1 The XSL attack

Courtois and Pieprzyk [43] in 2002 published a theoretical attack against Rijndael

and Serpent [5]. The attack expresses the entire algorithm as multivariate quadratic

polynomials, and uses an innovative technique to treat the terms of those polynomials

as individual variables. It relies on first analysing the internals of a cipher and deriving

a system of quadratic simultaneous equations. These systems of equations are very

large, for example 8000 equations with 1600 variables for 128-bit AES. The variables

represent not just the plaintext, ciphertext and key bits, but also various intermediate

values within the algorithm. In the XSL attack a specialised algorithm, termed as

eXtended Sparse Linearization (XSL), is applied to solve these equations and recover

the key. In this attack, unlike other forms of cryptanalysis such as differential and

linear cryptanalysis, only one or two known plaintexts are required.

However, the analysis given in [43] in not universally accepted. The complicated

technical details of the paper raised suspicions about the accuracy of the underlying
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Figure 2.4: Rijndael round transformation. Obtained from

http://home.ecn.ab.ca/∼jsavard/crypto/images/rijnov.gif
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mathematics. Furthermore, several cryptography experts have found problems in the

underlying mathematics of the proposed attack, suggesting that the authors had made

a mistake in their calculations. These findings have led to the general belief that this

attack is speculative and impractical.

2.4 Summary

This chapter provided an overview of two important cryptographic algorithms, DES

and AES, the former standard and the new standard. It also presented the most well

known cryptanalytic techniques used in theoretical and practical attacks on these two

cryptographic standards. The experimental security investigations presented in Chap-

ter 6 are based on investigating the security against differential power analysis of these

two important cryptographic algorithms when run on different configurations of the

network-based architecture.

In the next chapter an overview of new and very powerful cryptanalysis techniques

that, unlike the attacks reviewed in this chapter, do not depend on the mathematical

characteristics of the cryptographic algorithm, but on the implementation and physical

characteristics of the device the algorithm is implemented on is given. This type of

analysis is known as side-channel analysis. Countermeasures proposed to thwart these

attacks are also reviewed in the next chapter.
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Side-channel Analysis

3.1 Introduction

Cryptographic operations are physical processes in which data is represented by phys-

ical quantities in physical structures. These are then stored, sensed and combined by

the elementary logic devices (gates). At any point in the evolution of technology, the

smallest logic device must have a definite physical extent, require a certain amount

of time to perform its function and dissipate switching energy when transiting from

one state to another [93]. A corollary of the second law of thermodynamics states

that in order to introduce direction into transition between states, energy must be lost

irreversibly. A system that does not dissipate energy cannot make a transition and

therefore cannot compute [93]. It has been shown that this energy can be correlated

with the operations performed and the data that is being processed.

While operating, electronic devices interact and influence the environment. Be-

sides consuming and emitting power, these devices emit electromagnetic radiation and

react to temperature changes. This information leakage is intrinsic to the physical im-

plementation of the device, and is characterised as the side-channel. If observed and

recorded, information leaked into side-channels can be used to recover compromising

information (secret keys for example) about the device in question. This is particularly

true for cryptographic devices for which the secrecy of the key is imperative (Kerchkoff

principle1). This type of analysis defines the branch of cryptanalysis known as side-

channel analysis. According to the type of information used, side-channel analysis

attacks can be classified into three main categories:

1Kerchkoff principle: The security of cryptographic algorithms must be based on the secrecy of the
key not on the secrecy of the algorithm.

25
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• Timing analysis

• Power analysis

• Electromagnetic emission analysis

Considering the rapid development of electronic business and different kinds of

digital communication systems the electronics industry as well as the academic com-

munity were alarmed by the discovery of side-channel attacks. It became crucial to

protect cryptographic systems against these new and powerful types of attacks. A num-

ber of countermeasures were proposed for each of these attacks. However, according

to the research currently conducted in this area, it is hard to come up with a general

countermeasure that guarantees that the cryptosystem is secure against all side-channel

attacks. The current definition of side-channel security says that a cryptosystem is se-

cure if it is secure against all known side-channel attacks. Although this does not

guarantee the security against attacks that are yet to be discovered, this notion of se-

curity is generally accepted. Some side-channel attacks can be completely prevented

by using clever implementations of cryptographic algorithms. To prevent against the

most powerful side-channel attacks, power analysis, most practical solutions rely on

increasing the complexity of the attack. This increase in complexity is equivalent to

complicating the statistical analysis and increasing the number of necessary readings

of the side-channel data to the extent that the attack is not feasible or is too expensive

to perform. The complexity of side-channel attacks can be increased on two levels: by

introducing software (algorithmic) and/or hardware (physical) countermeasures. The

general strategy to increase the complexity of side-channel attacks involves balancing

and randomising major computations which involve the secret key.

3.2 Timing analysis

3.2.1 Introduction

When designing a commercial cryptographic scheme cryptographers have always been

concerned with the execution time of their implementations. The amount of time

needed to encrypt or decrypt a message or produce a digital signature is often used as

a benchmark when comparing different cryptographic schemes. The fastest scheme,

under the same conditions and with the same parameters, is considered to be the most

efficient and, therefore, the most appealing to the demands of the market.
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The actual timing of a cryptographic function does not only depend on the opera-

tions performed, but also on the parameters passed to it: both the secret key and the

plaintext (ciphertext) data. Cryptosystems often take slightly different times to process

different input parameters. The timing variations are due to different performance op-

timisations that are used to bypass unnecessary operations, branching and conditional

statements. A good portion of these variations are due to processor instructions, such

as multiplications and divisions, that run in variable times [76].

In 1995, Paul Kocher from Cryptography Research in San Francisco [76], demon-

strated that the timing variations can be used to deduct secret exponents used in systems

such as RSA [3], DSS [8], Diffie-Hellman [48], and others. He outlined a simple and

inexpensive attack which enables an attacker to discover the fixed (secret) exponents

used in these cryptosystems. The attack exploits certain engineering aspects involved

in the implementation of cryptosystems which succeeded even against cryptosystems

that have remained impervious to sophisticated cryptanalytic techniques, such as dif-

ferential [27] and linear cryptanalysis [90]. With the growing popularity of electronic

commerce this discovery drew the attention of both industry and academia. The cryp-

tographic community became aware that some widely used standards (such as SSL) are

vulnerable to this new attack. This led to the discovery of timing attacks and opened

a completely separate and new area of cryptanalysis, known as side-channel analysis.

Kocher’s discovery even made it to the front page of New York Times [86].

3.2.2 Attack details

Private-key operations in RSA or Diffie-Hellman consist of performing modular expo-

nentiations of the form: S = Md mod N. As suggested in [117], this operation can be

implemented using a repeated square-and-multiply algorithm given in Algorithm 3. In

this algorithm, S can be thought of as a digital signature, M is a message, N is public,

and d is the private (secret) exponent which can be represented using at most n bits,

where n is the length of S. Kocher noticed that the execution path of the algorithm

depends on the value of the private exponent d. Namely, in a loop iteration, if the

corresponding bit of d is equal to 1, then both the modular squaring and multiplication

are performed (lines 3 and 5, respectively); otherwise, if the bit is equal to 0, then

only the modular squaring is performed. Therefore, the number of operations that are

performed and the overall execution time depend on the value of the private exponent.

If an attacker could observe and compare the execution times of several loop iterations
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(Figure 3.1) then he would be able to deduce the values of bits of the private exponent

d for each of the iterations [76].

Algorithm 3 Repeated left-to-right square-and-multiply algorithm for modular expo-

nentiation.
INPUT: M,N,d = (dn−1, . . . ,d1,d0)2

OUTPUT: S = Md mod N

1: S← 1

2: for j = n−1 to 0 do

3: S← S2 mod N

4: if d j = 1 then

5: S← S ·M mod N

6: end if

7: end for

Figure 3.1: The timing analysis principle [94].

Kocher [76] explained how the overall running time of the algorithm can be used

to deduce the bits of the private exponent d. The timing attack allows someone who

knows bits 0 . . . k−1 of the private exponent to discover the bit k. The attack proceeds

as follows. By knowing the first k bits, the attacker can compute the first k iterations

of the f or-loop and find the value of S after that iteration. In the next iteration, the

value of the unknown bit of d will be used. The squaring in line 3 will be performed

regardless of the value of the bit, but the multiplication in line 5 is performed only if

the value of the unknown bit is equal to 1. The difference in timing of this iteration

when zero and one are the bits in question, enables the attacker to determine the value

of the unknown bit. Starting from k = 0 and following this fashion, all bits of the secret

exponent can be discovered.

An interesting property of the timing attack, observed by Kocher [76], is its error-

detection property. Namely, if at any point the k-th bit was guessed incorrectly, then
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the values of S computed in consecutive iterations will be essentially random and the

timings following the error will not be reflected in the overall exponentiation time.

Therefore, after the error occurred, no more meaningful correlations can be observed.

This property can be used for error correction [76]. Each timing measurement is

equal to T = e+∑n−1
i=0 ti, where times ti are required for multiplication and squaring

for each bit di, and time e includes measurement error and loop overhead. Given a

guess of the k-th bit, dk, the attacker can find ∑k−1
i=0 ti. If dk was correct, subtracting

from T yields e+ ∑n−1
i=k ti. The relative independence of modular multiplications from

each other and from the measurement error, yields the variance of e+ ∑n−1
i=k ti to be

Var(e)+(n− k)Var(t). If only l < k bits were guessed correctly, then the expected

variance should be Var(e)+(n− k +2l)Var(t). Therefore, iterations done with a cor-

rectly guessed key decrease the variance by Var(t), while the iterations following the

incorrectly guessed key increase the variance by Var(t). This is an easy to compute

test which provides a good way to identify if the bit was guessed correctly.

3.2.2.1 Attacks on other systems

Almost any implementation that runs in variable amounts of time could be vulnerable

to timing analysis [104]. Most public key systems and signature schemes, such as

ECC, RSA and ElGamal, use algebraic operations that often run in variable times.

Block ciphers, such as IDEA and AES Rijndael, are also vulnerable to timing attacks

because they use multiplications [72, 79]. The bit rotations, used in ciphers such as

RC5 and DES, when implemented using shift and conditional “wrap around” can leak

Hamming weights of the operands. (Hamming weight represents the number of ones

in the binary representation of the data.) For example, in the software implementations

of DES, the 28 bits of C and D values in the DES key schedule (see Section 2.2 for

the description of DES) are often rotated using a conditional which tests whether the

bit that must be wrapped around is equal to 1. The additional time required to “wrap

around” non-zero bits could introduce slight timing variations, which could reveal the

Hamming weight of the key.

Naive implementations of AES Rijndael [9] are also at risk, as described by Koe-

une and Quisquater [79]. The AES encryption consists of the initial round key addi-

tion followed by a number of round transformations (see Section 2.3 for the descrip-

tion of AES). The different transformations during each round operate on an array

of bytes, called the State. This attack focused on a particular round transformation,

the MixColumn transformation. In the MixColumn transformation, the columns of the
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State are considered as polynomials over GF(28), and multiplied, modulo x4 +1,

with a fixed polynomial c(x) =′ 03′x3 +′ 01′x2 +′ 01′x+′ 02′. This operation can be

implemented very efficiently, since ′03′ =′ 02′+′ 01′, the only multiplications that will

actually have to be performed are those by ′02′. In addition, the multiplication in

GF(28) can be implemented very efficiently by following two simple steps: (1) shift

the byte one position left, (2) if a carry occurs, XOR the result with ′1B′ [9]. Therefore,

in careless implementations, this operation could show timing variations, as it can take

longer when the carry actually occurs.

Timing attacks have been successfully performed against a number of crypto-

graphic functions, but also against some Internet protocols such as SSL [32].

3.2.3 Countermeasures

Naturally, there is a question of protecting cryptosystems against timing attacks. Kocher

noticed that the most obvious method would be to make sure all operations run in con-

stant time. Doing this at the implementation level is often difficult in view of all the

possible factors that can introduce variations in timing (such as compiler optimisations,

different platforms, RAM cache hits and instruction timings). Even if this is achieved,

for example by withholding the result of an operation until a specified amount of time

is expired, other information, such as power consumption or CPU usage, can reveal

sensitive information [76]. In addition, performance of such systems would be con-

siderably degraded as all operations will take the same amount of time as the slowest

one, while performance optimisations are not allowed for obvious reasons. This would

imply a severe performance drawback, especially for asymmetric cryptosystems, since

this constant time would be that of the slowest possible case.

Daemen and Rijmen [46] similarly suggested that cryptographic implementations

can be protected against timing attacks by ensuring that the cipher execution time is

independent of the value of the key, by inserting NOP operations in the shortest path of

the conditional statement until all paths take the same time. However, they also noticed

that this solution might be vulnerable to power analysis (described in Section 3.3).

Even ensuring that the same set of operations is performed in each iteration of

the algorithm (an example of such an implementation for modular exponentiation is

given in Algorithm 4), does not make the execution time constant. This is a general

misconception about the timing attack. The timing attack does not only discover the

path of execution, but also the operands that are used [104]. Multiplication with zero
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would take different time when compared to multiplication with one. If, however, in

the case of modular exponentiation, squaring and multiplication are implemented to

run in constant time, then the modular exponentiation would only be correlated with

the Hamming weights of the secret exponent, which in some cases can reveal the se-

cret exponent [104]. For example, Montgomery multiplication runs in almost constant

time but there are small variations due to conditional subtraction which implies that

Montgomery multiplication is vulnerable to timing attacks [47]. Both squaring and

multiplication operations in the square-and-multiply algorithm could be performed us-

ing Montgomery multiplication. If the squaring part is attacked, then even keys of

length 512 can be efficiently discovered. The timing attack can also be applied to RSA

implementations with the Chinese Reminder Theorem as shown in [119].

Algorithm 4 Repeated square-and-multiply algorithm for modular exponentiation, still

vulnerable to timing attacks.
INPUT: M,N,d = (dn−1, . . . ,d1,d0)2

OUTPUT: S = Md mod N

1: S← 1

2: for j = n−1 . . .0 do

3: S← S2 mod N

4: T ← S·M mod N

5: if d j = 1 then

6: S← T

7: end if

8: end for

Another suggested approach to prevent timing attacks is to add random delays to

execution and make timing measurements imprecise. However, this can be overcome

by increasing the number of samples so that the added noise is filtered out. The number

of samples required increases roughly as the square of the timing noise [76].

Kocher [76] proposes using blinding techniques by which the attacker would be

prevented from knowing the input to the modular exponentiation. Prior to computing

the modular exponentiation, pair (vi,v f ) is chosen, such that v−1
f = vd

i mod N, where

this relation might be different for different cryptosystems. For example, in the case

of RSA, it is faster to choose random v f relatively prime to N and then compute

vi = (v−1
f )e mod N, where e is the private exponent. Before the modular exponenti-

ation, the message should be multiplied by vi mod N and the result is subsequently
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corrected by multiplying it with v f mod N. Pairs (vi,v f ) should not be reused, since

they themselves could be subjected to timing analysis, compromising the secret ex-

ponent. On the other hand, calculating inverses is expensive, so it is impractical to

generate a new pair for each exponentiation. Moreover, the inverse operation itself

can be subjected to timing analysis. For those reasons it was suggested that vi and

v f are updated before each modular multiplication by calculating vi = v2
i mod N and

v f = v2
f mod N. In this way, the blinding pair is not reused and the total performance

cost is kept small. This countermeasure makes the internal computations impossible

to simulate by the attacker, thereby preventing the exploitation of the knowledge of

the running times. Although it does not guarantee elimination of all possible timing

attacks, this type of countermeasures is nonetheless efficient [76]. In addition, blinding

techniques have also been proven efficient against other types of side-channel attacks,

as described in Section 3.5.7.

In summary, in order to defeat the timing attack, implementors should prevent an

attacker from knowing the inputs to vulnerable operations. For example, in the square-

and-multiply algorithm, if the attacker does not know the base of the modular opera-

tion, timing information is not useful. Blinding techniques proposed by Kocher [76]

have been successful in preventing timing attacks, but the suitability of blinding de-

pends entirely on the details of the cryptosystem. However, the majority of public key

cryptosystems have the required algebraic structure for applying this countermeasure.

3.3 Power analysis

3.3.1 Introduction

Power analysis attacks were discovered by Kocher, Jaffe and Jun [78] in 1998. One

proposed way to counteract timing attacks was to introduce “dummy” computations,

such as empty loops, in the execution of the cryptographic algorithm. Kocher et al.

noticed that this might be insufficient defence, as the power consumption of “dummy”

computations is different from the power consumption of meaningful ones. They have

spent several months exploring this idea, and finally, by using relatively inexpensive

equipment, managed to discover secret keys from a number of smart-cards. They

claimed that for some devices, a power trace (where a trace is a set of power consump-

tion measurements taken across the cryptographic operation) of a single cryptographic

operation can reveal the value of the secret key. They also claimed that by examining
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as few as 1000 power traces and applying statistical analysis on the obtained data (Fig-

ure 3.2), they could break any smart-card on the market [78]. This drew the attention of

both the smart-card vendors and the cryptographic community, and yet again featured

in the New York Times [134].

Figure 3.2: The power analysis principle [94].

3.3.2 Power dissipation

Most modern cryptographic devices are implemented using Complementary Metal Ox-

ide Semiconductor (CMOS) technology. The main characteristic of this technology

can be demonstrated with inverters or NOT gates (Figure 3.3). The inverter has two

transistors that act as voltage controlled switches. When the inverter input is high, the

top switch opens and the bottom closes. This grounds the inverters output and it goes

low. On the other hand, when the input voltage is low, the top switch closes, and the

bottom switch opens setting the output to high.

Figure 3.3: CMOS inverter.

Power dissipation in most CMOS circuits can be divided into three parts [135]: (1)

static dissipation, (2) dynamic dissipation and (3) short-circuit dissipation.
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Static dissipation (Ps): is due to the leakage of current drawn continuously from the

power supply, and is equal to:

Ps = Ileak ·Vdd

where Ileak is the leakage current and Vdd is the supply voltage.

Dynamic dissipation (Pd): is due to the current that is required to charge and discharge

the capacitive load, and is the dominant source of power dissipation in current

CMOS technologies [135]. Dynamic power dissipation can be seen as:

Pd = f ·Cl ·V 2
dd ·Ac

where Ac is the circuit activity, f is frequency of switching, Cl is circuit capaci-

tance and Vdd is power supply voltage.

Short-circuit dissipation (Psc): is due to the short current flowing from Vdd to Vss. This

occurs during the short period of time in the transition from 0 to 1 or, alterna-

tively, from 1 to 0, during which both transistors are on, and is given by:

Psc = Imean ·Vdd

where Imean is the mean current and Vdd is the supply voltage.

The total power dissipation can be obtained from the sum of the three dissipation com-

ponents:

Ptotal = Ps +Pd +Psc

However, the dynamic power dissipation is the most dominant in this formula [135,

136], which reduces the total dissipation estimate to:

Ptotal ≈ Pd = f ·Cl ·V 2
dd ·Ac (3.1)

Equation 3.1 shows that for given voltage supply Vdd and capacitive load Cl power

dissipation of the circuit is proportional to the circuit activity Ac. In other words,

the more capacitance that is switched, the more power is dissipated. This is the key

characteristic of CMOS technology that has inspired the attackers of cryptographic

systems to develop power-based side-channel attacks.

The source of current for most devices is supplied by the constant voltage, and the

power dissipation of these devices is proportional to the flow of current through them
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(P = I ·V , where P is the power). It is now clear how power consumption/dissipation

can be correlated to the calculations performed in the cryptographic device.

The basic assumption in power analysis is that the device dissipates more power

when processing a 1 in comparison to the power that is dissipated when processing a

0. For example, the multiplier would do more work when the multiplier bit is 1 than it

would do when the bit is 0. The power dissipation is useful to the attacker because it

is correlated with the operations performed in the device.

Power analysis attacks are based on measuring the power that is consumed by the

devices. Kocher et al. [78] in their experiments measured the circuit’s power consump-

tion by inserting a small (50 Ω) resistor in series with the power or ground input. The

voltage difference across the resistor divided by its resistance yielded the current. They

sampled voltage differences at a high rate and then processed the data using statistical

methods. Depending on the way in which the obtained data is seen and processed, two

general types of power analysis can be distinguished:

1. Simple power analysis (SPA)

2. Differential power analysis (DPA).

3.4 Simple power analysis

3.4.1 Attack details

Simple power analysis (SPA) is a cryptanalytic technique whereby information about

the operation performed in the device, or the operands manipulated in the operation,

can be directly interpreted from a single power trace. Often this single trace is replaced

with the average of a number of traces in order to reduce the measurement noise.

The success of this approach and the techniques used in the attack depends on the

implementation of the cryptographic algorithm and the operations used in it.

The SPA attack was first performed by Kocher, Jaffe and Jun [78] from Cryptog-

raphy Research in San Francisco. In the power traces obtained from the power con-

sumption measurements taken across a cryptographic operation of DES, 16 rounds of

DES were clearly visible (Figure 3.4(a)). A detailed analysis of the traces, revealed the

number of rotations performed on C and D registers (see Section 2.2 for the description

of DES) that are used during the key schedule. Figure 3.4(b) shows that in round 2 (left

arrow) registers C and D were rotated once and in round 3 (two right arrows) they were
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rotated twice. Small variations between the rounds turned out to be SPA weaknesses

caused by conditional jumps based on key bits and computational intermediates. An

even closer look, enabled Kocher et al. to distinguish between microprocessor instruc-

tions.

(a) Power trace of the entire DES encryption.

(b) Power trace of DES rounds 2 and 3.

Figure 3.4: SPA attack on DES [78].

A SPA attack can reveal the sequence of operations executed and, therefore, can be

used to break cryptographic implementations in which the execution path depends on

the data being processed, more specifically the secret data. For example, some points

for the attack, as Kocher et al. [78] suggested, could be:

DES key schedule: The DES key schedule involves rotating 28-bit key registers. Ro-

tations are most commonly implemented by shifting one bit of one end and ap-

pending a 0 at the other. If the bit shifted off is a 1 then the appended 0 is flipped.

This conditional operation may be detected in the power trace, as the resulting

trace for bits 1 and 0 will have different characteristics, and can be distinguished.
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DES permutation: DES implementations usually contain a number of bit permuta-

tions. Conditional branching in software can cause power consumption differ-

ences when bits zero and one are manipulated.

Comparisons: Memory comparisons or string comparisons can cause SPA and tim-

ing vulnerabilities, because they usually perform a conditional branch when a

mismatch occurs.

Multipliers: Circuits that implement modular multiplications tend to take into account

a great deal of information about the data being processed, and therefore leak a

substantial amount of information about that data. The existence of weaknesses

depends on the multiplier implementation but weaknesses are often correlated to

operand values and Hamming weights.

Exponentiators: Modular exponentiation functions are usually implemented to scan

across the exponent from left to right, performing a squaring operation in every

iteration and an additional multiplication for each value 1 bit of the exponent.

If the squaring and multiplication operations have different power signatures,

exponentiation operation can be compromised. This analysis is similar to that

of the timing attack. Modular operations that operate on two of more bits at the

time may have more complex leakage characteristics.

Given the architectural details, SPA can more easily interpret the power consump-

tion curve. Generally, any implementation where the path of execution depends on the

values of the bits of the secret key is potentially vulnerable to this attack.

Besides exploiting the correlation of power consumption with the operations per-

formed in the device, SPA can also exploit the correlation between the power con-

sumption and the operands. Typically the power consumption is correlated with the

Hamming weight of operands. The Hamming weight represents the number of 1s in

the binary representation of data. This type of correlation occurs when the power con-

sumption varies with the number of 1s that change.

In a typical smart-card microprocessor a large portion of the power dissipation

occurs in the gates attached to internal buses. Experiments reported by Messerges et

al. [97] have shown that the activity on data- and address-buses is the dominant cause

of power consumption changes. There are two types of correlation between power and

the operands [97, 14]. Which of the two types is observed depends on the design of a

particular device in question [104].
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The two types of correlation are as follows:

• Hamming weight correlation, which occurs when the power consumption and

the number of 1s written on the bus are directly correlated.

• Transition count correlation, which occurs when the power consumption and the

number of bits that change on the bus are correlated. In other words, the power

is correlated to the Hamming weight of the XOR of the current and the previous

value on the bus.

The Hamming weight of a 56-bit DES key conveys an average of:

56

∑
i=0

(56
i

)

256 log

(
256

(56
i

)
)
≈ 3.95

bits of information about its value [76]. Physical implementations of many cryptosys-

tems operate on 8-bit data blocks, enabling the power analysis to potentially reveal

8

∑
i=0

(8
i

)

28 log

(
28

(8
i

)
)
≈ 2.54

bits of information about each byte of the DES key. In total this is 7 ·2.54≈ 17.8 key

bits. In this way the key space is reduced to approximately 238 possibilities [104],

which further facilitates the brute force attack to which DES is already susceptible2.

Messerges et al. [97] noticed that the Hamming weight information is best used

with some information about the cipher implementation. For example, in the case

of DES, in the PC1 phase, if the attacker has information about the key bytes and

also about shifted versions of the key bytes, a more powerful attack can be mounted.

Namely, given the Hamming weight of each byte for eight of the C and D shifts, there

is enough information to discover every key bit using the equation:

A~k = ~w, (3.2)

where ~w is a 56×1 vector of Hamming weights, wi;~k is a 56×1 binary vector of the

key bits, k j; and A is a 56×56 binary matrix such that Ai j is 1 if and only if weight wi

includes key bit k j. Using this technique, even algorithms that use more than 56 key

bits, such as triple DES, could be vulnerable [97].

Further, in [97] it is explained how a SPA attack can be mounted if the transi-

tion count rather than Hamming weight information is available. Namely, the attacker

2For ciphers with longer key sizes (such as triple DES) even the Hamming weight information cannot
facilitate the brute force attack [104].
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would need to know what is on the data-bus before and after the data being observed

is accessed. In many cases this data is a fixed address or an instruction opcode, which

can facilitate the situation. If the attacker can access this data, then he would be able

to set up a system of equations similar to those given in Equation 3.2. Should the at-

tacker not have all the necessary information, then he might need to resort to trial and

error methods to determine the correct equations. As the number of such possibilities

is limited, this approach is considered feasible.

Experiments reported in [97] have confirmed that poor implementations of DES

almost always leak sufficient information to mount the SPA attack. Shifting the key

bytes or the use of conditionals is especially vulnerable. Also, if the portion of the

code runs in variable time, power analysis could be used to mount the timing attack.

3.4.2 Countermeasures

Kocher et al. [78] concluded that, in general, it is not particularly difficult to build

an SPA resistant device. Avoiding the usage of secret values to perform conditional

operations can prevent SPA from correlating power consumption and the operations

that are performed. This can be seen in the example of modular exponentiation. Al-

gorithm 5 shows the implementation of modular exponentiation which is resistant to

simple power analysis (quoted from [104]).

Algorithm 5 SPA-resistant repeated square-and-multiply algorithm.
INPUT: M,N,d = (dn−1, . . . ,d1,d0)2

OUTPUT: S = Md mod N

1: S← 1

2: for j = n−1 to 0 do

3: S0← S2 mod N

4: S1← S0 ·M mod N

5: S← Sd j

6: end for

In algorithms that inherently assume this type of key-dependent branching, it might

not be possible to achieve this type of protection, or it can require creative coding and

introduce a serious performance penalty [78]. However, the size of SPA characteristic

could be reduced by moving the operations with large power characteristics, multipli-

cations for instance, outside of conditional branches [104] as shown in Algorithm 5.
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In some cases even constant execution path code can demonstrate serious SPA vul-

nerabilities, if the nature of the device is such that the attacks could make correlations

between the power and the operands [78]. Chari et al. [36] suggested that a way to

counteract this problem is to randomly split every bit of the original computation into

k shares. Every share is equally probable and every subset of k− 1 shares is statis-

tically independent of the encoded bit. Computations are then performed on shares,

without ever reconstructing the original bit. The shares are refreshed after each opera-

tion that involves them, to prevent information leakage. The method to encode the bit

into shares must be chosen according to the computation being protected. For example,

bit b can be encoded as k random shares: b⊕ r1,r2, . . . ,r1⊕ r2⊕·· ·⊕ rk−1, where ris

are randomly chosen bits. This approach increases the amount of noise by obscuring

the value of sensitive data. To deduce the sensitive data the attacker must now combine

multiple power measurements from various locations within the power trace.

3.5 Differential power analysis

3.5.1 Introduction

Differential power analysis (DPA) is a class of side-channel attack that is more power-

ful than simple power analysis. Actually, DPA is believed to be the most threatening

attack that resulted from Kocher’s research. This is primarily because the attacker does

not need to know as many details about the algorithm implementation in order to per-

form this attack. Moreover, this attack gains additional strength by using statistical

analysis to help recover the secret information from the side-channel.

To carry out a DPA attack, an attacker must have a number of power consumption

curves (PCC) collected from a device that has repeatedly executed a cryptographic

operation with different inputs and the same key. It is crucial that PCCs contain infor-

mation about the secret key that can be deduced using statistical methods. The algo-

rithmic condition, the so-called fundamental hypothesis, states that for a DPA attack to

be successful the following must be true (quoted from [57]):

Definition 3.5.1 (Fundamental Hypothesis). There exists an intermediate variable,

that appears during the computation of the algorithm, such that knowing a few bits

(in practice less than 32 bits) allows to decide whether two inputs (respectively two

outputs) give or not the same value for this variable.
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In other words, the (only) algorithmic condition is that there must exist an intermedi-

ate variable whose value is dependent upon an easily accessible subset of the secret

key and upon known plaintext or ciphertext data. The key bits involved may then be

reconstructed by partitioning the power curves according to the chosen intermediate

value, and comparing the calculated average curves. The attack is successful if there

is a significant difference between two average curves at one or more points in time.

What makes the attack particularly interesting, and at the same time powerful, is that

most cryptographic algorithms satisfy the fundamental hypothesis.

3.5.2 Attack details

The attack is performed as follows. Let T1,T2, . . . ,Tn be power traces collected from

a cryptographic device that is repeatedly performing a cryptographic operation using

different inputs and the same key. Each trace is an array of k power consumption

measurements and represents the power consumed during each cryptographic opera-

tion. The general assumption is that the power consumption is different depending on

whether zero or one is the calculated value of the specific bit (b) that is being taken into

consideration. The bit b is determined by a selection function, D, which depends on

the cipher. It is crucial that the key bits are manipulated during the operation defined

by the selection function.

The attacks in [78] were performed on the DES encryption algorithm, because of

its widespread use. In each of its 16 rounds, the DES performs eight S-box lookup

operations. Each of the 8 S-boxes takes as input 6 bits and outputs 4 bits of data. The

input 6 bits are generated by XORing 6 bits of the key with 6 bits of the R register (see

Section 2.2 for the description of DES).

The selection function for DES can be defined as follows. If the attacker has knowl-

edge of the plaintexts, the selection function D can be defined as the first bit of the

register R1, which can be calculated as:

R1 = L0⊕F(R0,K1) (3.3)

where

R1 – is the register containing the rightmost 32 bits of the results of the first round

transformation.

L0 – is the register containing the leftmost 32 bits of the results of the initial permuta-

tion of the plaintext - a value known to the attacker.
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R0 – is the register containing the rightmost 32 bits of the results of the initial permu-

tation of the plaintext - a value also known to the attacker.

K1 – is the first round key.

F – is the round function.

The only unknown in Equation 3.3 is the value of round key K1. From the definition of

the round function (F) and the S-boxes, it follows that the first bit of R1 is influenced

by only 6 bits of the first round key K1. The attacker does not know these bits, but can

use brute force and try all of the 26 possibilities.

To generalise, for each guess of the key, Ks, the PCCs are partitioned into two

groups according to the intermediate value of the bit b calculated during the operation

(using the selection function D), as follows. Let T0 and T1 be the two partitions of the

power traces:

T0 = {Ti : b = 0}

T1 = {Ti : b = 1}

For j = 1 . . .k, the average traces are calculated:

A0[ j] =
1
|T0| ∑

Ti∈T0

Ti[ j]

A1[ j] =
1
|T1| ∑

Ti∈T1

Ti[ j]

where |T0|+ |T1|= n, and Ti[ j] is the j-th power consumption measurement in the i-th

power trace. Next, the attacker computes the differential trace ∆:

∆[ j] = A1[ j]−A0[ j]

∆[ j] is therefore the average over n plaintexts of the effect on the power consumption

measurements at point j, due to the value represented by the selection function D.

If Ks is incorrectly guessed, the bit computed using D will differ from the actual

target bit for about half of the plaintexts. The selection function is, therefore, uncorre-

lated to what is actually computed in the device. In that case, function D is a random

function that is used to divide the set of all power samples into two subsets and there-

fore it should be that:

lim
n→∞

∆[ j] = 0.
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In practice, however, this differential trace might not be completely flat and it might

even show a slight correlation to the trace for the correct key guess [78].

If, on the other hand, the guess Ks was correct, the computed value of the selection

function should be equal to the value calculated in the target device. Therefore, the

selection function is actually correlated to the value manipulated in the device and the

power consumption and the selection function are also correlated. If the bit b was

manipulated at times j′, then the expected difference in power when two values of b

are manipulated should be:

E[Ti[ j′]|b = 1]−E[Ti[ j′]|b = 0] = ε > 0. (3.4)

When j is not equal to j′, the power dissipation should be independent of the value of

the bit b, and therefore this difference should be zero, i.e.:

E[Ti[ j]|b = 1]−E[Ti[ j]|b = 0] = 0,∀ j 6= j′. (3.5)

As the number of traces grows, values A1[ j] and A0[ j] converge to E[Ti[ j]|b = 1] and

E[Ti[ j]|b = 0], respectively. Therefore, according to Equations 3.4 and 3.5:

lim
n→∞

∆[ j] = lim
n→∞

(A1[ j]−A0[ j]) =

{
ε, j = j′

0, j 6= j′
(3.6)

Equations 3.4, 3.5 and 3.6 show that if enough plaintext samples are used, ∆[ j]

will show a power bias (spike) of ε at time j′, and will converge to zero at all other

times. However, due to small statistical biases in the outputs from the S-boxes, the

Equation 3.6 is not entirely correct, and in practice ∆[ j] will not always converge to

zero, but a larger bias will occur at time j′ [97]. If the key used for the cryptographic

operation was correct, a spike will appear where the selection function is correlated to

the value of the bit being manipulated.

In summary, the attack works as follows. For each guess the attacker constructs a

new partition for the power traces and a new differential trace, ∆[ j]. If the appropriate

selection function was chosen, the differential trace should show biases whenever the

bit defined by the selection function was manipulated. If the selection function was

not chosen correctly, then the resulting ∆[ j] will not show any biases. In this way the

attacker can determine the six bits of the first round key, K1. Repeating this approach

for seven other S-boxes the attacker can learn the entire 48 bits of the first round key.

The remaining 8 bits of the DES key can be discovered by brute force, or by applying

the attack on the successive rounds.
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The attack can also be performed on the last round of DES encryption. This attack

works similar to the case when the first round is attacked, except that in this case the

attacker needs to know the ciphertexts. The selection function can be in this case

defined as the first bit of the register L15 which can be calculated as follows:

R16 = L15⊕F(R15,K16)

L16 = R15

}
⇒ R16 = L15⊕F(L16,K16)

⇒ L15 = R16⊕F(L16,K16) (3.7)

where

R16 – is the register containing the rightmost 32 bits of the results of the last round

transformation of DES and can be obtained by applying the inverse of the final

permutation on the ciphertext. Since the ciphertext is known to the attacker, this

value can be easily obtained.

L16 – is the register containing the leftmost 32 bits of the results of the last round

transformation of DES and can be obtained by applying the inverse of the final

permutation on the ciphertext. Since the ciphertext is known to the attacker, this

value can also be easily obtained.

L15 – is the L register after round 15.

K16 – is the key used in round 16.

F – is the round function.

The D function in Equations 3.3 and 3.7 was chosen because at some point during

DES encryption, the value of the specified bit must be calculated. When this occurs,

there will be a difference in the amount of power dissipated/consumed when this value

is equal to zero compared to the case when this value is equal to one.

3.5.3 Increasing the magnitude of the bias signal

The number of traces (n) that are required to successively perform the DPA attack,

depends on the noise in the power consumption measurements (σ) and on the size of

the bias (ε) attributed to the partitioning bit [104]. The spike is identified if:

ε >
2σ√

n
.
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Therefore, the number of power traces necessary for the attack must be:

n >

(
2σ
ε

)2

.

Messerges et al. [97] suggested that a way to decrease the number of power con-

sumption measurements is to use multiple-bit DPA attacks, in which the magnitude of

the bias (ε) is increased. The magnitude of the bias depends on the number of bits that

are defined by the selection function D. In devices which show Hamming weight cor-

relation, for the selection function D that outputs d bits: ε = dl, where l is a constant

equal to the instantaneous power difference between two data words with Hamming

weights i and i+1. Experiments have shown [97] that this difference can be considered

approximately equal, for all i.

When performing the multiple-bit DPA attack, three sets are used for partitioning:

T0 = {Ti j : D(., ., .) = 0d}

T1 = {Ti j : D(., ., .) = 1d}

T2 = {Ti j : Ti j 6∈ T0,T1},

while the rest of the attack remains unchanged and the power traces in set T2 are not

used in the analysis.

An example of a 4-bit DPA attack on DES was outlined in [97]. The 4-bit selection

function is based on the 4-bit output from S-box. The power traces are partitioned

according to whether the output from the first S-box in the DES round functions is

0000 or 1111. The expected size of the bias signal is 4ε. The problem with this

approach is that each of the partitions should have about n/24 power traces. In that

way the averages of the partitions should have higher levels of noise. The experiments

in [97] have shown that this can introduce difficulties in recognising the bias of the

correct guess as the incorrect solution might have the same magnitude as the correct

key, in which case a small brute-force search could be used to discover the correct key.

Another way to mount a multiple-bit DPA attack is to partition the power traces

into T0 and T1 by not using the output, but the input to the S-box. In this way one

partition maximises the number of address-bus transitions and the other minimises the

number of address-bus transitions. The rest of the attack is repeated as usual.

As noted in [97], when mounting the d-bit DPA attack, the attacker may need to

use more power traces. This is due to the fact that a large portion of the power traces,

approximately n(1−21−d) power traces placed in the partition T2, are not used in the
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attack. As the averaging decreases noise, this would mean that the attacker would need

to obtain a higher number of power traces in order to reduce noise in partitions T0 and

T1. This implies that an attacker cannot arbitrarily increase the number of output bits

of the selection function, as the requirement for the number of power traces increases

significantly. Messerges et al. [97] have shown that if an attacker running a 1-bit DPA

attack needs n power samples to mount the attack, then for a d-bit DPA attack the

number of power samples needed to maintain the same signal-to-noise ratio is equal to

nd = 2d−1n/d2. It can be seen from this relation that for the 8-bit attack, only twice

as many power samples are needed. The advantage is that the resulting power bias in

d-bit attacks should be magnified d times. Experiments in [97] have confirmed that the

signal levels for multiple-bit DPA attacks are indeed much stronger.

3.5.4 Higher-order DPA attacks

In the DPA attack explained in Section 3.5.2, also known as the first-order DPA attack,

the attacker records the power consumption and computes their particular statistical

property for each individual instant of the computation. This attack does not require

any knowledge about the individual electric consumption of each instruction, nor the

positions in time in which each of these instructions occurred. It only relies on the

fundamental hypothesis given in Definition 3.5.1. This makes the (first-order) DPA

attack particularly impressive, since using simple mathematical tools and techniques

that are independent of the algorithm’s implementation, the values of the secret keys

can be relatively easily revealed.

The variations of this method which use more than one intermediate result in the

statistical analysis are called higher-order DPA attacks. Higher-order DPA attacks are

a generalisation of the (first-order) DPA attack, in which PCCs are analysed using joint

statistics applied to a collection of points in time. The higher-order attacks are more

powerful, but also more complicated as the choice of joint statistic and the points in

time may depend on the specifics of the cipher implementation.

Higher-order DPA attacks were defined in [78] as DPA attacks that use combi-

nations of one or more samples within a single power trace. During a first-order DPA

attack, the attacker calculates the statistical properties of each power trace at each sam-

ple point. In a higher-order DPA attack, the attacker calculates joint statistical proper-

ties of the power consumption traces at multiple sample points within each trace. The

definition of the n-th order DPA attack (quoted from [95]) is given next.
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Definition 3.5.2. An n-th order DPA attack makes use of n different samples in the

power consumption signal that correspond to n different intermediate values calcu-

lated during the execution of the algorithm.

Higher-order DPA attacks depend on the following fundamental hypothesis (quoted

from [15]):

Definition 3.5.3 (Fundamental Hypothesis (order n)). There exists a set of n in-

termediate variables, that appear during the computation of the algorithm, such that

knowing a few key bits (in practice less than 32 bits) allows to decide whether two

inputs (respectively two outputs) give or not the same value for a known function of

these n variables.

Chari et al. [36] have shown that the complexity of performing a higher-order DPA

attack increases with the exponent of the number of points used in the joint statistic.

In practice, higher-order DPA attacks are more difficult to mount than first-order

DPA attacks. For example, the second-order DPA attack requires more complex anal-

ysis, increased memory and processing requirements and increased number of power

consumption patterns [44]. Messerges [95] demonstrated that a second-order DPA

attack can be performed on the software implementation of the cipher which uses ran-

dom masking. Two implementations of a cipher are observed, pseudo-codes for which

are given in Figure 3.5.

W 1(plaintext)

{
A: result = plaintext ˆ secret key;

. . .

// other operations

. . .

return ciphertext;

}

W 2(plaintext)

{
B: r mask = random();

m plaintext = plaintext ˆ r mask;

C: result = m plaintext ˆ secret key;

. . .

// other operations

. . .

return ciphertext;

}

Figure 3.5: Routines vulnerable to first and second-order DPA attacks.

In the routine W1 the operation at line A is vulnerable to the first-order DPA attack.

The routine W2 is resistant to first-order DPA attack, but the joint statistic applied at
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the operations on lines B and C mounts the second-order DPA attack. The DPA bias

statistic for routine W2 is defined as:

∆ = S̄0− S̄1

where S̄b, for b = {0,1} is an average statistic calculated as S̄b = |PB−PC|, over all

plaintext input values in which the i-th bit is set to either 0 or 1, and PB and PC are

instantaneous power consumptions at points B and C, respectively. If ∆ > 0, then the

key bit is equal to one, otherwise it is equal to zero. Further details of the correct-

ness of this approach are given in [95]. The author also points out that in this attack

the knowledge of the cipher implementation is important, since otherwise the attacker

would need to resort to additional statistical analysis to find the critical points.

3.5.5 Variations of the DPA attack

Biham and Shamir [29] studied the power analysis of key scheduling in AES can-

didates. They noted that an important disadvantage of the DPA attack was that the

attacker has to know all the plaintexts (for the attack on the first round) or all the ci-

phertexts (for the attack on the last round). The authors point out that, in reality, the

attacker does not necessarily know the precise values of the inputs or the outputs, as

these could be additionally protected with an unknown protocol. Biham and Shamir in-

troduced a variant of power analysis in which the attacker does not have to know either

the inputs or the outputs of the encryption operations, the precise timing in which they

were carried out, or the details of their software implementations in the smart-cards.

Their technique performs the power analysis of the key scheduling part of the block

cipher, as an important target for power analysis because its power consumption is a

function of the key, and not of the data, and thus could be used to attack smart-cards

in which the plaintext, ciphertext, protocols and implementation details are unknown

to the attacker. It is, however, assumed that the protocol always performs the same

subroutines in the same order, and that they always require the same number of clock

cycles. As a result, the power consumption graphs of different executions of the pro-

tocol can be aligned and compared at the level of single instructions.

The first part of the attack is to discover the portion of the power trace which

corresponds to the key scheduling operation, and is performed in two steps:

Step 1 – The attacker executes the protocol many times on a single smart-card in dif-

ferent contexts (i.e. executing different operations). The attacker then aligns the
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power curves at each clock cycle, and compares them. Next, those clock cycles

in which the graphs show a large variability in power consumption, due to dif-

ferences in the processed data, are eliminated from further consideration. The

remaining clock cycles represent operations that are data-independent.

Step 2 – The attacker repeats Step 1 for several smart-cards, which contain different

cryptographic keys, and finds their common data-independent regions. Regions

which show small variability among different cards and which are likely to be

standard system-wide operations are eliminated.

The attacker performs a filtering process identifying the cycles in which each card

behaves in the same way (regardless of the values being processed), but different cards

behave in different ways (depending on the card’s unique identity). These periods

will include the key scheduling elements of the encryption process, but not the routine

book-keeping operations or the actual data encrypting steps.

The next step is to study the individual steps of the key scheduling algorithm. Soft-

ware implementations of iterated block ciphers usually compute each subkey just be-

fore it is used in the appropriate round (usually due to small RAM size). The computed

subkey is stored in the RAM in chunks of 8 bits. The amount of current consumed de-

pends on the number of 1s among the 8 written bits. Even though the measurements are

likely to contain many errors and provide only partial information about the key, they

can be smoothed by averaging the power consumed by the large number of executions

with a common key. The crucial observation is that even imperfect measurements of

the Hamming weights of a small number of bytes generated during the key scheduling

part of the block cipher can completely reveal the key.

Biham and Shamir performed the analysis of the feasibility of applying this attack

to each of the AES candidates. In particular, the authors note that Rijndael applies

several layers of XORing each key word into the next word, with almost no other

information in between. There is mixing in the key bytes, but the authors claimed that

the derivation of Hamming weights is not expected to be very complicated.

Clavier et al. [39] also proposed an improvement to the general DPA technique,

called Hamming integration variant method. They have noticed that if more than one

output bit of S-boxes are observed, more information can be extracted in comparison

to a DPA attack in which only one output bit is observed. In the case of DES, the

basic idea is that instead of considering one output bit of the S-boxes, all four output

bits are considered. The Hamming integration method assumes that the device’s power
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consumption is proportional to the Hamming weights of the observed data. PCCs are

classified according to the Hamming weights of the S-box outputs (details can be found

in [39]). The signal-to-noise ratio is increased this way, which should have a conse-

quence of enabling a successful attack with a reduced number of PCCs. The authors

also observe that very strong correlation exists between the chip’s power consumption

and the operations being executed. This value is high during data transfers between the

CPU and external RAM, so the operation which is performed after the S-box output

is determined, can be targeted for DPA. They notice that, in this case, the power con-

sumption does not depend only on the value of the bit that is output from the S-box,

but also on the transitions that occur on the data-bus. A high power consumption is

expected when a 1 is written on the bus previously discharged, or similarly when a 0

is written on the bus previously charged. The authors noticed that the status of the bus

must be considered when all four output bits from the S-box are observed simultane-

ously, as the information could be lost otherwise. This means that the previous value

of the bus line must be determined. If the attacker does not know the previous value of

bus line, all possibilities must be examined experimentally.

3.5.6 Countermeasures

The fact that DPA attacks represent a real threat to cryptographic devices has sparked

huge interest in preventing these attacks and protecting cryptographic devices. DPA

was demonstrated as being able to break almost any implementation of both symmetric

and asymmetric ciphers and the majority of the proposed countermeasures were shown

not to be sufficient. Rather than preventing the attack, countermeasures tend to increase

the complexity of performing the attack to the point that it becomes infeasible or too

expensive to perform it.

The complexity of differential power analysis can be increased by introducing soft-

ware (algorithmic) and hardware (physical) countermeasures. Software countermea-

sures tend to be more desirable, since they can be implemented on existing architec-

tures. Hardware countermeasures, although generally more costly to implement, might

be necessary depending on the desired level of security.

DPA is an implementation-oriented attack that exploits the fact that the power con-

sumption pattern is correlated to the value of at least one bit of the secret key. A

general strategy to render DPA more complex to apply, is to balance and randomise

major computations which involve the secret key. This in turn is equivalent to increas-



3.5. Differential power analysis 51

ing the amount of noise that is already present in the power traces, and in that way

hiding the DPA bias signal.

3.5.7 Software countermeasures

Although considered inexpensive, software countermeasures can result in significant

memory and execution time overheads [35]. The overhead depends on the type and

arrangement of the fundamental operations used in an algorithm. Some of the proposed

software countermeasures are summarised in the following sections.

3.5.7.1 Desynchronisation

The major strength of the DPA attack comes from the assumption that the sequence

of instructions is fixed, and that in adding power consumptions up, the instructions are

paired nicely. Daemen and Rijmen [46] suggested that inserting dummy instructions

based on some modifying parameter, could make the straightforward attack not work

anymore. However, dummy instructions, as any other instruction, have characteristic

power signatures, which weakens this countermeasure.

3.5.7.2 Software balancing

Software balancing was also proposed by Daemen and Rijmen [46]. This technique

specifies that the program is written in a such way that during the execution both the

data and its complement are processed. In this way the correlation between data and

power consumed is decreased, but overheads could be significant.

3.5.7.3 The ”duplication” method

Goubin and Patarin [57] studied how DPA attacks may be prevented by using the fol-

lowing idea: replace each variable V that occurs during the computation and that de-

pends on the inputs or the outputs, with k variables V1, . . . ,Vk, and an appropriately

chosen function f for which V = f (V1, . . . ,Vk) that satisfies two additional conditions:

1. It is not possible to deduce information about the set of k values of variables Vi,

i = 1 . . .k, from any subset of k− 1 values. In other words, the knowledge of

k−1 variables Vi does not give any information about V itself.

2. Transformations to be performed on variables Vi during the computation can be

implemented without calculating the value of V .
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The cryptographic algorithm is transformed by replacing each intermediate variable V

depending on the inputs (or influencing the outputs) with k variables V1, . . . ,Vk. The

authors have demonstrated this approach in the cases of DES and RSA algorithms.

• For DES, each intermediate variable V is replaced with two variables V1 and V2.

They choose the function f (v1,v2) = v = v1⊕ v2, where⊕ is the XOR operation,

which obviously satisfies conditions 1 and 2.

• In the case of RSA, each intermediate variable V whose values lie in the multi-

plicative group of Z/nZ is replaced with two variables V1 and V2 and the choice

of function f (v1,v2) = v = v1·v2 mod n. It is easy to see that this function also

satisfies the conditions 1 and 2.

The authors claim that it is possible to show that when each variable is split into k

variables, the complexity of the implementation increases in O(k), while the complex-

ity of the attack should increase exponentially in k.

3.5.7.4 Random masking

Messerges [96] proposed a way of protecting vulnerable operations in cryptographic

algorithms by using a strategy that employs random masks. A random boolean and

arithmetic masking was proposed for masking fundamental operations used in im-

plementation of cryptographic algorithms vulnerable to power analysis. The random

masks decorrelate power consumption signals from the secret key and the input and

output data, thereby forcing the DPA to use joint probability distribution.

Each of the masking strategies consists of masking word x with random mask rx

resulting in x′. Two types of masking are distinguished:

• Boolean masking, which uses bitwise XOR and masks x with rx as follows:

x′ = x⊕ rx. This type of masking can be used in DES.

• Arithmetic masking, which uses addition and subtraction modulo 232 (it is as-

sumed that the data is represented with 32-bit words) and masks x with rx as

follows: x′ = (x− rx) mod 232. This type of masking can be used in RSA.

The basic strategy is to mask the key and the input operation prior to algorithm

execution. In that case, since the algorithm is executed on masked data, all the inter-

mediate results are also masked. As the new mask is randomly chosen for each new run

of the algorithm, the statistical correlation of the power consumption measurements is
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not sufficient for a successful attack. The attacker would have to look at joint probabil-

ity distributions of multiple points in the power signal in order to successfully mount

the power analysis attack.

Boolean and arithmetic masking operations are possible only if all the fundamen-

tal operations of the algorithm can work with masked input and produce masked out-

put. Different classes of cryptographic algorithms use different masking depending on

the kind of operations performed in the algorithm. For example, DES requires only

boolean masking; while RSA uses only arithmetic operations and, therefore, needs

only an arithmetic mask. On the other hand, some algorithms require more than one

mask, for instance algorithms which perform both arithmetic and boolean operations,

boolean-to-arithmetic and arithmetic-to-boolean maskings are required.

The boolean-to-arithmetic masking is given in Algorithm 6 (quoted from [96]), in

which x represents the unmasked data, x′ the masked data, and rx a random mask.

The algorithm works by unmasking x using the XOR operation and then arithmetically

masking x using modular subtraction. Since the unmasked x can be vulnerable to

power analysis attack, a random value C is used to randomly select whether x or x̄

is unmasked. Arithmetic-to-boolean masking algorithm is very similar to boolean-to-

arithmetic algorithm (see [96] for further details).

Algorithm 6 Boolean-to-arithmetic masking.
INPUT: (x′,r) such that x = x′⊕ r

OUTPUT: (A,r) such that x = (A− r) mod 2k

1: Randomly select : C = 0 or C =−1

2: B = C⊕ r /* B = r or B = r̄ */

3: A = B⊕ x′ /* A = x or A = x̄ */

4: A = A−B /* A = x− r or A = x̄− r̄ */

5: A = A+C /* A = x− r or A = x̄− r̄−1 */

6: A = A⊕C /* A = x− r */

This technique shows better performance characteristics when compared to secret-

sharing heuristic (reviewed in Section 3.5.7.5), but should be carefully implemented.

Coron and Goubin [41] proved that the approach given in [96] is not sufficient to

prevent DPA. According to [96], the basic strength of the masking algorithm is in the

fact that the attacker never knows whether variable x or x̄ is being calculated; therefore,

the attacker cannot guess the bits of the key. In [41] it is pointed out that this is true if

only one bit is observed (one-bit DPA attack). If two bits are observed, then a DPA-like
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attack can be applied. This attack is based on the fact that if two bits of x are equal

then those two bits are also equal in x̄. Therefore, in the attack, all PCCs are divided

into two groups according to this criteria. If the power consumption when two bits

are equal differs from the case when these bits differ, then the 2-bit DPA attack can be

applied, and the expected DPA bias amplitude should be equal to:

ε =
µ00 +µ11−µ01−µ10

2

where µi j, i, j ∈ {0,1}, is the mean value of power consumption when the pair of ob-

served bits is equal to ′i j′.

The authors provide no experimental results for their analysis, but point out that

this is not a higher-order DPA attack, because the latter consider joint probability dis-

tributions of multiple points in the power signal. The higher-order DPA attack, as

shown in [36], requires a number of experiments that is exponential in the number of

points considered. The authors argue that since this attack concentrates only at one

point in the power signal, the required number of experiments should be of the same

order as in the case of a single-bit DPA.

3.5.7.5 Secret-sharing

Chari et al. [36] proposed a general technique to counter statistical attacks in devices

where the power model is reasonable and the source of randomness exists. Their tech-

nique is based on a well known secret-sharing scheme, which randomly splits every

relevant bit into several (k) shares. Each of k shares and furthermore, every collection

of k−1 shares should be statistically independent of the bit required for computation.

In this way only shares of the sensitive data are manipulated and never the data itself.

This share-based technique needs to be applied for a sufficient number of steps into

the computation until the attacker has a very low probability of predicting bits, i.e.,

until sufficient secret key operations have been carried out. Similar splitting has also

to be performed at the end of computation if attacker can access its outputs. This gen-

erally increases the noise and complicates the analysis of data, as the attacker has to

analyse joint distribution functions on multiple points in the power trace. The authors

claim that the number of power traces needed to perform the attacks increases expo-

nentially with the noise. This countermeasure eliminates the threat of the first-order

DPA attack and forces the attacker to mount a second-order DPA attack. However,

the performance penalty of the secret-sharing scheme could make this countermeasure

impractical [104, 103].
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3.5.7.6 Elliptic curve cryptography

The use of elliptic curves in cryptography was first proposed by Koblitz [74] and

Miller [99] in 1985. Since then, elliptic curves (EC) over large finite fields have be-

come a common way to implement public-key protocols. Elliptic curve cryptosystems

(ECC) can use much smaller key sizes, typically around 160 bits, providing the same

security level as 1024 key bits of RSA. In addition, ECCs show better performance

and computation speed than other multiplication groups such as RSA and ElGamal at

the same security level [60]. This makes ECCs very attractive for implementations on

devices with limited memory and computation capabilities, such as smart-cards.

Definition 3.5.4. An elliptic curve over field K is a pair (E,O) where E is a non-

singular curve of genus one over K with a point O ∈ E. The set of points (x,y) ∈K×K

verifying the (non-singular) Weierstraß equation

E/K : y2 +a1xy+a3y = x3 +a2x2 +a4x+a6 (ai ∈K) (3.8)

together with O, form an elliptic curve over K. The point O is called the point of

infinity.

If char K 6= 2 and char K 6= 3, Equation 3.8 can be reduced to the form:

E/K : y2 = x3 +a2
x +b (a,b ∈K).

In the field K = GF(2n) of characteristic 2, Equation 3.8 can be reduced to the form:

E/K : y2 + xy = x3 +a2
x +b (a,b ∈K).

The set of points (x,y) on an elliptic curve, together with point O can be equipped with

an Abelian group structure by the following operation.

Definition 3.5.5 (Addition formula for char K 6= 2,3). Let P = (x1,y1) 6= O be the

point on the elliptic curve. The inverse of P is:

−P = (x1,−y1).

Let Q = (x2,y2) 6= O be a second point on the elliptic curve. The sum P+Q = (x3,y3)

can be calculated as:

x3 = λ2− x1− x2

y3 = λ(x1− x3)− y1 (3.9)

λ =

{
y2−y1
x2−x1

, i f P 6= Q
3x1

2+a
2y1

, i f P = Q
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Definition 3.5.6 (Addition formula for char K = 2). Let P = (x1,y1) 6= O be the

point on the elliptic curve. The inverse of P is:

−P = (x1,x1 + y1).

Let Q = (x2,y2) 6= O be a second point on the elliptic curve. The sum P+Q = (x3,y3)

can be calculated as:

x3 = λ2 +λ+ x1 + x2 +a

y3 = λ(x1 + x3)+ x3 + y1

λ = y1+y2
x1+x2





, i f P 6= Q, (3.10)

and as

x3 = λ2 +λ+a

y3 = x2
1 +(λ+1)x3

λ = x1 + y1
x1





, i f P = Q. (3.11)

One of the main drawbacks of using ECs in cryptography is the fact that adding two

points requires too many field multiplications. Certain special curve types allow for

faster addition, but this choice has to be carefully made as shown in [55].

Koblitz [75] suggested an alternative, which he called anomalous binary curves

(ABC curves) or Koblitz curves. These are the curves of types:

E1 : y2 + xy = x3 + x2 +1

E2 : y2 + xy = x3 +1

over GF(2n). Cryptosystems based on these curves offer significant advantage in terms

of reduced processing time. This fact, together with the short key size, has made

Koblitz curve cryptosystems attractive for practical implementations.

Similarly, in order to ease additions, Montgomery [101] considered the family of

the elliptic curves of the form:

E/K : By2 = x3 +Ax2 + x,

where B(A2−4) 6= 0 and char K 6= 2, and the cardinality of E(K) is divisible by 4.

Hessian-type elliptic curves were also considered because they provide unified for-

mula for adding and doubling. They are defined as the intersection of the two quadrics

in P
3, and can be given in the following form:

E/K : x3 + y3 +1 = 3Dxy,



3.5. Differential power analysis 57

where D ∈K, D3 6= 1, and the cardinality of E(K) is divisible by 3.

Projective coordinates. The addition formulae, given in Equations 3.9, 3.10 and 3.11,

require a number of arithmetic operations, namely, additions, squaring, multiplications

and inversions over GF(2n). The representation of points of the elliptic curves can

influence the cost of point adding and doubling [61]. To avoid costly inversions, it is

convenient to use projective coordinates. Among numerous possibilities, the two most

commonly used are homogeneous and Jacobian projective coordinates.

• Homogenous projective coordinates are obtained by setting x = X/Z and y =

Y/Z, whereby the general Weierstraß equation becomes:

E/K : Y 2Z +a1XY Z +a3Y Z2 = X3 +a2X2Z +a4XZ2 +a6Z3.

The point of infinity O is represented by (0,θ,0) for some θ ∈K
∗, and the affine

point (x,y) is represented by (θx,θy,θ) for some θ ∈K
∗, and a projective point

(X ,Y,Z) 6= O corresponds to affine point (X/Z,Y/Z).

• Jacobian projective coordinates are obtained by setting x = X/Z2 and y = Y/Z3,

whereby the general Weierstaß equation becomes:

E/K : Y 2 +a1XY Z +a3Y Z3 = X3 +a2X2Z2 +a4XZ4 +a6Z6.

The point of infinity O is represented by (θ2,θ3,0) for some θ ∈ K
∗, and the

affine point (x,y) is represented by (θ2x,θ3y,θ) for some θ∈K
∗, and a projective

point (X ,Y,Z) 6= O corresponds to affine point (X/Z2,Y/Z3).

Scalar multiplication. The basic operation performed in ECC algorithms is the ellip-

tic curve scalar multiplication over a large finite field (definitions and details regarding

finite fields can be found in [84]). Elliptic curve scalar multiplication (or just scalar

multiplication) is the operation of adding a point P to itself d times and is denoted as

dP. Scalar multiplication of a point on an EC is analogous to modular exponentiation

in a multiplicative group.

The group structure of the ECs enables the translation of existing discrete loga-

rithm cryptosystems into the context of elliptic curves [40]. The discrete logarithm

problem in group G of order n and generator g, is the problem of finding x given an

element y = gx of G. The basic strength of symmetric encryption algorithms is in the

discrete logarithm problem. Finding d such that Q = dP seems to be much harder in
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the group defined over the elliptic curve when compared to other groups, such as the

multiplicative group over the finite field.

The scalar multiplication used in ECCs is analogous to modular exponentiation in

multiplicative groups. The basic algorithm used for this operation is the double-and-

add algorithm given in Algorithm 7. Computing dP is based on a binary expansion

d = (dl−1, . . . ,d0) where dl−1 is the most significant bit of d, and it is sometimes known

as the binary algorithm.

Algorithm 7 Double-and-add algorithm for scalar multiplication
INPUT: P,d = (dl−1, . . . ,d0)

OUTPUT: Q← dP

1: Q← P

2: for i = l−2 to 0 do

3: Q← 2Q

4: if di = 1 then

5: Q← Q+P

6: end if

7: end for

Various techniques have been suggested to speed-up scalar multiplications. They

tend to reduce the number of point operations. For example, one idea is to precompute

the table of multiplies of the point P, for a known P. The feasibility of this approach

depends on the memory capabilities of the particular system.

Addition-subtraction chains. Choosing a representation of d that has fewer non-zero

elements, reduces the number of EC additions and improves the scalar multiplication.

The conventional binary system is non-redundant and d has only one representation.

Using different number systems which have redundancy in them, the integer d can be

represented in more than one way. One such approach uses signed binary expansion

of d and the fact that the addition and the subtraction have the same cost.

The exponent d is seen as:

d =
l−1

∑
i=0

ci2
i, ci ∈ {−1,0,1}. (3.12)

The algorithm that uses this representation is called addition-subtraction algorithm

and is given in Algorithm 8.
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Algorithm 8 Addition-subtraction algorithm for scalar multiplication
INPUT: P,d = (dl−1, . . . ,d0)

OUTPUT: Q← dP

1: Q← P

2: for i = l−2 to 0 do

3: Q← 2Q

4: if ci = 1 then

5: Q← Q+P

6: end if

7: if ci =−1 then

8: Q← Q−P

9: end if

10: end for

The non-adjacent form (NAF) of d is a signed binary expansion of d where cici+1 = 0

for all i > 1. It can be shown [55] that each positive integer has a unique NAF with the

minimal number of non-zero cis in the representation given by the Equation 3.12.

The problem of computing dP using the fewest number of EC group operations for

a given d, is equivalent to finding a shortest addition-subtraction chain for d [55]. An

addition chain for d is a sequence of positive integers:

a0 = 1→ a1→ a2→ ·· · → ar = d

such that ai = a j +ak for k ≤ j < i and for all i = 1,2, . . . ,r. An addition-subtraction

chain is defined as the extended addition chain, where ai =±a j±ak for some k ≤ j < i,

for all i = 1,2, . . . ,r. The shortest addition-subtraction chain for d gives the scalar mul-

tiplication for the fewest number of EC group operations. Now, dP is calculated by

computing a1P, a2P, . . . , arP = dP.

Resistance to SPA. Naive implementations of elliptic curve cryptosystems are highly

vulnerable to power analysis as Coron first suggested in [40]. If the scalar multipli-

cation is performed using the double-and-add algorithm, then SPA can be applied. In

Algorithm 7, the step Q← Q+P in line 4 is only processed if di = 1. The attacker

can attempt to determine the bits of d by seeing how the program behaves at the i f -

statement. The test is always carried out, but the point addition is performed only

when di = 1. This operation requires a number of time and power consuming opera-

tions, such as GF(2n) multiplications and inversions as shown in Equations 3.9, 3.10
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and 3.11. The attacker could try to spot this jump in the power trace, which would

enable him to discover the bits of the secret scalar d.

The major threat of SPA attack on ECCs comes from the fact that addition and

doubling operations can be distinguished. The power signal can show the difference

between point doubling and point addition in Algorithm 7, and in that way discover

the secret exponent d. The attacker only needs to observe the power consumption of

the device to identify those parts of the power curve that correspond to additions and

duplications, which trivially gives the key d.

Coron [40] suggested a simple solution to protect EC implementations against SPA.

The execution of the EC addition is made independent of the values of d, by removing

branches in the code that depend on the values of the secret scalar, as shown in Algo-

rithm 9. The drawback is that this solution penalises the running time. More efficient

SPA resistant algorithms have been suggested in [61].

Algorithm 9 Double-and-add scalar multiplication resistant to SPA attack.
INPUT: P,d = (dl−1, . . . ,d0)

OUTPUT: Q[0]← dP

1: Q[0]← P

2: for i = l−2 to 0 do

3: Q[0]← 2Q[0]

4: Q[1]← Q[0]+P

5: Q[0]← Q[di]

6: end for

It has been proposed that a model for the EC in which addition and doubling are

given by the same formula would not suffer from the side-channel analysis of the code

dependent nature of the operation. One common idea to make point addition and point

doubling indistinguishable is to unify the common part of the code for both operations

and add dummy code to balance the difference between the two operations [83]. How-

ever, this defence is unsuitable since the point addition and point doubling would still

have separate execution profiles, and would reside in different areas of memory and

execute in different parts of the hardware [83]. Even if the same code was used for

point addition and doubling operations, the test in the scalar multiplication could still

leak some information about the key. Ideally, one would have to execute the same code

at the same address with different results. For standard elliptic curves of the Weierstraß

model one cannot use the same formula for point addition and point doubling, since
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the addition formula has a singularity when the two points are the same. Liardet and

Smart [83] suggested that this can be achieved by using different forms of the curve,

where mathematically the point addition and point doubling use the same formula.

Their approach involves the representation of an elliptic curve as the intersection of

two quadratic surfaces in P
3. The price of this technique is that the performance is

affected as the number of multiplications and squarings in the finite field increases.

They also combined their approach with the random windowing method (e.g. [55]) for

point multiplication and point blinding. However, even after using the various opti-

misations such as Jacobi form and the signed windowing method (details in [83]), the

total increase in the computation cost is 70% in comparison with a standard projective

coordinate method. In addition to the cost problems, Walter [133] proved that this

method is vulnerable to certain attacks.

Joye and Quisquater [69] investigated the cubic form of the EC, known as Hessian

form. The symmetry of the Hessian form, provides the same algorithm for point-

addition and point-doubling. This solution provided an improvement over Jacobian

curves of 33%. In a similar way, Brier and Joye in [31] showed how to perform

point doubling and point addition with the same formula with the general Weierstraß

parametrisation.

Oswald and Aigner [110] have proposed randomisation of the binary algorithm

(double-and-add algorithm in which d is represented using binary expansion) in or-

der to resist the power analysis. Most of the proposed countermeasures that use ran-

domisation as a way of resisting the power analysis [40, 61, 98] randomised the input

parameters (point P or the secret scalar exponent d) of the binary algorithm. In the so-

lution proposed in [110] the binary algorithm itself is randomised. This is achieved by

inserting random decisions into addition-subtractions chains, a technique which was

originally used to speed-up the binary algorithm [60].

Gebotys and Gebotys [54] investigated a modification of adding and doubling rou-

tines for security against power attacks, by inserting redundant operations into point-

addition and point-doubling routines so that the order and type of field operations were

identical, thereby making the signatures for doubling and addition not easily distin-

guishable in the power traces. Addition is split into two routines to help this, as the

code for addition is approximately twice as long as the code for doubling.

Okeya and Sakurai [107] took the approach of using a variant of Montgomery’s

point multiplication algorithm [101] for suitable curves over fields with odd charac-

teristic. Montgomery method is similar to Coron’s double-and-add method, as it al-



62 Chapter 3. Side-channel Analysis

ways performs double and add, and holds the two points during the computation. The

choice of point to add depends on the value of the bit of the secret exponent d (see

Algorithm 10). A method is shown to implement a scalar multiplication resistant to

power analysis using a combination of the Montgomery method, secure against SPA,

and Coron’s randomisation technique.

Algorithm 10 Scalar multiplication using the Montgomery method.

INPUT: P,d = ∑n
i=0 di2i,di ∈ {−1,0,1}

OUTPUT: Q[0]← dP

1: Q[0]← P

2: Q[1]← 2P

3: for i = n−2 to 0 do

4: Q[1−di]← Q[0]+Q[1]

5: Q[di]← 2Q[di]

6: end for

Möller [100] noticed that the previously mentioned methods, although efficient,

can be implemented only for specific ECs. Namely, ECs suitable for those in [83]

(curves with Jacobi form) have to have a group order that is divisible by 4; ECs suitable

for those in [69] (curves with Hessian form) have to have a group order that is divisible

by 3; and ECs suitable for those in [107] (curves with Montgomery form) have to have

a group order divisible by 4. Even though one can use an EC of the required form, it is

very likely that people will use the recommended standard. For example, over a large

prime field, NIST suggests using a curve of the large prime order and the order of the

above mentioned ECs is a small number.

Möller [100] suggested a technique that does not impose limitations to specific

chosen curves. In this solution scalar multiplication is done in such a way that point-

addition and point-doubling occur in a fixed pattern. The method used randomised

projective coordinates and the precomputed multiples of the point P, together with the

recoding of the multiplier d in a special signed-digit encoding. A 2w-ary representation

of the scalar d, where w≥ 2 is a small integer is given by:

d =
k′

∑
i=0

b′i2
wi

where b′i ∈ {0,1, . . . ,2w−1}. The k′ is chosen to be minimal, i.e. b′k′ 6= 0, and for
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i > k′, b′i = 0. This representation is then converted into:

d =
k

∑
i=0

bi2
wi

such that bi ∈ {−2w,1, . . . ,2w−1}. The method precomputes points P, 2P, 3P, . . . ,

(2w−1)P, −2wP and uses these points to unify the point-addition and point-doubling

procedures. This method is more time-efficient than the ones described in [69] and [83].

While the method in [107] has performance advantages, its shortcoming is that it re-

quires specific curves. By implementing the method using randomised projective co-

ordinates and storing precomputed points in extended point representation, the infor-

mation leakage is limited. Möller’s technique is a combination of the Coron’s double-

and-add and the windowing method. The downfall is that it requires additional table

look-ups and a table size of 2w. This additional memory space is not always available,

particularly for devices with scarce memory, such as smart-cards.

Improvements of the scalar multiplications using windowing method were pro-

posed by Okeya and Tagaki [108, 109]. Both of these solutions based their improve-

ments on reducing the size of the look-up table by an appropriate choice of the win-

dowing method. The sizes of look-up tables are reduced to 2w−1 [109] and 2w−2 [108].

Another solution based on Montgomery multiplication that is applicable not only to

Montgomery curves but to any other type curve was suggested by Izu and Takagi [67].

This solution improves the addition chain as well as the addition formula. Izy and Tak-

agi also suggested addition formulae that use only the x-coordinates for the Weierstraß

form curve, that are also suitable for parallel execution.

In summary, the countermeasures against SPA on ECCs can be divided into three

main categories: (1) indistinguishable addition formulae that use one formula for both

elliptic addition and doubling [83, 69, 31]; (2) addition chain that always computes

elliptic addition and doubling for each bit [40, 106, 107, 31, 108]; (3) window-based

addition chain with a fixed pattern [106, 107, 100, 109, 108].

Resistance to DPA. Although the algorithms mentioned previously provide more or

less secure implementations of scalar multiplication against SPA attacks, they do not

necessarily provide security against more powerful attacks - DPA attacks. For example,

the double-and-add algorithm (Algorithm 7) which is resistant to SPA, does not defend

scalar multiplication against the DPA. The step Q[0]← Q[di] in line 4 can consume

slightly different amounts of power, depending on whether the bit di is a one or a zero.

Even though it is very hard to find such a small difference using SPA, DPA is a powerful
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technique that exploits secret information by statistical analysis of power consumption.

Coron [40] has demonstrated that this SPA resistant implementation of double-and-

add algorithm is vulnerable to DPA attack. Namely, it was noticed that at step j the

processed point Q depends only on the first bits (dl−1, . . . ,d j) of d. If the selection

function for the DPA attack is chosen to be a specific bit in the memory representation

of point Q, then when Q is processed, power consumption will be correlated to this

specific bit of Q. In order to recover the bits of the secret scalar d, the point being

processed in the card needs to be guessed. If the second most significant bit of d, dl−2

was a zero, then point 4P would be computed and the power consumption correlated

to any specific bit of the point 4P. Otherwise, if dl−2 = 1, 4P is never computed

and there would be no correlation between power consumption and the bits of point

4P. This could be used to recover dl−2. By recursively applying the same logic to

successive bits of d all of them can be discovered.

This attack can be extended to any scalar multiplication algorithm. In the case

of the addition-subtraction algorithm, the point dP is calculated by computing the se-

quence of points:

a0P = P→ a1P→ a2P→ ·· · → arP = dP

such that ai =±a j±ak, for some k ≤ j < i, for all i = 1,2, . . . ,r. The attack consists of

guessing the ai’s, starting from a0 = 1 to ar = d. At step i≥ 1, the set Ai of all possible

ai =±a j±ak, k ≤ j < i, is guessed. Now, for each a′i ∈ Ai, power consumption is

correlated to the point a′iP, and the peak can be observed only for a′iP which was

actually calculated.

Coron [40] proposed the following countermeasures to prevent DPA attacks:

• Randomisation of the private exponent d.

Let #ε be the number of points on the curve.

Select a random number k.

Compute d′ = d + k#ε.
Compute the point Q = d ′P.

Since #εP = 0, then Q = dP. Now, in every calculation a different d ′ is used to

calculate Q = d′P.
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• Blinding the point P. Point P is blinded by adding a random variable R, for

which S, such that S = dR, is known. Values Q′ = d(P+R) and Q = Q′−S are

calculated. The value of R and S is updated for each calculation using formulae:

R = (−1)b2R

S = (−1)b2S

where b is a random value. Values R and S can be stored outside the card, and

refreshed for each calculation, in this case, each time a different Q′ is calculated.

• Random projective coordinates. This approach consists of randomising projec-

tive coordinates of point P:

(X ,Y,Z) = (λX ,λY,λZ)

for some random λ 6= 0, and calculating Q = dP. Projective coordinates (X ,Y,Z)

of point P = (x,y) are given by:

x =
X
Z

, y =
Y
Z

.

Okeya and Sakurai [107] criticised Coron’s [40] first countermeasure against DPA

as not secure, since it fails to break the dependencies between the executing procedure

and the secret key. They also criticised the second countermeasure and claimed that

it does not manage to randomise the expression of computed objects. As for the third

countermeasure, they claim that careless implementations of this countermeasure are

vulnerable to the attack, but the countermeasure is otherwise safe.

Hasan [61] proposed a countermeasure to resist DPA attack on ECCs based on

Koblitz curves. The underlying principle is that d is randomly changed each time it is

used in the cryptosystem, so that the averaging out technique, used in DPA, does not

converge to an identifiable differential signal and the DPA attacks are expected to fail.

The major idea was to change d to a pseudo-random number (at a reasonable cost)

and still provide the correct result. The suggested masking techniques are summarised

in [61].

Joye and Tymen [70] proposed to protect ECCs from DPA by transforming the

curve through various random morphisms to provide a non-deterministic execution of

the algorithm. In this solution the ECC execution of some operations in the group of

a curve E, is transposed to a curve φ(E), where φ is a random isomorphism. The rich

algebraic structure of the elliptic curves enables a number of possible choices for such
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isomorphism. Another way to achieve the security against DPA is to randomise the

base point by using the isomorphism of the finite field. A specific method for ABC

curves is also suggested.

Ciet et al. [38] suggest a method that is valid for ECs over fields of any charac-

teristic. This countermeasure combines the point-blinding and randomised scalar mul-

tiplication mentioned earlier, into a unique algorithm, in a way which benefits from

the computational speed-up of the method. This method is viewed as two-dimensional

generalisation of Coron’s [40] method.

Ha and Moon [60] suggested randomising the NAF algorithm to resist DPA and

employ a simple SPA-immune system. The NAF representation of the secret expo-

nent in the form of the addition-subtraction chain can reduce the number of operations

that need to be performed compared to ordinary binary representation. As the result

of randomisation, the signed scalar representation is not in the NAF form anymore.

Resistance against SPA comes from the fact that the attacker cannot distinguish addi-

tion from subtraction. The authors also suggest a countermeasure against SPA. Their

SPA-immune addition-subtraction scalar algorithm makes the power consumption in-

dependent of the secret key. The authors notice the importance of building a good SPA

countermeasure, as any SPA weakness completely destroys the DPA countermeasure.

It is generally thought that the ECCs are easy to protect against DPA, using ran-

domisation over an implementation that is already secure against SPA. According to

these countermeasures, an inexpensive and secure way to protect the scalar multipli-

cation against DPA is achieved either by using (1) random projective coordinates, (2)

random elliptic curve isomorphism, or (3) random field isomorphism. Goubin [56]

has shown that for many ECCs such a protection against DPA is not sufficient. It is

shown that for a large class of ECCs the power analysis still works even if one of the

three mentioned techniques (together with SPA countermeasure) is implemented. This

attack is based on the chosen message. The author points out that this result means that

the randomisation of the secret scalar should be performed more extensively and this

problem should be taken seriously. Also this attack shows the importance of blinding

the message before it enters the scalar multiplication, as it would prevent the attacker

from choosing the message for this attack.
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3.5.8 Hardware countermeasures

In general software countermeasures are easy and inexpensive to implement, but are

not applicable for each cipher and are still susceptible to higher-order DPA attacks or

signal processing analysis. Hardware countermeasures, in a manner similar to software

countermeasures, focus on destroying the correlation between the power measurements

and the values of the secret key. Another target of hardware countermeasures is the

alignment of operations in power consumption curves, an important property used by

DPA. Some of the hardware countermeasures proposed in the literature are summarised

next.

3.5.8.1 Power randomisation

Interleaving random computations into the execution of the cryptographic operations

has been often suggested as a defence against DPA. Daemen and Rijmen [46] proposed

power randomisation generated by a hardware module that is built into the chip and

adds noise to power consumption. Power randomisation reduces signal-to-noise ratio

of the attack and as such makes the attack more difficult. The authors notice that a way

to prevent (or at least seriously complicate) the attack is to minimise the correlation

between the data and the power consumption. If the cipher is implemented in software,

then this can be achieved by modifying the ALU hardware so that all instructions that

operate on sensitive data are balanced.

3.5.8.2 Random process interrupts

Some of the first countermeasures against DPA used random process interrupts (RPIs).

If the encryption operation is interrupted at random times with random operations, then

the times at which critical operations (those that manipulate the secret key) are carried

out, will vary from encryption to encryption. Instead of executing all the operations

sequentially, the CPU interleaves the execution with dummy instructions so that cor-

responding executions do not match because of the time shifts. Power traces collected

from the devices protected using this countermeasure will not be aligned with respect

to operations that the device is performing. This is one of the basic strengths of the

straight-forward DPA attack. As a result, spikes which would normally appear thin

and tall in the differential trace, now appear shorter and are smeared across the trace.

This method increases the amount of noise and should therefore result in the greater

number of power traces necessary to mount some version of the DPA attack.
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Figure 3.6: The integration operation of the SW-DPA technique [39].

Clavier et al. [39] showed that the approach of introducing dummy computations

and randomising the noise is not effective enough. One of the important properties

of DPA attacks is that operations are lined-up. In the presence of RPIs the peaks are

smeared across the differential trace, which has a desynchronisation effect and can be

considered as adding noise. The authors showed that RPIs do not make the DPA attack

infeasible, but instead they just considerably increase the number of PCCs necessary

for a successful attack. As the spike’s amplitude is distributed over a certain number

of consecutive cycles, the technique called sliding window DPA (SW-DPA) was used

in order to restore it (Figure 3.6). The method has two steps: (1) the classical (Kocher-

style) differential curve is obtained, (2) PCCs are integrated by adding points from k

consecutive cycles from the differential trace obtained in the first step. The authors

also show that the number of experiments required increases with a factor of k, i.e.,

for the spike to be identified the number of power readings must be equal to N ′ = kN,

where N is the number of power readings necessary to perform the attack without the

RPI countermeasure.

3.5.8.3 Detached power supplies

Shamir [124] proposed decorrelating the external power supplied to the smart-card

chip from the internal power consumed by the chip, using so-called detached power
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supplies. This method uses so-called “air-gap” to decorrelate the power supplied to the

card from the power consumed by the card. The design uses two capacitor as the power

isolation elements. During half of the time the first capacitors is regularly charged by

the external power supply and the second capacitor is irregularly discharged by supply-

ing power to the smart-card chip. During the other half of the time, the roles of the two

capacitors are switched. With this method the smart-card chip is always powered by

at least one capacitor but the external power supply is never directly connected to the

internal chip. Messerges [94] pointed out that this is an easy to implement and simple

technique, it has been observed that the signal can be still leaked through other means.

3.5.8.4 Non-deterministic execution

Removing the correlation between features in the DPA profile and the algorithm source

code makes retrieving useful information from the power traces significantly harder. A

commonly proposed solution for achieving this, is to introduce a level of random-

ness and non-determinism in the execution of the cryptographic algorithm. May et

al. [91] proposed a new processor design to counteract side-channel attacks, called

non-deterministic instruction stream computer (NDISC). Their design introduced sim-

ple additions to a processor with either single or multiple execution units, which allow

randomised execution of instructions on an instruction-by-instruction basis. Like a

super-scalar processor, a set of independent instructions is selected and executed at

random. On the other hand, unlike a super-scalar processor, those instructions are not

executed in parallel, but out-of-order on an instruction-by-instruction basis. In this

way, correlation between different runs of the same program is removed, thereby mak-

ing the DPA attack more difficult. This technique, called instruction descheduling,

creates a level of non-determinism. There is a block of logic that determines conflicts

between instructions, resulting in a set of instructions that is executable. The instruc-

tion is considered executable if it does not depend on any result that is not yet available

and does not overwrite any data that has yet to be used by other instructions yet to be

executed or currently executing. Two techniques for increasing non-determinism were

introduced:

1. Multi-source reduction operation, which is applied on operations that are both

associative and commutative and executed on the set of data. Typical examples

are multiplication and XOR, used in DES and RSA.
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2. Ignore-depend technique, which introduces two extra instructions: IGNORE and

DEPEND. Nesting a set of instructions between IGNORE R and DEPEND R, tells the

instruction descheduler to ignore the dependences of the register R.

3. Standard compiler techniques to increase concurrency by minimising depen-

dences are also employed to increase non-determinism. The result is that the

correlations between different runs of the same program are removed, thereby

making the DPA attack harder.

May et al. [92] combined this approach with random register renaming. Regis-

ter renaming is a common technique used to improve the performance of processors.

The strength of random register renaming comes from the fact that it changes over

time. They observed that a large fraction of the power trace is produced by overwriting

register values. Each time a register value is overwritten, the power consumption is

related to the number of bits that were flipped. They randomly rename the registers

in such a way, that every time a register is overwritten, a non-predetermined value is

overwritten. This technique can be applied to any type of processor. Renaming works

by defining a set of virtual register identifiers and physical register identifiers. The

virtual set is used in the instruction set of processors and the physical set is used in

the execution time. At any time, each virtual identifier uniquely corresponds to one

physical identifier. This binding is unique at any time, but changes over time. When

a virtual register is overwritten, a physical register is assigned to the virtual register.

In standard processors this improves the performance since this physical register can

be used immediately for storing new values, whereas the old register can still hold

values that are used by instructions that are still in execution, and thus enable out-of-

order parallel execution. Random register renaming expands the ideas presented in the

NDISC processor and allows non-deterministic altering of the register-to-register or

memory-to-register transfers. In this way, the registers are randomly renamed, and as a

result, the program execution is also randomised. The advantage is that program code

need not to be modified and neither speed nor power consumption are compromised.

Irwin et al. [66] proposed the addition of a specialised processor pipeline stage to

the NDISC, called the mutation unit, that is placed just before the execution unit in

the processor pipeline. A mutation unit implements the ideas related to adding ran-

dom calculations to the algorithm that is currently in execution. The purpose of this

specialised pipeline stage is to alter the instruction stream in a way that the meaning

of the program is maintained but the instructions used to implement it change each
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time it is run. This is achieved by using the knowledge of register liveness, obtained at

compile-time. The register liveness information allows the processor to alter register

usage and mapping patterns at run-time, by describing which registers contain useful

values and when they can be safely overwritten. The liveness status of each physical

register is stored in the so-called liveness table in the mutation unit, and is determined

by the compiler or the programmer. The table content is kept valid by two extra in-

structions: LIVE and DEAD, which set and clear, respectively, bits in the liveness table.

The task of keeping the liveness table valid is achieved by inserting extra instructions

into the instruction stream, and is the responsibility of the compiler or the program-

mer. The compiler uses the combination of the liveness information and the resulting

register alternations to decide which registers are alive and which ones are dead. The

instances of LIVE and DEAD instructions are then inserted into the instruction stream

to maintain the correctness of liveness table deduced by the compiler analysis. Us-

ing the liveness table, the mutation unit can either delete, insert, or alter instructions

from the instruction stream. These operations are implemented using the concept of

random instruction generation and random register remapping. Using the liveness ta-

ble the generation of random instruction is facilitated, as at any time it is possible to

generate instructions that target dead registers and sources either dead or live registers.

The authors claim that using this technique the meaning of the application remains

unchanged, but the power consumption and the running time are variable. Their ex-

periments have confirmed that this technique increases the level of non-determinism

and manages to foil the straight-forward attack when performed for a relatively low

number (10000) of available power profiles.

3.6 Electromagnetic emission analysis

3.6.1 Introduction

The idea that a processor can leak information by different means was first suggested

by Anderson [17]. That the information can be deduced from timing and power con-

sumption was first demonstrated by Kocher et al. [76, 77]. Quisquater and Samyde [113]

demonstrated that the electromagnetic emission can be another means of secret infor-

mation leakage through a side-channel.

Electric current flowing through a conductor induces electromagnetic emanations,

and is a source of side-channel information. As the power consumption in a device
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varies while the data is being processed, so does the electromagnetic field and one can

expect to extract secret information from a relevant analysis.

Quisquater and Samyde [113] introduced electromagnetic analysis (EMA) as a

more general type of analysis than timing and power analysis. They noticed that the

timing attack [76] is limited to mono-dimensional data processing. The differential

power analysis [77] used a two-dimensional matrix to visualise the correlation of pa-

rameters featured in the attack. Electromagnetic analysis can be treated in a similar

manner to the previous cases, but it also holds three-dimensional information linked to

the volume [113] (locality information).

3.6.2 Attack details

In the experimental setup for the attack Quisquater and Samyde [113] placed a simple

flat coil close to the chip. The coil is sensitive to the electromagnetic field which

changes induce the current at the bounds. This current resembles the field radiated by

the chip. They have found that all the treatments for DPA are possible with EMA since

this analysis includes at least the same information and the electromagnetic radiation

is directly connected to the current consumption.

There are two types of EM analysis:

• Simple electromagnetic analysis (SEMA), in which information is extracted from

a single EM sample. Just as in SPA, if a computation makes use of conditional

branches based on secret information, then this can be observed as relative shifts

in the distances between major computational structures. If this shift is enough

to identify that the branch is taken, then this would be enough to identify the

value of the secret information.

• Differential electromagnetic analysis (DEMA), analogous to DPA, where the

secret information is deduced from a number of power traces using statistical

analysis of the data.

EMA attacks became very interesting in cases when this attack was more powerful

than power analysis. Research presented in [53, 115] has shown that there are such

situations. Gandolfi et al. [53] noticed that in some cases power curves appear to con-

vey no information, as the power does not vary or does vary but in a way that seems to

be uncorrelated to the secret data. The power consumption of the device was observed
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at the global level and in that case no information can be obtained. However, local-

ity information can be revealed by eavesdropping local electromagnetic emanations.

Gandolfi et al. conducted practical experiments on various devices and algorithms and

concluded that electromagnetic measurements, although noisy, yield better differential

trace than power signals. Signal-to-noise ratio for DEMA was higher than in the case

of DPA, and it was easier to identify the correct guess as there were no false alerts due

to erroneous peaks. The locality of EMA is pointed out as its advantage. The probes

used in the experimental setup can be positioned in the neighbourhood of a region that

radiates while the device is executing. Different areas radiate with different intensities

and different code dependencies. The most active areas appear to be located near the

CPU, data-buses and power supplies. The experimental results have shown that the

CPU stands out by radiating the most informative signal. This confirms that the lo-

cality of the EMA attack is its major strength over power analysis attack as it allows

pinpointing the problematic areas of the smart-cards that leak secret information. On

the other hand, the authors also point out that definite advantage of power analysis over

electromagnetic analysis is the simplicity of electric measurements.

Agrawal et al. [12, 13] and Rao and Rohatgi [115] also studied leakage of com-

promising information via electromagnetic emissions. They have shown that these

emanations consist of multiple signals, each leaking somewhat different information

about the underlying computation. They noticed, that in addition to the direct emana-

tions, EM signals consist of several different signals which are unintentional. These are

often the result of the increased miniaturisation and the complexity of modern CMOS

devices which results in electrical and electromagnetic coupling between components

in close proximity. An example of unintentional EM emanations are amplitude modu-

lated EM signals (present even in the power traces), and angle modulated EM signals.

Exploring unintentional emanations can be much more effective than doing the same

with the direct emanations, and in some cases can enable the attacks to be carried out.

Various experiments were conducted [12, 13, 115] to illustrate different types of

EM emanations and the information that can be deduced from them. The quantitative

comparison of these types of emanations and power consumption information leak-

age has also been conducted. SEMA and DEMA attacks were performed on straight-

forward implementations of DES, RSA and COMP128 on smart-cards and various

other cryptographic devices. Experimental results showed that in some cases EM

side-channel attacks are more powerful than other side-channel attacks. The inves-

tigation showed that although the electromagnetic side-channel resembles the power
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side-channel, there are situations where the electromagnetic side-channel can carry

much more useful information than the power side-channel. Furthermore, not only

can EM emanations be used to attack cryptographic devices where the power side-

channel is unavailable, but they can be used to break power analysis countermeasures.

The authors claim that this is due to the existence of a class of so-called bad instruc-

tions which leak much more information to the electromagnetic side-channel than to

the power side-channel. These instructions have to be identified for each smart-card

separately. If the bad instruction for a particular smart-card is identified, major coun-

termeasures, suggested in [57, 36, 78], can be defeated. The type of EM analysis

necessary for this might depend on the countermeasure and the knowledge of the card

details and algorithm implementation.

3.6.3 Countermeasures

Quisquater and Samyde [113] propose that adding noise would be an elegant way for

disturbing EMA. If each instruction has a specific electromagnetic signature, then the

attacker could build a dictionary for each instruction used in the processor, and that

way reverse the part of the code. They propose and discuss several possible counter-

measures for preventing EMA, and point out that if the countermeasures are purely

hard then the circuit and the countermeasure have to be overlapped. Some of the coun-

termeasures they proposed are listed next.

• Reduction of the EM field. Designers can try to block or reduce the electro-

magnetic field, and that way block the information leakage or reduce it to non-

measurable form, by using layers of non-ferro-magnetic metals. In this way, at

least one of the two components of the radiation is reduced, which could cause

a loss of information.

• Block the EM radiation. A simple way to block the EM radiation is to put the

device in a Faraday cage. This is realisable but does not guarantee the security as

the attacker could still find a way to introduce a reason to leak the information.

• Design of very low consumption processors. This is an important direction in

micro-electronics research. If the current consumed by the processor is de-

creased so is the electromagnetic radiation.

• Asynchronous processors. The clock in synchronous architectures allows for sig-

nals to be resynchronised and reamplified. Therefore, synchronous architectures
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maximise the electromagnetic field. The presence of the clock signals also facil-

itates the process of distinguishing the fundamental signal from the harmonics.

As asynchronous architectures do not have a clock, the electromagnetic signal is

significantly reduced.

• Dual-rail logic. It has been suggested that by using dual-rail logic the electric

transitions, which are clearly visible in the electromagnetic traces, will be bal-

anced out. In the dual-rail design each wire is replaced with two wires, and the

two significant states are opposite to each other.

• New architecture designs. The strength of EMA lies in its locality property.

Therefore, in order to counteract the attack, it would be useful to block this prin-

ciple. The authors suggest that a reasonable way to achieve this is to build a

new architectural design in which the locality cannot be exploited. They note

that distributed parallel architectures, in which significant instructions are dis-

tributed, could block the locality property and help prevent the attack.

3.7 Fault analysis

3.7.1 Introduction

In 1996, Boneh, De Millo and Lipton [30] announced that faults during computa-

tion can have severe consequences to the strength of cryptographic systems. They

have shown that for many digital signatures and identification schemes faulty outputs,

caused by hardware malfunctioning, completely expose the secret key stored in the

device. Since then, different implementations of RSA, DES, variety of identification

schemes, ECCs and even unknown ciphers have been successfully attacked. These at-

tacks exploit computational errors that occur during cryptographic operations. These

errors are usually introduced from outside of the device and tend to flip a register bit

in the device, thereby affecting its security.

Boneh, De Millo and Lipton have shown that the secret signing key used in im-

plementations of RSA based on Chinese Reminder Theorem (CRT) can be completely

exposed using a single erroneous RSA signature. They have also presented an attack on

the RSA implementation without CRT which exposed the key from about 1000 erro-

neous signatures. Their results also contain effective attacks on identification schemes

that expose the secret key from as little as 10 faulty signatures. These results are how-
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ever theoretical and the estimates for the number of necessary faulty signatures are

based on standard security parameters [30]. Practical results of similar investigations

are given in [18, 17, 80, 126].

Most of the previously known attacks on RSA cryptosystems were based on fac-

toring the modulus. The inability of the attacker to factor the modulus is the strength

of the RSA algorithm. The fault analysis attacks, similarly to the timing and power

analysis attacks, avoid this difficult task. They use the fact that from time to time, due

to malfunctioning hardware, an error can occur in the computation. The malfunction-

ing of the hardware could be introduced in different ways, such as power glitches or

temperature changes. For example, the device might transmit a ciphertext or plaintext

according to a value of a single register bit. If that bit was flipped (due to for example

a power surge) the device would send the plaintext instead of the ciphertext. In this ex-

ample, the power surge changed the mode of operation, having nothing to do with the

underlying strength of the cryptographic algorithm. These results have demonstrated

that faults can increase cipher’s vulnerability, and that the engineers of cryptographic

devices have to take care that the device behaves correctly in the presence of faults, as

specified by the FIPS 140-2 standard [11].

3.7.2 Attack details

Boneh, De Millo and Lipton [30] presented fault attacks on several cryptographic

schemes. The following sections give details of the attacks on RSA with and with-

out Chinese Reminder Theorem (CRT), DES and other cryptographic systems.

3.7.2.1 An attack on RSA with CRT

Let N = pq be the product of two large prime numbers each n/2 bits long. Signing

a message M ∈ Z/N using RSA, involves computing S = Md mod N, where d is the

secret exponent. The expensive part of this computation is the modular exponentia-

tion. This operation can be speeded-up by using the CRT. Namely, the modular ex-

ponentiation can be split into two operations by calculating: S1 = Md mod p−1 mod p

and S2 = Md mod q−1 mod q. The final S is calculated as a combination of S1 and S2:

S = aS1 +bS2, where a,b ∈ Z/N satisfy the following:

a =

{
1, mod p

0, mod q
b =

{
0, mod p

1, mod q
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The values of a, b, d mod p−1 and d mod q−1 can be precomputed to additionally

speed-up the computation. The speed-up of using CRT comes from the fact that doing

two modular exponentiations using the modulo of the size n/2 is quicker than doing

one modular exponentiation with the modulo size n. Namely, since the square-and-

multiply algorithm for calculating the modulo Md mod N requires O(n3) operations,

the speed-up of using two modular exponentiations with modules half the size, is of

factor n3/(2n3

8 ) = 4.

If exactly one of the computed values S1, S2 was faulty, then the attacker who has

two signatures of the same message, one correct and the other faulty, can factor N, as

described next. Let Ŝ be a faulty signature. In order to calculate Ŝ the attacker has

to calculate Ŝ1 and Ŝ2 first. If only one of Ŝ1, Ŝ2 is faulty, it can be assumed without

loss of generality that Ŝ1 is faulty. i.e., S1 6= Ŝ1 mod p. Therefore, Ŝ 6= Ŝ mod p but

Ŝ = Ŝ mod q, or in other words:

gcd(S− Ŝ,N) = q.

As an improvement to this method, Lenstra [82] noticed that one faulty signature

and the message M contained enough information to factor N. Consider the value

M− Ŝe, where e is the public exponent used to verify the signature. Since:

M − Ŝe mod p = M − Ŝe
1 mod p

6= 0 mod p

M − Ŝe mod q = M − Ŝe
2 mod q

= 0 mod q,

in order to factor N the attacker only needs to calculate:

gcd(M− Ŝe,N) = q.

This attack works under a very general fault model, i.e., it makes no difference

what type of error or how many errors occurred in the computation of S1. The only

important point is that the fault occurs during the modulo computation of only one of

the primes [30].

3.7.2.2 An attack on RSA without CRT

Although the usage of the CRT in RSA can improve performance, not all implementa-

tions of RSA use the CRT. This section gives a description of the fault analysis attack
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presented in [30], which exploits register faults that occur during the modular expo-

nentiation. Although this attack is not as practical as the attack on RSA with CRT, it

nevertheless illustrates the vulnerability of non-CRT implementations [30].

Let N be a RSA composite of length n and d a secret exponent. Further, suppose

that the observed implementation of RSA uses the right-to-left repeated square-and-

multiply algorithm for modular exponentiation given in Algorithm 11. This algorithm

requires at least two registers to store intermediate values of variables z and S. The

variable z is used to store the values M, M2, M22
, . . . , M2n−1

needed to calculate

Md mod N. If a register fault flips a bit of register z, then a factor used in this product

and, thus, the produced signature will be faulty. This enables an attacker with an access

to the number of erroneous signatures to deduce the value of d. It is important that the

fault occurs at a random iteration during the modular exponentiation, and that it flips

only one bit of register z.

Algorithm 11 Repeated left-to-right square-and-multiply algorithm for modular expo-

nentiation, which models register faults.
INPUT: M,N,d = (dn−1, . . . ,d1,d0)2

OUTPUT: S = Md mod N

1: z←M

2: S← 1

3: for j = 0 to n−1 do

4: /* register fault: z← z±2w */

5: if d j = 1 then

6: S← S · z mod N

7: end if

8: z← z2 mod N

9: end for

The attacker obtains signatures for a number of messages M1, M2, . . . , Ml , until

sufficiently many erroneous signature Ŝi are collected. The pairs 〈Mi, Ŝi〉 are then used

to deduce the secret signing key d. Starting with the most significant bits, the at-

tack recovers blocks of bits from the binary representation of d. As an illustration of

this technique suppose that during signing of the message M the fault occurred when

j = n−2. This error affects two intermediate values of register z. Thus, the sequence

of values stored in register z is:

M, M2, . . . , M2n−3
, M̃, M̃2
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where M̃ = M2n−3±2w, i.e., the fault that occurred in the register z is caused by the

bit flip at position w. If 〈M, Ŝ〉 is the erroneous signature obtained after this operation,

then Ŝ can be seen as:

Ŝ = M∑n−3
i=0 di2i

M̃∑n−1
i=n−2 di2i

mod N,

or just using the binary notation, in a simple form:

Ŝ = Mdn−3...d0M̃dn−1dn−2 mod N.

Next, the following equivalences modulo N can be derived [104]:

(M2n−2
)dn−1dn−2 Ŝ ≡ (M2n−2

)dn−1dn−2Mdn−3...d0M̃dn−1dn−2 (mod N)

≡ Mdn−1dn−2dn−3...d0M̃dn−1dn−2 (mod N)

(Me2n−2
)dn−1dn−2 Ŝe ≡ Med(M̃dn−1dn−2 (mod N)

≡ M(M̃e)dn−1dn−2 (mod N)

≡ M(M2n−2±2w)e·(dn−1dn−2) (mod N).

Therefore, with the knowledge of 〈M, Ŝ〉 and that M̃ = M2n−2±2w for some w, an

attacker can exhaust the values of w, dn−1 and dn−2 until this condition holds, and in

that way discover two bits of d. Since 〈M, Ŝ〉 is erroneous, Ŝe 6≡M mod N and therefore

dn−1dn−2 6= 00. Thus, there are three values for the pair of bits dn−1dn−2 that need to

be considered. This leads to the conclusion that it takes at most 3n trials to recover the

correct values of dn−1dn−2 and w [104].

In practice however, the attacker does always know the value of j∗, at which the

register fault might have occurred. With some trials and errors this value would have to

be determined as explained in [104]. The interesting part is that identifying the value

of j = j∗ also reveals the value of bits dn−1 . . .d j. Knowledge of these bits reduces the

effort required to identify j∗ for other erroneous signatures since there are now fewer

unknown bits of d.

3.7.2.3 An attack on DES

It is obvious that the techniques previously described cannot be directly applied to

ciphers that do not utilise modular exponentiation. For instance, typical operations of

symmetric ciphers use bit-oriented transformations such as AND, XOR and rotations.

Biham and Shamir [28] introduced a technique that easily breaks the implementation of

DES when it is subject to the same random register faults that Boneh et al. considered.
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Their method is a combination of differential cryptanalysis [27] and fault analysis, that

was simply termed as differential fault analysis.

It was assumed that the DES encryption algorithm is implemented on a smart-

card with random transient faults (the type of faults considered so far) in its registers

occurring at each bit with some small probability, and that during each encryption

only a small number of faults (typically one) appears. Further, it is assumed that the

malfunctions are realised as single bit inversions in the registers which store 32-bit

values of Li−1 and Ri−1. These faults can cause erroneous output as they influence the

intermediate values during the DES computation. Since Ri = Li−1⊕F(Ri−1,Ki), the

only consequence of a single bit error in Li−1 is the identical single bit error in Ri. Due

to this one-to-one correspondence, the model can be simplified to consider only the

errors in register Ri−1, in which a single bit of this register is flipped. In the attack,

the attacker obtains two encryptions of the same (possibly unknown) plaintexts from

the smart-card. One encryption is performed in errorless conditions and computes the

ciphertext C, and the other one is performed while the smart-card was malfunctioning,

computing the ciphertext Ĉ. It was assumed that the fault occurred only once during

the encryption, in round i = i∗. The first step was to identify this round. The ciphertext

Ĉ was corrupted by a single bit error in register Ri∗−1. From C = FP(R16L16) follows

that R16L16 = FP−1(C) and from Ĉ = FP(R̂16L̂16) follows that R̂16L̂16 = FP−1(Ĉ),

where FP denotes the final permutation in DES. Further, since L16 = R15, the attacker

also knows R15 and R̂15. If the fault occurred in round i∗ = 16, then R15⊕ R̂15 reveals

the exact bit at which the fault occurred. In addition, L15 = L̂15. Now the calculation:

R16⊕ R̂16 = (L15⊕F(R15,K16))⊕ (L̂15⊕F(R̂15,K16))

= F(R15,K16)⊕F(R̂15,K16)

reveals the difference in the two outputs of the round functions. Moreover, this gives

the difference in the outputs from the S-boxes, as:

P−1(R16⊕ R̂16) = S(E(R15⊕K16))⊕S(E(R̂15⊕K16)). (3.13)

Since the S-boxes are designed to be non-linear, the influence of K16 in Equation 3.13

is not cancelled out and this calculation can be used to reveal the bits of key K16. The

difference of the inputs to the S-boxes can be calculated as E(R15⊕ R̂15). Differential

fault analysis uses differences of input and outputs from the S-boxes to derive the

information about the 48 bits of the key K16.

As with the fault analysis of RSA without CRT, it cannot be known at which round

the fault has occurred. If the fault occurred at round i∗ = 15 the analysis would be
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similar. Again, P−1(R15⊕ R̂15) could be calculated, which in turn reveals which S-

boxes were affected by the fault in R̂14.

With enough ciphertext pairs 〈C,Ĉ〉 all 48 bits of the key K16 can be revealed. The

remaining 8 bits can be discovered using brute force. Alternatively, the last round

of DES could be peeled back using the knowledge of K16 and the differential fault

analysis could be reapplied to the previous rounds. This technique could be used to

attack the triple DES as well. An interesting fact is that Biham and Shamir managed

to recover the complete 48 bits of key K16 using only 50 to 200 ciphertext pairs [28].

3.7.2.4 Intrusive fault analysis

Biham and Shamir [28] have assumed that during any encryption a fault occurs at only

one bit of register Ri and only during one round i = i∗. One criticism of differential

fault analysis was that this model for faulty behaviour is unrealistic as it does not in-

clude more permanent faults. Biham and Shamir, consequently, presented alternative

attacks which exploit permanent or stuck faults in hardware registers. In these attacks

the attacker was required to physically intrude into the circuitry of the cryptographic

hardware and set the values of certain memory cells. Anderson and Kuhn [17] have

shown that this is possible and that the circuitry of the embedded chip can be ex-

posed. Biham and Shamir have shown how the DES hardware implementations can

be attacked using only the erroneous ciphertext outputs. However, the attack can be

facilitated if the correct 〈plaintext,ciphertext〉 pair can also be obtained (for example,

before any damage is done to the hardware) [28].

3.7.2.5 Attacks on elliptic curve cryptosystems

Joye and Quisquater [68] noted that the CRT attacks (described in Section 3.7.2.1) can

be mounted against several elliptic curve systems. Biehl et al. [26] also described the

fault attacks on elliptic curve cryptosystems. The danger of faults in these systems

comes from the fact that the register faults can transform a cryptographically strong

elliptic curve into a less strong curve in which the discrete logarithm problem can be

solved, and consequently the secret key revealed. Three different types of attack that

can be used to derive the information about the secret key when bit errors are inserted,

were presented.
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3.7.3 Countermeasures

All the attacks presented so far relied on the device outputting the erroneous cipher-

text. An obvious and very simple defence against fault analysis would be to improve

the implementation of the cipher, so that it does not output the erroneous outputs, by

checking the output for correctness. However, this could be costly, depending on the

cryptographic system [30].

In the case of RSA, the correctness of the signature is verified using the public ex-

ponent e. The cost of checking the correctness of the signature depends on the value

of the public exponent e. This value is usually specified to be small (e.g. e = 3) to

exploit this fact. Therefore, the cost of verifying the signature might not be the same

as the cost of generating it. In the case when e is large, Shamir [123] proposed the

correctness check for RSA with CRT that is less costly than the full signature verifi-

cation. Namely, he suggested choosing a random, 32-bit long value r and calculating

values: Spr = Md mod pr and Sqr = Md mod qr. If Spr mod r = Sqr mod r, then the

exponentiations were carried out correctly and the signature can be reconstructed from

the linear combination of Sp = Spr mod p and Sq = Sqr mod q.

In the case of DES, checking for correctness could be achieved by calculating the

same output twice and comparing the results. However, this solution would reduce the

efficiency of the implementation by a factor of two. Moreover, this countermeasure

does not work in every fault model [104]. For the random transient fault model, there

are 32 ·16 = 512 bit positions where the fault can occur. Therefore, the probability that

the same fault occurred in each of the two encryptions is equal to 1
512 , which means

that the number of encryptions an attacker must perform in order to obtain the required

number of faulty signatures increases by a factor of 512. On the other hand, in the

intrusive fault model this countermeasure would fail completely, as the error occurs

in the same manner for both encryptions. A more sensible solution seems to use the

decryption to verify the correctness of the ciphertext in this case [104].

Bellare and Rogaway [23] proposed the use of randomisation technique for pre-

venting fault attacks. In schemes that support randomisation, RSA is applied on

F(M,r), where F is some formating function and r is a random string. This technique

is equivalent to padding the message M with random bits r before encryption. This

should defeat all fault analysis attacks, apart from those that exploit intrusive faults,

as it ensures that the signer never signs the same message twice. In this way, given

an erroneous signature, the attacker does not know the full plaintext message F(M,r).
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However, for DES and other ciphers with small key sizes this might not be feasible

since some number of input bits would have to be used for storing the random bits. For

RSA, however, this technique has been implemented with small overheads [23].

3.8 Summary

Side-channel analysis, in particular power analysis, have been extremely effective in

attacking implementations on simple hardware platforms. Chari et al. [36] noticed that

a general countermeasure against DPA would be to modify the code to ensure that the

attacker cannot predict any relevant bit in any part of the computation, without making

several other run-specific assumptions. However, they also noticed that is unclear how

one can perform serious computations if this requirement is to be satisfied, since no bits

that depend directly on the data and the key can be manipulated in any cycle. In RSA-

like ciphers, for example, this could be done and the actual value could be blinded, but

such a structure is unlikely to be present in block ciphers [36]. These authors propose

a generic technique to create provably resistant implementations. They assume that

the device has reasonable power properties and a source of randomness exists. Their

method consists of creating a model for the physical characteristics of the device and

then designing implementations provably secure in that model. These implementations

resist generic attacks with an a priori bound on the number of experiments. In such

a setting, the lower bound on the number of experiments to mount a statistical attack

can be proved. Other attempts have been made in order to formalise the approach of

protecting cipher implementations against side-channel attacks. Coron et al. [42] gave

a definition of leakage immunity and presents several leakage detection tests. However,

research in this direction is still in its initial stages and substantial effort is required to

find more effective and general countermeasures against side-channel attacks [36].

Daemen and Rijnmen [46] suggested that the cryptographic systems can be pro-

tected by combination of two approaches. The first approach consists of preventing, or

rather complicating the exploration of correlations in the power traces by using tech-

niques such as desynchronisations, software balancing or power randomisation. The

second approach is to minimise the correlation between the data and the power con-

sumption, by manipulating both the data and its complement in major operations. The

suggestion is that if the cipher is implemented in software, then the hardware can be

modified so that all instructions that operate on cipher key and input are balanced. Sim-

ilarly, the hardware implementation would have to be balanced also. When considering



84 Chapter 3. Side-channel Analysis

the possibilities for balancing the authors found that arithmetic operations are problem-

atic to balance. The balancing in the case of other instructions involves manipulation

of both the data and its complement and modification of the hardware implementation

of circuits so that the outputs also contain the data and their complement.

Chari et al. [37] introduced an interesting class of side-channel attacks termed as

template attacks. Template attacks have been characterised as the strongest form of

side-channel attacks, from the information theoretic point of view [37], because they

can extract sensitive information from a far fewer number of power samples than other

known side-channel attacks. They claim that these attacks can break countermeasures

whose security is based on the assumption that the attacker cannot obtain more than

one or a limited number of side-channel samples. These attacks require the attacker

to have access to identical experimental device that can be programmed to his willing.

The template attacks derive their power from the ability to closely model the noise in

the device. This is in contrast to other attack approaches which focus on removing

the noise by averaging. The precise models of signal and the noise are referred to as

templates of computation. Although the possession of identical devices that is used

to model the noise is an advantage, if the attacker is not able to control the possible

source of randomness in the device, the attack would be less dangerous [37].

On the other hand, due to the wide-ranging impact of these attacks, in areas such

as credit cards, mobile phone SIMs and pay-TV, several proposed commercial imple-

mentations are described as ad-hoc [36] and most of them can be broken using a higher

number of experiments or by using smarter statistical methods. As seen in this chapter

no generic solutions protect against these attacks. In general this seems to be a difficult

problem to solve, and until a generic solution is found this remains an active area of

research.

This chapter has presented several ways in which an attacker can use side-channel

information to attack well known and well studied ciphers and their implementations.

Although some of the techniques are described in the example of well known ciphers,

such as RSA and DES, these attacks could be readily applied to other ciphers also.

Out of all side-channel attacks considered in this chapter, power and electromagnetic

analysis seem to be the most powerful ones. Most software countermeasures, such as

blinding and randomisation, have been effective against attacks such as timing analy-

sis, simple power analysis or fault analysis. However, in the case of attacks that exploit

the statistical properties of a large number of side-channel information samples, soft-

ware techniques have been shown to be less effective. Securing ciphers against the
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statistical attacks might require the combination of both hardware and software coun-

termeasures.

The next chapter presents the overview of asynchronous architecture design. The

overview of the design of the micronet-based architecture, which is used as an inspira-

tion for the network-based architecture presented in this thesis, is also given. The next

chapter also presents the related work towards securing asynchronous architectures

against side-channel analysis attacks.





Chapter 4

Asynchronous Architectures

4.1 Introduction

Asynchronous design is not new, it was used in the early days of computers when the

machines were built using discrete components. With the discovery of integrated cir-

cuits the synchronous design approach attained popularity and became the dominant

style. The major difference between the two design styles is in the way the timing

is managed: in the synchronous case the clock system provides global time reference

whereas asynchronous systems operate without the reference to a global clock signal.

In the last two decades there has been a revival of interest in asynchronous circuits [33].

This is partially due to serious design and implementation problems that the high per-

formance synchronous systems are facing [93].

4.2 Asynchronous control

Changes on a wire that occur on non-clock signals in synchronous architectures do

not influence their functionality. On the other hand, the change on a wire in an asyn-

chronous system, that occurs whenever a transition from one logic level to another

takes place, is termed an event. The interface between control circuits and the datapath

in asynchronous circuits is said to be an event-driven one.

Due to absence of centralised control, communication and control sequencing in

asynchronous designs are implemented explicitly. Communication is usually imple-

mented through the use of handshaking protocols [122]. These protocols perform lo-

cal synchronisations, and therefore the control and the control circuits are distributed

throughout the system. The correct operation of such a system does not dependent

87
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on meeting strict timing requirements, but is based on controlling the order in which

events occur. Due to data-dependent nature of delays, this order in which events occur

is usually non-deterministic [105].

The granularity of instruction parallelism in synchronous systems is usually limited

to the cycle level, which simplifies the implementation of control. The manner of op-

eration of synchronous architectures is deterministic, and enables the control and dat-

apath operations to run in parallel. The performance of asynchronous circuits largely

depends on the organisation of control [105]. In order to exploit local timing variations,

asynchronous designs must exhibit fine-grain parallelism. Also it must be ensured that

the handshaking and other control signals themselves do not represent considerable

performance overheads. These issues influence the design of both circuits and the ar-

chitecture, and trade-offs are often necessary between parallelism, circuit complexity

and the resulting speed of circuits [105].

4.3 Asynchronous circuits

In the past two decades there has been much work in synthesis and analysis of asyn-

chronous circuits, since this class of circuits promises a number of advantages over

synchronous circuits. Some of the most often cited advantages are increased modu-

larity, better tolerance to variations in power supply voltages and temperatures, low

power consumption, higher performance, and no problems with clock skew [65].

Variable delays in asynchronous circuits can introduce so-called hazards. These

occur when an intermediate value on the input is presented on the output of logic gates.

Potential hazards limit the number of asynchronous circuits that operate correctly with-

out any assumptions about wire and gate delays. According to the assumptions made

about wire and gate delays, asynchronous circuits can be classified as follows:

Delay-insensitive (DI) circuits: A circuit whose operation is independent of the de-

lays in both gates and wires, except that the delays are finite and positive, is said

to be delay-insensitive (DI). The class of true delay-insensitive circuits that can

be implemented in CMOS is very restricted [88].

Speed-independent (SI) circuits: If wire delays in the circuits are assumed to be in-

significant or zero, and the correct operation of the circuit does not depend on the

delays in any circuit elements, then the circuit is said to be speed-independent

(SI). Although it seems unrealistic, this assumption is realistic when applied lo-
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cally, to so-called equipotential regions, inside which delays are negligible. An

example of a scheme that adopts this approach are self-timed circuits which were

introduced by Seitz in [122].

Quasi delay-insensitive (QDI) circuits: This class of circuits is similar to the first two.

They are often characterised as delay-insensitive circuits with isochronic forks,

which is in practice very close to speed independence [87]. The wires of a set of

interconnecting wires are set to form an isochronic fork if the difference between

signal propagation delays in those wires is negligible compared to the delays of

the gates connected to them [88]. Circuits created using the DI design style aug-

mented with the isochronic fork assumption are said to be quasi delay-insensitive

(QDI).

The isochronic fork was introduced by Burns and Martin [34, 87] and is con-

sidered to be an essential and the “weakest possible” compromise to true delay

insensitivity [88] if such circuits are to be realised in CMOS [112].

Bounded delay: If the circuit operates correctly only when the delays are below some

predefined limit, then the circuit is said to be bounded delay circuit.

4.4 Communication in asynchronous circuits

Due to the absence of global synchronisation, communication in asynchronous systems

is achieved through handshaking mechanisms [122]. Data is passed between modules

using a group of wires collectively known as a channel. In channels, data usually flows

in one direction (i.e. channels are unidirectional) between two modules (1) the sender,

that delivers the data into the channel; (2) the receiver, that accepts the data from the

channel. If the cause of the transfer is taken into account, the following definition of

the two parties participating in the transfer can be made [22]: (1) the initiator is the

device that initiates the transfer; (2) the target is the device towards which the transfer

is initiated. Communication provided by a handshaking scheme is decentralised and

the only two parties taking part in it are the sender and the receiver. The sender is

responsible for the start of the transaction and the receiver responds when it is ready to

receive.
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4.4.1 Handshaking protocols

Local synchronisations in asynchronous systems are achieved through handshaking

protocols. A handshake involves two modules: the initiator and the target; which ex-

change so-called request and acknowledge signals. The target module (the receiver)

responds to a received request by sending an acknowledge signal. The initiator mod-

ule (the sender) starts the communication by sending a request and then waits for the

corresponding acknowledge signal to arrive (Figure 4.1). A request signal is used

to indicate the wish to communicate, while an acknowledge signal indicates that the

communication has been completed. This combination of a request and an acknowl-

edgement signal is called a handshake. Consequently, the communication medium

between the two modules is called a handshake channel [112].

Figure 4.1: Communication using handshake protocols.

If the positive and the negative edge transitions of a signal are treated equally during

a handshake, the handshake is called two-phase or transition signalling. Figure 4.2(a)

illustrates a two-phase handshake. In the two-phase handshake, the sender initiates

the communication by generating a raising or falling request event that is sent to the

receiver. The receiver acknowledges the receipt of the data by generating a rising or

falling acknowledge event. If, on the other hand, only the positive edge transitions of a

signal are used in the handshake, the handshake is called four-phase or level signalling.

Figure 4.2(b) illustrates a four-phase handshake. The two protocols differ in the num-

ber of signal transitions used to complete the communication. In the two-phase proto-

col, a single event is used to generate a request inducing a single acknowledge event.

As a consequence, no meaning is assigned to the levels on the request and acknowl-

edge wires. In the four-phase signalling protocol both request and acknowledge wires

are returned-to-zero (RTZ) at the end of each communication. In that case, the levels

on the request and acknowledge wires indicate a particular phase of the handshake,

and both request and the acknowledge signals must be reset before new data can be

transmitted.
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(a) Two-phase handshake.

(b) Four-phase handshake.

Figure 4.2: Handshake protocols.

The events that take place in the two protocols can be summarised as follows. In

the-two phase handshake, two events take place (Figure 4.2(a)) : (1) the sender requests

to transfer the data; and (2) the data transfer is completed. In the four-phase handshake,

there are accordingly four events (Figure 4.2(b)) : (1) the sender sends a request to start

the transaction; (2) the receiver acknowledges; (3) the sender stops sending the data;

(4) the receiver completes the handshake.

The design of the interface circuits between modules involved in the communica-

tion is influenced by the choice of the handshaking protocol. It is generally accepted

that the four-phase protocol results in smaller implementations of the interface circuits,

whereas the fewer number of transactions in the two-phase approach can show power

and performance advantages (e.g. [105]). However, the second half of the four-phase

handshake protocol (phases 3 and 4) can be done in parallel with the computation,

which means that, overall, the four-phase protocol can achieve higher performance

and lower costs than the two-phase protocol in CMOS designs [50].

4.4.2 Encoding schemes

Handshake protocols are responsible for both control related tasks and data communi-

cation. Since the simultaneous arrival of data and request signals cannot be guaranteed

under a delay-insensitive model, a technique is required to detect the presence of data.
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Detecting the arrival of the signal is only possible if it produces an event on a wire.

This means that in the case of data, only those bits whose values have changed could

be detected. For this reason a number of encoding schemes has been invented:

Single-rail encoding: In the single-rail encoding scheme [112] one wire is used for

each bit of data. It is assumed that the data is available prior to the control

signal from the sender, or equivalently, it is assumed that the delay of the request

is longer than the delay of the data-bus. This encoding scheme is also known

as bundled-data. This approach assumes that a safety margin is introduced by

delaying the request event, which ensures that the request arrives after the new

data values have been established at the receiver’s interface, thus conveying the

readiness of data.

Dual-rail encoding: In the dual-rail encoding scheme two wires are used to encode

each bit of data, whereby n bits of data are represented using 2n wires. The

transfer of each bit of data involves the activity of only one of the two wires

(as illustrated in Figure 4.3), which allows the presence or absence of data to

be established. The data is considered to be available by detecting a level (for

four-phase signalling) or an event (for two-phase signalling) on one of the two

rails for every bit of data. Therefore, a separate signalling wire to convey the

readiness of data is not required.

Data D0 D1

Clear 0 0

Logic 0 0 1

Logic 1 1 0

Illegal 1 1

Figure 4.3: Dual-rail encoding scheme.

One-hot encoding: In the one-hot encoding scheme 2n wires are used to represent n

bits of information. Each line represents one n-bit code, thus one line transmits

n-bits of information and the data validity, i.e., timing information.

N-of-M encoding: Examples of N-of-M encodings when N = 1 are dual-rail and one-

hot encodings. Systems coded using N-of-M encoding where M > N, operate

correctly regardless of delays in wires and gates, and are therefore considered
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delay-insensitive (e.g. [22]). Codes in which N > 1 are more complex, and use

more than one wire in a group to indicate one of a number of possible codes.

These codes can offer better utilisation of the available wires. For example,

2-of-7 encoding can transmit 4 bits of data over 7 wires in a delay-insensitive

manner. However, these codes result in larger arithmetic circuits and higher cost

of conversion between the coded form and a single-rail form, when compared to

1-of-M codes.

4.5 Advantages of asynchronous design

Synchronous control has been a norm in processor design for a number of years. The

improvements in integrated circuit technology have set forth new constraints on the

design of synchronous processors. Serious design and implementation problems that

the high performance synchronous systems are facing, were partially the reason for the

renewal of interest in asynchronous circuits. The main advantages of asynchronous cir-

cuits that have motivated researchers to investigate the asynchronous processor design

are summarised next.

4.5.1 No clock skew

The global clock signal is used in synchronous systems to regulate their operation, with

all system state changes occurring at the change of the clock signal level. Scaling down

of physical sizes of both transistors and interconnections, has an affect on physical

delays on the wires in a chip, causing some components of the system to see the global

clock signal change before others do. This difference in arrival times of the clock

signal at different parts of the circuit is known as the clock skew [62]. In order to

ensure correct operation, the clock period must be increased, which in turn imposes a

limit on the maximum clock frequency. This problem can be made less severe through

careful engineering of the clock distribution network, but solutions can be expensive

in terms of area and power consumption (e.g. [22]). On the other hand, the absence of

the clock in asynchronous designs completely avoids the problem of clock skew.

4.5.2 Low power consumption

Power consumption is an important factor when designing computing systems. In sim-

ple hardware systems, such as embedded systems, the power consumption is important
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as the power supply of these systems is usually limited. In larger, high-performance

systems, the power consumption can effect the cost of packaging due to both problems

of power supply and the cost of cooling. Asynchronous designs have the ability to

reduce power consumption by avoiding the following two problems of synchronous

design: (1) all parts of the synchronous design are clocked, regardless on whether they

perform useful functions or not; (2) a significant amount of power is required just for

driving the clock line.

One of the proposed solutions to reduce the superfluous circuit activity in syn-

chronous systems is clock-gating, a technique which isolates inactive circuits from

the clock. Similarly, signal-gating can be used for non-clock signals. Although these

techniques can improve power consumption, the main drawback is complicated circuit

design and timing analysis [59]. Power consumption can also be reduced by lowering

the power supply voltage, but it might be difficult to make transistors operate at low

supply.

The event-driven nature of asynchronous circuits naturally avoids any unnecessary

circuit activity. The absence of the global clock signal in asynchronous circuits causes

power consumption to be more evenly distributed over time, resulting in voltage vari-

ances that are smaller when compared to the synchronous case. Namely, transistors

fire only when they contribute to the computation, in contrast to synchronous case,

where most transistors fire simultaneously at all rising and falling clock edges. Also,

an asynchronous system activates only those parts of the circuit which are required and

so does not dissipate power in the rest of the circuit that is not being used. These facts

lead to the conclusion that asynchronous circuits should generally have lower power

consumption than synchronous circuits.

4.5.3 Average-case instead of worst-case performance

Components in the asynchronous design do not have to wait until after they complete

a transaction, but rather, if requested they can proceed to the next operation. This

characteristic of asynchrony is often cited as one of its main advantages over the syn-

chronous designs. The speed of asynchronous circuits thus depends on the average

speed of the components, whereas synchronous designs are optimised for the worst-

case conditions [33]. In synchronous systems, the clock period, and therefore its max-

imum frequency, is limited by the operation that takes the longest time to complete.

This is determined by the slowest component, its slowest operation, its worst-case
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data inputs, and worst-case operating conditions (such as supply voltage, temperature

and transistor speed). The worst-case combination is, however, typically met very in-

frequently [22]. Asynchronous circuit, by not being restricted to run in fixed clock

periods, can potentially realise better than worst-case performance whenever all the

worst-case conditions do not coincide. Asynchronous circuits are optimised for the

average-case and the worst-case operations just take longer [33]. The fact that there

is no fixed clock period during which the operation must complete, enables the delays

to be as long as necessary. Although, this may in some cases be slower than the syn-

chronous clock period, considering that the asynchronous circuits operate at the speed

determined by the current operation and therefore are effectively limited by its average

(or typical) delay, they are potentially faster.

4.5.4 Improved electromagnetic compatibility

Clock-orchestrated operation of the synchronous designs has for a consequence that the

radiated energy emissions of the circuits are concentrated at the harmonic frequencies

of the clock. If the circuit includes analog or RF circuits this could cause a problem as

the high frequency harmonics can be confused for a proper signal. Attempts to solve

this problem suggest varying the clock period in order to spread the radiated energy

across the spectrum. However, these solutions can have a negative effect on the per-

formance as the clock period can only be prolonged in order to maintain the correct

operation of the circuit (e.g. [22]). The asynchronous circuits, on the other hand, pro-

duce broadband distributed interference spread across the entire spectrum [52]. Due to

the absence of a clock, asynchronous circuits may have better noise and electromag-

netic compatibility properties than synchronous systems [132].

4.5.5 Modularity of design

In synchronous designs the improved performance can often be achieved only by in-

creasing the global clock frequency, which usually requires most of the design to be

reimplemented. On the other hand, the performance of asynchronous designs can be

improved by modifying only the most active parts of the circuit, while obeying the

communication protocol on the interface of the redesigned block. A designer of an

asynchronous system has an advantage of being able to simply replace one block by

another with different characteristics and evaluate performance changes.



96 Chapter 4. Asynchronous Architectures

4.5.6 Simplified layout and improved robustness

The independence of circuit correctness from the delays on the wires in the asyn-

chronous circuits, causes the chip layout to be simplified. Delay-insensitive circuits

are also tolerant to implementation parameters such as fabrication process and tran-

sistor scaling (e.g. [116]). Asynchronous circuits are also more tolerant to physical

environment variations, such as temperature, power supply and fabrication specifica-

tion. In synchronous systems, these parameters have to be taken into account, since the

system must work under worst-case operating conditions. Asynchronous circuits, on

the other hand, in general do not have critical timing requirements to match, and may

therefore exhibit different timing variations and run as fast as their operating conditions

allow. Furthermore, their functionality and correctness will be preserved regardless of

the operating conditions.

4.6 Disadvantages of asynchronous design

Despite the aforementioned advantages, the asynchronous designs also have a number

of disadvantages when compared to synchronous. These disadvantages serve as a mo-

tivation for further research, but may also account for the unwillingness of industry to

adopt such techniques.

4.6.1 Design complexity

The operation of synchronous circuits is fully orchestrated by the clock: every process-

ing stage must complete its activity in less than the duration of the clock period. This

characterises a simple and so far largely successful scheme. Not having any global

timing restrictions poses a problem in the design of asynchronous circuits. It has in-

troduced numerous styles to describe asynchronous circuits, from speed-independent

to delay-insensitive [33]. In order to ensure the correct behaviour, these designs have

to deal with the sequentiality of signals and avoid hazards and races, caused by non-

determinism. These problems present the designers with difficult tasks of specifying

the behaviour of the circuit and the values of signals at every moment in time.
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4.6.2 Completion detection problems

The lack of timing references in asynchronous circuits makes the completion detection

complicated, as the task of determining when the completion signal should be gener-

ated is difficult. This should not be too early nor too late as the successor stage might

read the incorrect data, or it can reduce the performance. This is usually manifested

with asynchronous design requiring extra hardware to allow each block to perform lo-

cal synchronisations to pass the data to other blocks. This added complexity results in

larger circuits and more difficult design process.

4.6.3 Testing difficulties

Although a considerable amount of work is put into specification and design of asyn-

chronous circuits, testing them has received relatively little attention [64]. Testing

asynchronous circuits has traditionally been considered difficult, particularly if com-

pared to synchronous circuits [131]. A number of aspects of asynchronous circuits

have made them harder to test than synchronous circuits: the existence of a large num-

ber of state-holding elements, considerably complicates testing; it is not possible to

“freeze” and “single step” from a particular state of the circuit, which is commonly

done when testing synchronous circuits; there is a large overhead of logic around the

asynchronous circuit; and finally, detecting hazards and races is a difficult problem that

needs to be solved in the first place [64].

Although these difficulties are largely challenging, there are examples where test-

ing can be implemented as a part of control, with some probability of success. Namely,

self-checking circuits have an interesting characteristic, seen only in self-timed circuits,

that makes them fully testable [64]. During the handshake a request from the sender

initiates the process and the receiver must eventually acknowledge back the sender,

when ready to receive. If this process is never completed, it is likely that there is a

fault in the circuit, and the circuit halts.

Although the methods for testing synchronous circuits are not directly applicable

(partly due to the absence of the global clock signal in the asynchronous circuits), some

techniques (e.g. partial scan [73]) have been adopted for use in asynchronous circuits.
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4.6.4 Lack of tools

Years into the design of synchronous systems has yielded a large body of tools for

design, simulation, synthesis, routing and verification. Considering that the revival of

interests for asynchronous architectures appeared relatively recently, a good amount of

tools has appeared for asynchronous design, from high-level languages for hardware

description to verification and synthesis [114]. However, these tools are still immature,

when compared to the rich infrastructure available for synchronous designs.

4.6.5 Performance measurement difficulties

The task of measuring the performance of synchronous systems consists of simply

measuring the length of the critical path and then counting the number of clock cycles.

In asynchronous design, this task is not as trivial as the length of time in which a

task needs to completewe depends on both the delays and the input data. This implies

that the performance measurements are inclined to be variable, and the performance

measure is actually an average measure.

Some of the alternative methods for measuring the performance of asynchronous

circuits are reviewed in [118]. One of them is MIPS/Watt metric, which measures how

fast the processor runs, in terms of power consumption, and shows that the performance

and the power consumption can be correlated.

It has been experimentally shown in [89], that the higher speed at higher voltage,

and therefore higher power consumption, can be traded for lower voltage with lower

power consumption, but also lower performance.

4.7 Pipelines

Pipelining is an implementation technique in which instruction execution is divided

into a number of distinct stages. It is by far the most popular technique for improving

performance in CPUs, which enables a new task to start before an old one has been

completed. Instructions at different stages of execution are allowed to progress con-

currently, thus allowing the execution of a number of instructions to be overlapped.

Figure 4.4 illustrates a sample organisation of a four-stage pipeline. The throughput

of a pipeline is determined by the frequency of results coming out of the pipeline.

In the synchronous case, the time needed to move data one stage down the pipeline

(the machine cycle) is determined by the slowest pipeline stage. If there are no data
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dependencies, the throughput is equal to one instruction per machine cycle. In the

asynchronous case, the movement of data between pipeline stages is controlled by the

handshaking protocols. The data can move forward only when the succeeding stage is

empty and ready. Therefore, the asynchronous pipelines may have variable throughput

and have the ability to exploit the actual delays, where synchronous architectures are

optimised for the worst-case.

Figure 4.4: Four-stage pipeline.

In a pipeline organisation, as the one given in Figure 4.4, the basic mechanism

for naming operands and communicating results is provided through the register bank.

Data and control dependencies in the datapath enforce sequentiality in the instruction

execution order. Therefore, the pipelined architecture must ensure that the correct

order of instructions is preserved. In a non-pipelined architecture, at the beginning

of execution of an instruction, all the values in the register file are up-to-date. In a

pipelined architecture, however, data values are read and written at different stages,

and therefore the immediate correctness of values in physical registers is no longer

guaranteed.

Register-based communication can be adapted for use in asynchronous environ-

ments with the addition of a register locking mechanism [111], which provides the

synchronisation required at the register file. The register locking mechanism allows

for reads to a particular register to be stalled until all the pending writes have been

completed. A simple way to implement this mechanism it to use a single additional bit

for each physical register. Typically, during the decode, the destination register of the

instruction is locked by setting the lock bit, and during the write-back, the register is

unlocked by unsetting the lock bit. Any attempts to read the register while the lock bit

is set are stalled. Locks for an already locked register can be treated in several ways.

For example, they can be stalled until the register is unlocked, which is a solution

that provides correct execution even in the case of out-of-order write-backs [116]. A

lock FIFO [111] organises multiple lock bits and allows a single register to be locked

multiple times and also generates write-select signals during the write-back stage.
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4.8 Exploiting instruction level parallelism

Exploiting instruction level parallelism (ILP) in synchronous architectures suffers from

control overheads. In addition, the centralised control forces complex designs to op-

erate below their technological best by always assuming worst-case behaviour. On

the other hand, the benefit of centralised approach, in which operations complete in

fixed delays, is that it leads to deterministic behaviour of the architecture, where the

state of the system can be predicted at any time. In contrast, in asynchronous sys-

tems operations take only as long as it is necessary and even the execution times of

identical instructions may show variations. This characteristic of asynchronous sys-

tems can have unfavourable effects on instruction generation and scheduling. On the

other hand, exploiting concurrent behaviour is more efficient under distributed control,

whereas enforcing synchronisations and sequentiality of operations in asynchronous

environment increases the control complexity [116].

Pipelined architectures typically exploit parallelism that is available between stages

of the pipeline. However, this does not make the full use of the available ILP, that

can be exploited to the fullest by allowing more instructions to execute concurrently.

Available instruction level parallelism can be utilised in one of the following two ways:

1. Introducing deeper pipelines that make better use of resources over time, known

as temporal parallelism. Architectures that exploit temporal parallelism are

called super-pipelined architectures.

2. Allowing the operations to be performed in parallel by duplicating resources,

known as spatial parallelism. Architectures that fetch and execute multiple

instructions in parallel are called super-scalar or Very Long Instruction Word

(VLIW) architectures.

The following section gives details of the asynchronous architecture that exploits both

temporal and spatial parallelism, but belongs to neither of the aforementioned archi-

tectural types.

4.9 Micronet

4.9.1 Introduction

A feature common to all of the asynchronous designs is their view of the datap-

ath [116]. In most of the asynchronous designs the datapath is, like in synchronous
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designs, seen as a single linear pipeline. An alternative, as shown in [116], is to im-

plement the datapath as a so-called micronet. Micronet is a network of asynchronous

communicating pipelines, that can be seen as the generalisation of the Sutherland’s mi-

cropipelines [129]. It allows a higher degree of fine-grain concurrency to be exploited,

both between and within instructions, a feature that is considered to be very expensive

to achieve in the equivalent synchronous design [116].

4.9.2 Synchronous, asynchronous and micronet pipeline

The delay of the slowest stage of the synchronous pipeline defines its clock period.

The imbalance between delays of different pipeline stages results in the existence of

idle periods which lead to poor utilisation of the physical resources (e.g. [116]). Fig-

ure 4.5(a) illustrates a four-stage synchronous pipeline datapath that exploits temporal

parallelism. The shadows in the figure represent the activity of the stage and the white

spaces the idle times.

The performance of the asynchronous pipeline is determined by the average speed

of its components. Figure 4.5(b) shows an asynchronous linear pipeline, which like

the synchronous one, exploits only temporal parallelism, but in a more efficient man-

ner. The instructions spend in each stage of the pipeline only as long as necessary. If

the current stage is completed and the next stage is free, the instruction can proceed

to the next stage. Micropipelines are representatives of asynchronous linear pipelines.

In these pipelines, only different pipeline stages can operate concurrently. The aver-

age throughput of an asynchronous pipeline is bounded by the stage with the slowest

isolated average throuput. Idle times can be reduced by introducing buffers between

stage, but can also cause increase in pipeline latency and reduce performance when

compared to synchronous case. In [116] it is suggested that exploiting spatial paral-

lelism might be a way to reduce the number of buffers required to maintain isolated

average performance.

Figure 4.5(c) shows an asynchronous datapath which exploits both temporal and

spatial parallelism. The figure shows an asynchronous non-linear pipeline, the so-

called micronet, in which stages from different instructions can overlap. The datapath

is no longer modelled as a true pipeline, but rather as a network of communicating

stages. In micropipelines, although each stage may consist of a number of different

resources, generally only one (or a subset) of them can be active at any time for a given

instruction. In case of the micronet, successive instructions which utilise different
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(a) Synchronous pipeline.

(b) Asynchronous (linear) pipeline.

(c) Micronet pipeline.

Figure 4.5: Pipelines.
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resources within a stage are able to execute concurrently. In the example illustrated

in Figure 4.5(c), the instruction execution (IE) stage has two concurrent resources and

two instructions take place concurrently. Instructions can share resources in any of

the stages, which enables further resource utilisation [118]. For example, while an

instruction is stalled waiting for an operand on one bus, another instruction could use

the other bus to fetch its operand. The amount of spatial parallelism which can be

achieved in practice depends on the relative delays of the functional units within the

datapath [116].

4.9.3 Micronet as an asynchronous network of micro-operations

A micronet-based processor exhibits fine-grain concurrency both at spatial and tempo-

ral level [21]. In a synchronous design the centralised control forces each instruction

to go through all the stages of the pipeline regardless of the need to do so, with the

time spent in each stage being determined by the clock period. The execution cost

is therefore determined by worst-case delay of the slowest stage. The similar is true

for micropipeline-based datapath [51], except that the cost is this case determined by

the actual delay of the slowest stage. In the micronet, on the other hand, considering

that the control is decentralised and distributed amongst the communicating functional

units which operate concurrently, the ILP can be achieved implicitly without extra

cost [116]. The micronet datapath is modelled as a network of functional units, in

which each instruction visits the appropriate functional units, and for as long as is nec-

essary to execute a particular part of the instruction. Different program instructions

may execute concurrently within the same stage. There are several instructions active

at a same time, and they compete for functional unit resources, and may even overtake

each other. In order to maximise the utilisation of datapath resources, the micronet

architecture is designed to enforce only minimal constraints on their use [105]. This

is achieved by breaking each individual instruction into a number of micro-operations,

each scheduled independently. This allows micro-operations from different instruc-

tions to exists in the same logical pipeline stage. An instruction uses only those micro-

operations that are required for its execution. This enables other instructions to use the

resources within the same stage that are not used. The micronet architecture exposes

resources such as register read ports and operand-buses and allows different instruc-

tions to use them concurrently. For example, an instruction that has only one operand,

and therefore requires only one read-bus, will leave the other read-bus available. The
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second read-bus can be used concurrently by another instruction that also has only one

operand. Similarly, if an instruction does not need any of the resources within a stage,

it will skip it.

In asynchronous pipelines the number of active instructions at any time is bounded

with the number of pipeline stages, while in the micronet architecture the number of

active instructions is bounded with the number of functional units [118]. Furthermore,

the time an instruction spends in a micronet stage is variable. The fast instructions can

overtake the slower ones and, effectively, instructions compete for resources. In prac-

tice, all instructions do not necessarily have identical execution times and therefore

their results may be ready out of program order. In-order write-back is not enforced

as it can degrade the performance by stalling the functional units and increasing the

instruction evaluation times. In the micronet architecture the strict ordering of instruc-

tion completions can be relaxed and that way ILP further exploited. This has an effect

of increased utilisation of functional units. Therefore, the micronet datapath offers a

finer-level of concurrency than the level offered by micropipelines [21].

4.9.4 Micronet implementations

Micronet asynchronous processor (MAP) architecture was developed at the University

of Edinburgh [21, 19, 116]. Rebello [116] studied the conversion of a synchronous

processor architecture into an efficient micronet-based architecture. This process was

described in a series of refinement steps, each introducing additional scope for exploit-

ing fine-grain parallelism and decentralised control.

The development of scheduling algorithms targeted at micronet processors was

studied in [20], where an additional scheme for exploiting information obtained at

compile-time was also suggested. This theme of exploiting a close interaction between

compiler and architecture was continued in the work of Mullins [105], who explored

super-scalar asynchronous architectural designs. Further investigation of scheduling

algorithms and problems of optimisations for ILP in micronet-based processor were

studied by Sotelo-Salazar [118], who introduced a scheme for scheduling instructions

within basic blocks, that minimises stalls cause by data-dependencies and resource

contention. The issue of efficient scheduling of instructions with uncertain latencies in

the micronet-based asynchronous architecture was also addressed in [118].

Data-forwarding is a technique commonly used in pipelined architectures to min-

imise the cost of functional unit stalls (due to data-dependencies) by redirecting data
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that is being written to the registers, to the waiting functional unit(s). In synchronous

ILP designs, the cost of maintaining the correct operation increases the complexity of

control which in turn affects the clock period and thus the performance [116]. Mi-

cronet datapath design can utilise the existing handshaking mechanisms, together with

register locking mechanisms, in order to achieve the same effect but with trivial hard-

ware overheads. Exploiting concurrency in a micronet architecture is aided by the

distributed nature of the control strategy and by the fact that the movement of data is

controlled locally [116]. In the micronet architecture, data-forwarding is implemented

by tagging each result with the destination register identifier. During the write-back

stage the tag may be matched to operands currently being fetched. This allows the

operand fetch stage to obtain the data from the write-back bus before the result is

available from the register file. In such an event a second handshake is sent to register

file to cancel the pending read request.

A block diagram of an example RISC architecture developed using a micronet

model is given in Figure 4.6. A small token ring provides arbitrated access to a single

write-back bus. Write-after-write (WAW) hazards are avoided by ensuring that an

instruction’s destination register is unlocked before write-back can take place. This

way the instruction issue stalls are avoided, and only the write-back stage can be stalled

while the destination register is locked. The go-write signal shown in the figure is

generated at the register file and indicated when it is safe to write-back a particular

result [105].

Figure 4.6: Micronet [105].
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4.9.5 Summary

The previous sections presented an overview of the basic concepts regarding asyn-

chronous architectures: asynchronous control, asynchronous circuits, and some of

the advantages and disadvantages of asynchronous control. In the next section, side-

channel analysis of devices implemented using asynchronous paradigm are reviewed.

4.10 Side-channel analysis of asynchronous architec-

tures

Apart from the various design problems that the global clock introduces in synchronous

designs, the clock is also seen as a source of information that makes the modern cryp-

tographic devices vulnerable to side-channel analysis. Recently, asynchronous circuits

have been suggested as a promising platform for security sensitive applications due to

a number of their advantages.

4.10.1 Motivation for using asynchronous architectures for cryp-

tographic devices

Most smart-cards use CMOS technology which consumes power only when the logic

state of the chip changes; at other times only quiescent current is drawn. Synchronous

architectures are clock-driven; all activity in the chip is driven by an internal or exter-

nal clock edge and nearly all activity ceases before the next clock edge is due. This

results in periodic power consumption curves and the existence of large peaks that

correspond to clock signals, which facilitate the power analysis attacks. In contrast,

operations in asynchronous architectures are initiated in a data-driven fashion making

gate-switching more distributed. Circuits employ handshaking protocols which work

as local synchronisation signals. This allows the circuits to operate independently, as

the activity in each individual subcircuit only depends on their local handshake sig-

nals. The global timing reference in the power consumption signals that is used in

power analysis are no longer present and the analysis is more difficult [136].

The absence of the clock in the asynchronous architectures reduces high cycle-to-

cycle power variations and clock-driven electromagnetic emissions, which are sources

of side-channel information. As the subcircuits are independent, the contribution of

each subcircuit to the overall power consumption does not have consistent relative
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timings [136]. The power consumption curves (PCCs) of asynchronous circuits appear

smoother and represent agregation of many small peaks appearing at arbitrary times

according to their handshake signals.

Timing variations of asynchronous circuits make correlating power traces more

difficult and signal averaging problematic [49]. This further complicates the statistical

analysis of the power traces obtained from asynchronous architectures. Handshakes

dominate the behaviour of every part of the circuit, but also the behaviour of one stage

might be affected by the behaviour of the previous stage and a number of other stages.

This results in power curve overlaps and shifts which raise a problem during the sta-

tistical analysis. Also, the cycle time for the same instruction can vary in different

periods. Therefore, different power consumption curves might not necessarily have

the same periodicity. Correlating power traces and signal averaging is made difficult

due to these issues. On the other hand, the different execution times for the same in-

structions can introduce fine-grain timing noise, which can be a potential source of

information for the attacker [102, 136].

4.10.2 Side-channel analysis of dual-rail asynchronous architec-

tures

Recent investigations into the information leakage in asynchronous architectures [102,

136, 103, 49] have shown that asynchronous logic with dual-rail encoding improves

resistance to side-channel attacks.

Moore et al. [102] suggested that 1− o f − n encoded speed-independent circuits

could provide a good framework for smart-card devices that are resistant to side-

channel analysis and fault injection. They notice that one of the ways to protect smart-

cards is to eliminate the data-dependent power consumption. The idea to achieve this

is to use 1− o f − n encoding scheme in which each bit of data is represented with n

wires and at any point only one of them is high. Since the power consumption is di-

rectly proportional to the circuit’s switching activity, a simple binary encoding of data

(unlike 1−o f −n), where one wire is used for each bit of data, results in power con-

sumption proportional to the number of state changes. 1−o f −n encoding consumes

constant power to transmit data since only one wire transitions for every symbol en-

coded. However, it turned out that this is not enough to guarantee the data-independent

power consumption. A number of issues, ranging from the layout problems, logic

complexity variation and the data-dependent control had to be resolved during the de-
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sign [102]. Other ideas towards protecting smart-cards against side-channel analysis

include diffusing data-dependent timing, which is already present in asynchronous ar-

chitectures due to data-dependent execution. 1−o f −n encoding scheme also allows

the protection against fault injection as it allows for the alarm signal to be generated

and propagated as the internal part of the data.

Dual-rail (1− o f − 2) encoding is often used to construct speed-independent cir-

cuits. The two wires in this scheme are traditionally used to encode three states: clear,

logic-0 and logic-1. In this design the fourth state is used to explicitly encode the error

state, or the alarm, as shown in Figure 4.7. This enables dual-rail circuits to deadlock

when faults are injected. In order to ensure the data-independent power consumption

the return-to-zero (RTZ) signalling was required.

D0 D1 Meaning

0 0 Clear

0 1 Logic 0

1 0 Logic 1

1 1 Alarm

Figure 4.7: Dual-rail encoding with alarm signal definition.

In the experiments, reported in [49], the design of secure dual-rail XAP asyn-

chronous processor was compared with a synchronous XAP, bundled data XAP, 1-of-4

XAP and 1-of-2 (dual-rail) XAP. Power analysis of secure dual-rail processor revealed

that small imbalances in the design of dual-rail gates allowed some data-dependent

power leakage to be observed. Although the amount of leakage in the secure dual-rail

XAP was significantly lower, when compared to synchronous XAP, this reduction in

power leakage was not enough to protect against DPA. Authors noticed that although,

in theory, secure dual-rail XAP should be breechless thanks to its dual-rail encoding

and RTZ signalling, the manufactured chip showed small weaknesses to DPA. This

turned out to be due to implementation tools that were used, which tent to optimise

the space, and also the bit encoded into two wires might have one wire longer than the

other. This creates the imbalance and produces the power leakage.

Experiments involving electromagnetic analysis (EMA) included similar tests as

the power analysis. The collected electromagnetic signals had exploitable magnitudes

which allowed for successful DEMA attack to be carried out on the collected reference

curves. Again, the imbalance introduced by the design tools has been identified as the
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reason for data-dependent EM leakage. The important property of EMA, its locality,

has also been demonstrated. The ability of EMA to isolate fine circuit areas has an

implication that the balanced design is of great importance. Furthermore, in clocked

designs the clock usually adds noise to the EM signal and in asynchronous design

this is no longer true and this inconvenience of EM analysis is no longer faced. As a

defence against EMA, the authors suggest the use of the top level metal grid which can

help mask the underlying activity. The authors also suggest that non-determinism may

be used to make data correlation more difficult.

The analysis of the resistance of the secure dual-rail XAP to fault injection is also

performed. The suggested design strategy towards the resistance to fault injections

was in ensuring that all the attempts to introduce faulty behaviour should result in

a deadlock. However, the experimental investigation revealed weaknesses to optical

analysis [126] of secure dual-rail XAP processor, which were again the result of some

design concessions. Details of these faulty behaviours and the proposed countermea-

sures are given in [49].

Fournier et al. [49] also notice the importance of the design-time security evaluation

and validation. They suggest that the systematic simulation during the design time

can reveal data-dependent leakages. Also, the range of physical phenomena that can

trigger the faulty behaviour can be simulated. They notice that these simulations can

be performed in a way similar to traditional fault analysis simulations.

Yu et al. [136] investigated the security of self-timed ARM-compatible processor,

that was designed specifically to explore the benefits of asynchronous design for secu-

rity sensitive applications. Their secure asynchronous design consists of the following

features, which were introduced to improve security: (1) dual-rail encoding, used to

reduce data-dependent power consumption; (2) “null” insertion between consecutive

data bits, used to ensure that the power consumption of the new data does not depend

on the previous data value; (3) return-to-zero dual-rail encoding extended to storage

elements for on-chip registers and state-holding storage; (4) design of functional units

with data-independent response times. Yu et al. have compared their dual-rail secure

design with the single-rail asynchronous design. The findings were that the dual-rail

design has shown better resistance to power and timing analysis than its single-rail

equivalent. The power analysis experiments have shown that the signal-to-noise ratio

of the data-dependent operations was smaller in the secure dual-rail processor than in

the single-rail processor. The analysis has also identified the instructions that were still

vulnerable to power analysis attacks.
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Experiments reported in [136] also included the timing analysis. The authors no-

ticed that a system that takes different time when processing different data values can

potentially leak timing information. This information could be compromising and the

attacker who could extract the timing variation could also extract the data value. The

larger the variation, the easier would be to extract the information. The timing varia-

tions in single-rail processor were much larger than in the secure dual-rail processor.

Furthermore, processing the same instruction with the same data does not always con-

sume the same amount of time. In synchronous cases this is usually the result of

noise, whereas in asynchronous case this is the effect of handshaking protocols. Each

handshake is influenced by the neighboring stages and therefore processing the same

instruction with the same data can consume slightly different times. This suggests that

the self-timed behaviour of asynchronous circuits contributes to making attacks more

difficult. Using the secure dual-rail design, the timing variation for some instruction

was almost eliminated where for some other instructions it was still present.

Sokolov et al. [127] presented a way to improve the security of (synchronous) dual-

rail circuits. The dual-rail protocols implemented in most designs allow switching

from all-zero (“00”) to a code-word, i.e., “01” or “10” (see Figure 4.7), and back to

all-zero. The “00” state is used to indicate the absence of data and is usually called

a spacer. The authors suggest introducing an additional spacer, all-one (“11”) spacer,

in the dual-rail protocol and in that way guarantee that all gates switch in each clock

cycle regardless of the transmitted data values. The dual-rail protocol now alternates

between the two spacers. Reported experimental results show that the data-dependent

switching activity is eliminated, but the price of this effect is in increased switching

activity and area.

The asynchronous processors show interesting security and tamper-resistance prop-

erties. Although the investigations into their security have shown some weaknesses,

the leakage of information through power consumption was significantly reduced. The

combination of techniques might have to be used when securing these processors

against side-channel attacks and fault injection. Another problem with asynchronous

design is that secure designs have a cost of doubled or tripled area penalty [49]. This

can be balanced against large memory size savings that are possible due to reduced

need for software countermeasures in asynchronous design. The authors of [49] con-

cluded that pure balancing on its own is insufficient and suggested that introducing

non-determinism in the execution might be a way to remove vulnerabilities introduced

in this way.
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4.11 Summary

This chapter has presented background concepts of the second of the two major back-

grount areas: asynchronous processor design. This information is intended to set the

context for the overlap of two design themes: secure-cryptosystem design and asyn-

chronous design. This chapter has also covered basic concepts and design ideas of the

micronet-based asynchronous architecture that shares some of the design ideas with

the network-based asynchronous architecture introduced in the next chapter. Finally,

this chapter reviewed the research done in evaluating the asynchronous designs for

side-channel analysis.

The next chapter gives a detailed description of the design of the network-based

asynchronous architecture that aims at achieving improved resistance to side-channel

analysis and in particular differential power analysis.





Chapter 5

Design of the Network-based

Asynchronous Architecture

5.1 Introduction

Chapter 3 reviewed side-channel attacks and countermeasures for preventing these at-

tacks that were proposed in the literature. Section 3.5.8 reviewed hardware counter-

measures for preventing side-channel attacks. Some of these solutions [91, 92, 66]

demonstrated a hardware paradigm for randomising the execution, which assists in

making the side-channel attacks more difficult to apply. These solutions exploit the

available instruction level parallelism in order to randomise the execution, achieve

non-deterministic execution, and hide compromising information in the power traces.

A completely different approach for counteracting side-channel attacks, reviewed

in Section 4.10, uses balanced asynchronous logic [136, 103, 49] to balance the power

consumption of the device and decorrelate the data being processed from the power

consumption. Research in this direction has confirmed that the use of balanced asyn-

chronous circuits is beneficial for protecting cryptographic devices, but perfectly bal-

anced systems, in which the power consumption and the data are completely decorre-

lated, are difficult to design. The authors of [49] concluded that pure balancing on its

own is insufficient and suggested that introducing non-determinism in the execution

might be a way to remove vulnerabilities introduced through balanced design.

Due to the absence of centralised control the execution in asynchronous architec-

tures is naturally non-deterministic [116]. In the previous chapter the micronet asyn-

chronous architecture was reviewed. In this architecture the control is distributed in

order to exploit both temporal and spatial parallelism. The micronet model features

113
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single instruction issue and out-of-order write-back, and is capable of issuing instruc-

tions one at a time, rapidly, allowing different instruction execution stages to execute

concurrently.

This chapter concentrates on the design and implementation of the network-based

asynchronous architecture in which execution is non-deterministic. Different runs

of the same code have different order of instruction execution, execute in different

amounts of time and have different power signatures. This type of behaviour leads

to decorrelation of power consumption measurements and, therefore, the increase in

complexity and the cost of applying side-channel analysis. The non-deterministic ex-

ecution is achieved by: (1) exploiting available instruction level parallelism, (2) al-

lowing concurrent execution of both independent and dependent instructions, and by

(3) performing data-forwarding using randomised routing of register values through

the network. The non-deterministic execution renders the architecture more robust to

side-channel analysis, and in particular differential power analysis, as one of its most

powerful forms. The focus here is on the design of an architecture in which a number

of control issues resulting from data and structural dependencies have to be addressed

efficiently at run-time.

5.2 Design goals

Due to the absence of a global clock and centralised control, execution in asynchronous

architectures is inherently non-deterministic. This thesis investigates ways in which

non-deterministic execution, often cited as a possible way to render the side-channel

analysis more difficult to apply, can be further exploited. A major contribution of this

thesis is the introduction of a novel architectural idea in which the functional units in

the processor datapath are themselves connected as a network, rather than as a linear

pipeline. The aim is to decorrelate the power consumption measurements by exploiting

the inherent non-determinism of instructions executing in parallel over the network of

functional units in which data-forwarding is realised through randomised routing. This

investigation focuses on exploring architectural principles which could be beneficial

for efficiently and effectively decorrelating power consumption measurements, and

not on the low-level implementation of the architecture.

The network-based asynchronous architecture is a network of functional units. One

of the most popular ways to increase the performance of processors is to organise func-

tional units into a linear pipeline. A new approach which sees the processor datapath as
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a micronet, i.e., network of communicating stages, was first introduced in [21]. One of

the fundamental differences between the network-based architecture and the micronet

architecture is in the topology of the network. In the network-based architecture the

network has the topology of a family of graphs known as graphs on alphabets. The

interesting question, investigated here, is how the control can be distributed over the

network, in order to make the execution both concurrent and randomised, and thus

non-deterministic.

In the network-based architecture the distributed control strategy and the fact that

data movement is controlled locally aid in exploiting concurrency. Central to the per-

formance of the architecture is the ability to issue instructions rapidly and keep the

functional units busy. The instructions are issued in order, at a fast rate. The time an

instruction spends in different functional units may vary, and depends on a number of

static and dynamic factors [118]. Furthermore, computations may overtake each other

leading to out-of-order completion and non-deterministic execution.

In order to improve performance and to achieve concurrent execution, techniques

of instruction compounding and data-forwarding are implemented. These are impor-

tant features for exploiting instruction level parallelism and achieving high perfor-

mance. A novel implementation of instruction compounding technique is presented,

in which data-dependencies between instructions are recognised during the instruction

issue stage. This information is then used to initiate data-forwarding operations, which

route operand values from one functional unit to another, thus avoiding the register file.

This leads to efficient execution that is achieved by distributing both state and control

and minimising the need for high-level synchronisations.

The number and functionality of functional units can be changed without influenc-

ing the overall behaviour of the architecture. The network itself does not depend on

the types of functional units that form it, but the execution of a particular code can be

influenced by the distribution of the functional units among different types. The over-

all behaviour of the network and the architecture depends on the code that is executed,

the distribution of different instructions within the code, the ordering of instructions in

the instruction stream, and the distribution of different units within the network. For a

particular code the distribution of units could be adjusted to match its specific security

and performance requirements.
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5.3 Overview of the network-based architecture

In most architectural implementations the exploitation of instruction level parallelism

(ILP) is limited by data-dependencies and structural hazards. Asynchronous designs

that aim at exploiting ILP face a number of control issues that result from data and

structural dependencies. These issues need to be addressed efficiently so that the ex-

ecution does not suffer from control overheads. Even when instruction scheduling

techniques for avoiding such dependencies are considered, a good statically generated

instruction schedule is not always possible, and techniques are required to resolve them

at run-time (e.g. [116]). A commonly used solution for reducing stalls caused by data-

dependencies is data-forwarding. Data-forwarding is traditionally done by redirecting

the data being written to the register bank to the unit that requires that data.

In the design of the network-based asynchronous architecture techniques for ex-

ploiting fine-grain ILP and efficiently resolving control issues that result from data-

dependencies and structural hazards are explored. The execution paths of instructions

without data-dependencies are independent and these instructions are allowed to exe-

cute concurrently, at their own pace. There is no communication or synchronisation

imposed between different execution stages of these instructions. Communication of

execution stages of different instructions in some cases requires a level of synchro-

nisation which is undesirable in asynchronous design. When there are dependencies

between instructions (not only between consecutive instructions), these are recognised

at run-time during the instruction issue stage, and are used to initialise data-forwarding

operations. In this implementation data-forwarding involves communication between

units in the network through which the data is routed in a randomised fashion from the

producer unit to the consumer unit. In traditional implementations data-forwarding re-

quires synchronisation between the consumer’s operand fetch stage and the producer’s

write-back stage. This synchronisation inevitably slows down the faster stage (the

fetch stage) when two dependent instructions are fetched and issued one after another.

Data-forwarding, as implemented here, does not require these stages to be synchro-

nised. Furthermore, the consumer does not issue the operand fetch for the register that

is obtained through data-forwarding and the producer’s write-back stage is completely

decoupled from the data-forwarding operations as the latter is realised through the net-

work. Although the dependencies between instructions do mean that the consumer

might need to wait for the result to be ready and forwarded, this is still faster than writ-

ing the result to the register bank and reading it during the operand fetch stage. In this
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case, the operand fetch stage is replaced by waiting for the data to be forwarded. Dur-

ing this period the network routes the data to the consumer unit. The routing module

of the unit operates concurrently with the unit’s operand fetch-and-lock module. Data-

forwarding implemented in this way reduces the register bank traffic, as the number

of fetch requests is reduced with the number of forwarding operations. This in turn

reduces register bank response times and improves performance. Figure 5.1 compares

the execution times of running AES on architectural configurations with and without

data-forwarding as the number of functional units is increased. This confirms that data-

forwarding in the network-based asynchronous architecture improves the performance.

The results presented in Chapter 6 confirm that it also improves security against differ-

ential power analysis, which is the primary goal of this investigation.

Figure 5.1: Execution times of the architectural configurations with (NET) and without

(NO NET) data-forwarding.

Although the performance gains of data-forwarding are evident (Figure 5.1), these

are not the primary focus of this design. The focus is on the variation of execution times

that this approach introduces. Namely, the network routes the data using a randomised

routing protocol, which is specific for the implemented network topology. The routing

consists of two parts: in the first part the data is routed to a randomly chosen unit;

whereas in the second part the data follows the shortest path to its destination. The

number of nodes a packet visits on its path from the source to the destination varies

between routes, which introduces variations in the execution times. Different units

may now receive different amounts of traffic that also influences the time required to

route the packet through the network. Although one might argue that this is a serious
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shortcoming and that the units can become overwhelmed with routing, in practice this

is not a real threat because the randomised part ensures that units get balanced amounts

of traffic. However, some routes could be more likely than others due to the fact that

some units could be utilised more than others. For example, the arithmetic unit may be

utilised more than the memory unit, as the former would need to route other network

traffic while also receiving a higher amount of its own traffic. However, this can be

avoided by having the appropriate number of each unit type in order to balance the

computations. In summary, data-forwarding leads to the fulfillment of the first design

goal, non-deterministic execution, what makes the implementation of data-forwarding

one of the key features of this architectural design.

The fact that data-forwarding is realised through randomised routing is not the only

differentiating characteristic of this design. In this implementation data-forwarding is

not requested either by the consumer or the producer unit, as seen in some other im-

plementations (e.g. [105]). Instead, it is initiated by the issue unit, which does so even

before the consumer instruction is issued (further details are given in Section 5.5.2).

This enables the producer to start off with data-forwarding and reduce possible stalls

in the consumer’s operand fetch stage. Further details on the data-forwarding process

are given in Section 5.6.

Non-determinism in the execution is further increased by out-of-order instruction

completion. Although instructions are issued in-order, there are many instructions in

flight at the same time and their progress during the execution is independent. Non-

deterministic execution introduces different execution times even for the same instruc-

tion with the same input data. The order in which different micro-operations are per-

formed changes from one run to another. Different runs of the same program code

execute in different amounts of time and the order of particular micro-operations per-

formed changes from a run to a run. This means that the order in which values are read

from or written to the register file also changes from run to run. In practice, all instruc-

tions do not have identical execution times and, thus, the results of instructions may be

available out of program order. In-order write-back to the register bank is not enforced

as this would be a performance overhead, and it would introduce functional units stalls

and reduction in performance. Supporting out-of-order execution is beneficial both

from the points of view of the non-deterministic execution and the performance, as

it allows instructions to proceed at their own pace and complete when the results are

ready.
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All these natural side-effects of randomised routing help toward decorrelating the

power traces. It is especially important that the reference time points (on which many

side-channel attacks rely on) are removed and that the signal is smeared across the

power trace. Using randomised routing the standard execution routine is disrupted, it

changes with time, and is unpredictable. This is the primary goal of this research: to

investigate how and to what extent these architectural ideas contribute to decorrelating

the power consumption traces of cryptographic algorithms running on the architecture.

5.4 Architectural components

Figure 5.2 shows a block diagram of the network-based architecture with four func-

tional units. The architecture is composed of a Fetch and Branch Unit (FBU), the Issue

Unit (IU), a number of Functional Units (FU) each with a Communication Unit (CU),

the Register Bank (RB), the Register Bank Arbiter (RBA) and the Memory Arbiter

(MA). The architecture can be configured to have different numbers (≥ 1) and distri-

bution of functional units from the following four types: arithmetic, logic, multiplier

and memory units.

Figure 5.2: A block diagram of the network-based asynchronous architecture with four

functional units.
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The term “network-based” is derived from the property of the architecture that CUs

form a network. CUs carry out most of the communication within the architecture, in-

cluding communication with other CUs, the dedicated FU, the IU, the RB, the RBA and

the MA. Each CU is paired with a FU which evaluates the instruction and writes back

the result to the RB. The RBA and the MA are responsible for resolving structural haz-

ards caused by data and memory dependencies. The goal behind such an organisation

is to decentralise the control and achieve higher levels of non-deterministic execution

through concurrent execution and randomised routing of register values in the network.

This section gives a brief introduction to the composite parts of the architecture

depicted in Figure 5.2, with more details in the following sections. The major building

blocks of the architecture are as follows:

Instruction Memory (IM) and Data Memory (DM): which store the program instruc-

tions and data, respectively.

Fetch and Branch Unit (FBU): which fetches the instructions from the instruction

memory (IM) and places them into the instruction buffer (IB). The FBU also

executes the control transfer instructions. Detailed description of the operation

of this unit is given in Sections 5.5.1 and 5.5.5.2.

Issue Unit (IU): which issues instructions to the functional units of the appropri-

ate type in an in-order basis. The issue of an instruction initiates a series of

micro-operations in the respective CUs that deal with the given instruction. The

task of identifying data-dependencies and initialising data-forwarding micro-

operations, is also performed by the IU. Further details of these processes are

given in Section 5.5.2.

Communication Units (CU): which represent the communication part of the func-

tional units and form a network. The task of CUs is to perform fetch-and-lock

operations and data-forwarding in the network. In this way the control, that is

in other architectures (e.g. micronet architecture [116]) performed by a semi-

centralised control unit, is now distributed between CUs. Detailed description of

the CUs and their functionality is given in Section 5.5.4.

Functional Units (FU): which evaluate the instructions and perform the write-back

operations. They are effectively isolated from the network and communicate

only with the CU and the RB. Further details on the FUs and the instruction set

are given in Section 5.5.5.
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Register Bank (RB): which consists of 32 registers, two operand read ports (regRead

in Figure 5.2), one operand lock port (regLock) and one operand write port

(regWrite). Read and write accesses can be performed in parallel if they refer

to different register locations. The RB communicates with CUs, the part of the

FBU that evaluates the branch instructions (PC++ module in Figure 5.2), FUs,

and the RBA. The communication with different functional blocks is controlled

through a number of arbiters that sit on its read, lock and write ports, and sched-

ule requests to and from the RB, one at the time, in the order of their arrival.

Further details on the functionality of the RB is given in Section 5.5.4.

Register Bank Arbiter (RBA): which is responsible for resolving structural hazards

which arise from data-dependencies. In an architectural organisation in which

control and sequencing of operations are distributed and decentralised, some

arbitration is necessary to ensure that the data-dependencies are preserved and

that operand fetch-and-lock operations are scheduled in the correct order. The

RBA is an active part of the register locking mechanism and communicates with

each of CUs granting read and lock requests to the RB. Full explanation of the

operation of this unit is given in Section 5.5.4.1.

Memory arbiter (MA): which is responsible for memory disambiguation. It is im-

plemented as a reorder buffer and ensures that memory instructions access the

data memory (DM) in order of their issue. The MA can be implemented in a

way similar to RBA, due to the similarity of dependencies when referencing the

RB and the DM. However, given that, in practice, there is a need for no more

than one or two memory units, the implementation cost can be avoided at a small

performance penalty. Further details are given in Section 5.5.5.3.

Network: is formed between CUs. The network topology can be configured to be a

binary hypercube or a binary de Bruijn graph. Further details are available in

Section 5.6.1.
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5.5 Instruction execution

The execution of individual instructions, can be divided into four stages:

• Instruction fetch

• Instruction issue

• Operand fetch-and-lock

• Evaluation and write-back

5.5.1 Instruction fetch

Implementation of certain instructions, and in particular control transfer instructions,

can cause the issue stage to be starved of instructions. This could have a damaging

effect on exploitation of the concurrency and the efficient utilisation of functional units.

For this reason, all the Program Counter (PC) related instructions are executed in the

FBU. The FBU is responsible for fetching instructions from the IM and processing

control transfer instructions, during which the PC register is updated directly.

The FBU continuously fetches instructions and places them in the instruction buffer

(IB) until either the buffer is full, or the fetch stalls waiting for a control transfer to

be resolved. If the value of the PC is valid, and there is space in the IB, the next

instruction is fetched (Figure 5.3). If this instruction is a PC-related instruction (i.e.

control transfer instruction), the FBU will execute it, update the value of the PC and

fetch the next instruction. If, on the other hand, the fetched instruction is not a PC-

related instruction, it is added to the IB, the value of the PC is incremented and the

process is repeated. (Note that PC-related instructions are not added to the IB.)

Since the implementation of the FBU does not support branch prediction, some

stalls might be possible though they are minimised in this implementation. Uncondi-

tional branches are executed by the FBU directly updating the PC. Conditional branches

are also executed by the FBU but may cause stalls in the instruction fetch stage, and

consequently in the issue stage. It is assumed that the fetch and decode mechanisms

are in place and operating so that the IB is always full, except possibly when a branch

instruction occurs. This ensures that the issue unit is not starved of instructions.

The task of the fetch-and-branch unit is, therefore, to fetch and decode instructions,

and then either execute the control transfer instruction or place the instruction into the

instruction buffer. The hardware required for execution of control transfer instructions
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Figure 5.3: Fetch-and-branch unit and the instruction fetch stage.

would need to be similar to that of an arithmetic unit due to the nature of the performed

operations. The fetch-and-branch unit is organised so that it is capable of decoding the

instruction and consecutively executing the control transfer instruction or placing the

instruction in the instruction buffer, depending on its type. The fetch and decode stages

for the consecutive instruction are stalled until the control transfer instruction is exe-

cuted. This organisation assumes that the fetch, decode and PC-update operations are

faster then the operations performed in the instruction issue stage, and therefore, the

instruction issue stage is not starved of instructions. The functionality of the instruc-

tion issue unit is given in Section 5.5.2. The description of the tasks involved in the

issue stage leads to the conclusion that the assumption about the fetch unit is realistic,

and that the process of fetching, decoding and calculating the next PC value is faster

than the instruction issue stage. This process might be slower when there is a control

transfer instruction to be executed in the fetch stage, but it is still faster than waiting

for the PC-related instructions to be executed in the functional units. Furthermore, as

the organisation of the architecture evolved, it became apparent that having the FBU

executing the PC-related instructions is beneficial and keeps the IU busy, but is also the

simplest design, as the PC value is now updated directly by the FBU which speeds-up

the fetch and consequently the instruction issue stage.

5.5.2 Instruction issue

The IU has the task of sequencing the instruction issue operations and initialising data-

forwarding operations. In order to increase temporal ILP the issue has to be fast and



124 Chapter 5. Design of the Network-based Asynchronous Architecture

attention is paid so that the instructions can be issued in the quickest possible way.

The instructions are issued in an in-order fashion to the appropriate FUs. The IU

also initialises data-forwarding operations, through which operand values are obtained.

The respective CU performs the rest of the required communication to complete the

operand fetch-and-lock stage. The control is next transfered to the FU that evaluates the

instruction and writes the result back to the RB. The task of the control unit, responsible

for sequencing of operations in the micronet architecture [116], is here distributed

between the IU, CUs and the RBA. Mutual operation and communication of these units

ensures that the operation sequencing is done in a correct manner and in accordance

with data-dependencies.

The instruction decode stage is distributed between the FBU and the IU. Each of

these units decodes only the portion of the instruction that is needed for the execution in

that particular unit. Thus, the FBU decodes the mnemonic part to recognise the control

transfer instructions, while the IU decodes the operands. The process of issuing the

instruction involves the following four steps (Figure 5.4):

Step 1 – The instruction is assigned to a FU of the appropriate type.

Step 2 – The dependencies between the current instruction and a number of previously-

issued instructions are identified .

Step 3 – Forwarding requests (if any) to the producer units are generated and queued

for dispatch.

Step 4 – The issue handshake with the CU of the target FU is initialised.

After the instruction is fetched, the next step is to check if there is a unit of the

appropriate type that is free and ready to accept the next instruction (Step 1). The

IU keeps a ready bit for each of the functional units in the architecture. The ready

bit is set if the respective CU has completed the operand fetch-and-lock stage, and is

therefore free and ready to accept the next instruction. This step simply associates an

instruction with a functional unit. If the functional units are duplicated, then instruc-

tions are assigned in around-robin fashion, subject to the availability of functional units

at the given time.

After the instruction is assigned a unit, the next step consists of identifying data-

dependencies between the current instruction and a number of previously issued in-

structions (Step 2). For each of the issued instructions, the information about the desti-

nation register and the unit that the instruction was issued to are kept in the dependency
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Figure 5.4: Instruction issue.

table. Entries in the dependency table are tuples of the form: 〈regID, unitID〉, where

regID denotes the resulting register identifier, and unitID the identifier of the unit the

instruction was issued to. In other words, for each register regID in the dependency

table, the unitID points at the unit which has the most recently generated its value and

can forward it. For each of the current instruction’s operands, the existence of such a

unit in the dependency table is first checked. If a producer unit is found, the operand’s

compounding bit is set. The next step is to generate the forwarding signal to the pro-

ducer unit (Step 3). If the producer unit is not found in the table, the compounding bit

is left unset and the data will be obtained from the register bank.

Before the issue proceeds to Step 4, in which the instruction is issued to a unit, it

is first ensured that already generated data-forwarding requests to the destination unit

are issued. This precaution is necessary, as the current instruction could overwrite the

previous register value, stored in the unit, for which a data-forwarding operation is

generated. Finally, when the instruction is issued the information about its resulting

register and the unit is added to or updated in the dependency table, while ensuring

that there can only be one entry per register in the dependency table.

The small amount of information maintained in the dependency table allows the is-

sue unit to initiate data-forwarding operations. In [105] the explicit dependency infor-

mation was used to forward the data and the compounded instructions encapsulated the
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information about the use of results of instructions within the compound. This infor-

mation was used in order to enable the producer of a result to initiate data-forwarding

operations. In some other implementations (reviewed in [105]) it is the consumer of

the result which requests the data from the producer. In the implementation of the

network-based architecture, the issue unit initialises data-forwarding operations in the

producer units, while the producer units together with the rest of the network realise

actual operations.

The data-forwarding initialisation signals are queued and issued one at a time to

their destinations. Each of these signals contains a tuple 〈regID, unitID〉, which rep-

resent identifiers of the register and the consumer unit that the register value should be

forwarded to. The IU does not wait for the handshake to complete before it starts the

next data-forwarding initialisation handshake (except when the same unit is in ques-

tion). Data-forwarding signals are initiated and left to complete at their own speed.

The IU issues instructions one at a time in an in-order manner. The entire process of

instruction issue and signalling of the completion of the operand fetch-and-lock stage

in the corresponding CU, is done as one handshake1: (1) the IU request high means

that the instruction is issued, i.e., the data is available at the instruction bus; (2) the

CU acknowledges that the instruction is received; (3) the IU lowers the request and

the data is no longer available; (4) the CU lowers the acknowledge to signal that the

operand fetch-and-lock stage has been completed and the CU is free to accept the next

instruction. A high request edge during the issue handshake resets the ready bit for

that unit and the low acknowledge edge sets it. In this way, the different edges of

the handshake are exploited to signal different events, thus avoiding the need for an

additional line to signal the ready state of the CU.

Although the instructions are issued to the respective CUs one at a time, the IU

does not wait for the handshake on one issue port to complete before it starts an issue

handshake with another CU. Furthermore, although each issue handshake is initiated

one at the time and in-order, their completion and, therefore, the completion of the

operand fetch-and-lock stage in the CUs is out-of-order. An example of issue and

completion orders are shown in Figure 5.5, and were obtained from a simulation of

AES algorithm on the architectural configuration with six functional units. (The AU,

LU, MULT and MU in Figure 5.5 stand for arithmetic, logic, multiplier and memory

unit, respectively.)

1The communication protocol in the implementation uses four-phase handshaking bundled data pro-
tocol.
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Figure 5.5: Instruction issue and completion order of the fetch-and-lock stage.

The issue stage is not concerned with the availability of operand values before it

issues an instruction. Once the instruction is issued, the progress of the operand fetch

depends on the availability of the operand values from the register file or through data-

forwarding. This allows the issue stage to issue instructions at a fast rate, enabling the

functional units to process more instructions concurrently, as the stalls during the issue

stage that are due to unavailability of results are completely removed. The only stalls

in the issue stage can result from resource contention (all the units of the right type are

busy). This problem can be alleviated by carefully balancing the number of units in

the particular architectural configuration. This not only improves the performance but,

as shown in Chapter 6, also improves the security.

5.5.3 Instruction compounding

This section demonstrates how the explicit dependency information generated at run-

time may aid in exploiting fine-grain instruction level parallelism. The ability to ap-

pend the dependency information to the instruction prior to issue and to use that infor-

mation in later stages of instruction execution, can help to further exploit asynchrony

and solve some of the problems normally caused by data-dependencies.

In contrast to VLIW architectures, in which grouping independent instructions is

beneficial, the aim here is to exploit the explicit dependencies between instructions.
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This involves identifying groups of dependent instructions at run-time, during the issue

stage, and forwarding register values directly between them, thereby bypassing the reg-

ister file. The small amount of information maintained locally in the issue unit, allows

a novel implementation of data-forwarding that is specifically aimed at asynchronous

design with highly distributed control. The obtained information naturally flows from

older to younger instructions and has no limitations regarding control transfer instruc-

tions, seen in some other implementations of the same concept (e.g. [105]).

5.5.3.1 Related work

The technique of instruction compounding generally consists of identifying groups of

dependent instructions in order to forward register values between them. Different im-

plementations of this concept vary in the way in which the dependency information

is obtained, compounded instructions are issued, or forwarding requests are gener-

ated and handled. Depending on whether the dependency information is generated

at compile-time or at run-time, two general approaches, static and dynamic, can be

recognised.

In the static approach implemented in [105], the instruction compounds are formed

at compile-time and then scheduled atomically. Data is forwarded only between con-

secutive instructions within a compound, while the communication between com-

pounds is performed through the register file. Instruction compounds consist of a

number of instructions, each being dependent on the previous one. Compounding is

restricted to basic blocks to simplify the execution, as compounding instructions from

different blocks in this implementation can introduce control hazards. The compiler

restriction when forming instruction compounds is that the resulting compound depen-

dency graph is an acyclic graph, as otherwise, it would not be possible to schedule the

compounds as atomic units (i.e. it would result in deadlocks). Membership of a par-

ticular compound is indicated by a single additional bit appended to each instruction

at compile-time. If the particular compounding bit is set, then the next instruction is a

member of the same compound and requires the result of the preceding one. The con-

sequence of this is that each member of the compound must be scheduled in-order and

consecutively, thereby enabling the consumer of a result to be identified. The explicit

dependency information appended to the producer of the result allows the producer to

make a request to forward its data to the consumer.

The dynamic approach for instruction compounding in [105] is achieved by main-

taining a so-called forwarding table within the processor, which records pending results
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and a list of potential consumers. The table is used to construct compounds dynami-

cally and free from the restrictions imposed on the compiler. Each instruction accesses

the table twice: once to indicate that it has generated a result and again, prior to the

generation of a forwarding request, to obtain the location of a consumer. At this point,

the entry is reset to indicate that the result is no longer available via the forwarding

mechanism. A consumer instruction records its destination in the same table entry and

sets its compounding bit. The forwarding request is then generated by the producer

after reading the location of its recorded consumer from the forwarding table. As in

the static case, dynamic compounding is restricted to only recording a single consumer

for each result.

5.5.3.2 Dynamic compounding in the network-based asynchronous architecture

The instruction compounding as implemented in the network-based asynchronous ar-

chitecture allows a novel approach for data-forwarding. The compounding is per-

formed at run-time recognising not only the dependencies between consecutive in-

structions of the basic block, but also between the instruction that is currently in the

issue stage and a (relatively small) number of previously-issued instructions. This

number depends on the size of the dependency table that is maintained in the IU. This

table records pending or already calculated results and the units that have generated

them. Each instruction compound consists of a consumer instruction and one or two

producer instructions (the number of source operands is at most two). The dependency

table holds pairs, 〈regID, unitID〉, which identify the register and the unit that has

produced the register value.

The dependency table is accessed by each instruction once for each operand in

order to locate the potential producer for that operand and to initiate the forwarding

operation. Finally, the dependency table is accessed once more to add the information

about the resulting register and the unit that the instruction is being issued to. This

information is used to construct compounds dynamically, free from the limitation of

only forming the compounds between instructions that belong to the same basic block,

and free from the limitation that each result can have only one consumer.

The dependency table is updated each time an instruction is issued by adding the

information about the resulting register and the unit that the instruction is issued to.

The dependency table holds at most one entry per register, pointing to the unit that has

the most recently generated its value. When the instruction is issued, an older entry

for the same register is updated, if such an entry exists, or otherwise, the information
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about the resulting register and the destination unit are added to the table, removing

the oldest entry from the table.

Forming instruction compounds is equivalent to identifying units which can for-

ward register values between them. In [105] the compounded instructions are issued

as atomic units. The execution of instruction within a compound is mutually exclu-

sive, while instructions from different compounds can execute concurrently. In the

implementation of the network-based architecture, the instructions are issued on an

instruction-by-instruction basis, enabling instructions from the same compound to ex-

ecute concurrently subject to availability of results.

Figure 5.6: An example of instruction compounding.

Figure 5.6 illustrates instruction compounding. Instructions 3 and 2 are com-

pounded, where instruction 2 is the producer for register 3 and the instruction 3 is

the consumer. Instruction 5 is compounded with instruction 3, which produces its first

operand (register 21), and instruction 4 which produces its second operand (register

20). Here, instruction 5 is a consumer and instructions 3 and 4 are the producers.

The dependency table holds at most one entry per register corresponding to the

instruction which has most recently produced its value. If the information about the

operand exists in the table, then its value will not be obtained from the RB but through

data-forwarding. This is signalled to the CU, which initiates the operand fetch opera-

tions, by setting a specific bit in the instruction, the compounding bit, associated with

each of the operands. (Compounding bits are denoted with rsf and rtf in Figure 5.6.)

If this bit is set, then the operand should not be read from the RB, but its value is for-

warded to the unit. The unit, therefore, does not initiate the operand fetch operation but

waits for the corresponding producer unit to forward its result. These bits are the only

additional information attached to the instruction during instruction compounding.
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When the instruction’s operand is located in the dependency table, a forwarding re-

quest to the producer unit is sent. This signal contains a tuple 〈regID, unitID〉, which

denotes the result register and the unit this result should be forwarded to. These two

pieces of information are used to identify the register value in the locally maintained

forwarding table in the producer unit, and to generate the path from the producer to the

consumer unit. The forwarding table in each unit contains results that were recently

calculated in that unit.

In summary, the key features of instruction compounding implemented in this ar-

chitectural design, are as follows:

• The dependencies between instructions are identified at run-time, during the in-

struction issue stage.

• The dependencies are recognised between the current instruction and a (small)

number of previously issued instructions. Depending on the size of the depen-

dency table, possibilities for forming compounds can vary, as the information

about the producers varies. Namely, the bigger the table, the more possibilities

for compounding.

• Information obtained from the dependency table is appended to the consumer

instruction in the form of two compounding bits (one for each source operand).

Each of the two compounding bits specifies whether the corresponding operand

values should be obtained from the register file or through data-forwarding.

• Explicit dependency information obtained at run-time, allows the issue unit to

initiate data-forwarding operations in producer units.

• Instructions of a compound are not issued as atomic unit, but one at a time,

allowing for a degree of concurrent execution of these instructions.

• Instructions within a compound are not restricted to basic blocks.

• Each result can have more than one consumer.

The proposed compounding mechanism is dynamic and hardware-based. It works

by recognising the dependencies between the instruction currently in the issue stage

and a number of previously issued instructions (not only consecutive instructions).

However, modern optimising compilers try to separate dependent instructions. The

dynamic compounding technique implemented here recognises dependent instructions
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that fit into a window of the size of the dependency table. Therefore, the impact of

optimising compilers could have a negative effect on the implemented dynamic com-

pounding mechanism if the size of the dependency table and the way in which the

compiler separates the instructions is such that the dependent instructions exceed the

size of this window. For a small dependency table an optimising compiler could make

the dynamic compounding technique less effective. However, the proposed architec-

tural design is not a general purpose one and is targeted for specific applications for

which the compilation process and the size of the dependency table could be adjusted

so that this issue is not problematic.

5.5.4 Operand fetch-and-lock

Instruction level parallelism in the network-based asynchronous architecture is ex-

ploited by allowing instructions both with and without data-dependencies to execute in

parallel. The mutual exclusion of instructions with data-dependencies is not imposed,

although the progress of the consumer is subject to the availability of operands. In this

way fine-grain ILP is exploited and the control is further distributed.

As noted earlier, an operand value can be obtained in two ways: through data-

forwarding or from the register file. Data-coherence of the register file is based on

the register locking scheme [111], which has been a common solution in many asyn-

chronous implementations. The locking scheme guarantees correct operation during

the asynchronous access to the register file. The mechanism consists of a device that

contains an individual lock bit for each register, which indicates that a register is yet

to be written by a pending instruction. If the lock bit is set, it implies that the register

cannot be read from or written to by any subsequent instruction. If the lock bit is unset,

then the content of the register can be read by any instruction until it is locked again.

In the micronet architecture [116] the instructions are issued in-order and one at a

time, and the operand fetch-and-lock stages are performed by a specialised control unit

during the issue stage. Since it cannot be known for how long the register will contain

valid data, the issue unit cannot issue instructions that depend on a locked register, i.e.,

if there is a read-after-write (RAW) or write-after-write (WAW) dependency. There-

fore, the issue unit is stalled until the register value of the operand is available, i.e., the

register is unlocked. In such a setting the above scheme is enough for maintaining the

data-coherence of the register file.
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In network-based architecture responsibility for fetching the operand values and

locking the result register is transfered to communication units. This allows for faster

issue rate but additional care has to be taken to avoid structural hazards. Although

instructions are issued in-order, the rest of the communication towards the comple-

tion of the instruction execution progresses at different speeds and effectively out-of-

order, thereby complicating the structural hazard avoidance mechanisms. Therefore,

the order in which fetch-and-lock operations are processed in the RB has to be ar-

bitrated. A specialised arbitration unit, the Register Bank Arbiter (RBA) was imple-

mented, which schedules fetch-and-lock operations according to data-dependencies,

thus avoiding structural hazards and preserving data-coherence of the register file.

Figure 5.7: The operand fetch-and-lock stage.

Figure 5.7 shows the organisation of communication between the CU, RB, RBA

and other CUs during the operand fetch-and-lock stage. As the data can be obtained in

two ways, major building blocks of a communication unit are the forwarding module

and the fetch-and-lock module. These two modules are implemented to operate inde-

pendently and communicate only when the forwarding module receives the operand

value. The forwarding module is responsible for performing data-forwarding opera-

tions and also maintains the forwarding table, which contains the results of a number of

previously executed instructions, that can be forwarded on request. If the compound-
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ing bit for the operand for the instruction is set, then the operand value is not obtained

from the register bank, but through forwarding. The forwarding module performs rout-

ing of data as a part of the network. It has a number of “in” and “out” connections to

other CUs, depending on the topology of the network, which correspond to the vertices

of the network graph. Data is forwarded through the network, from the producer to the

consumer unit.

The fetch-and-lock module is responsible for locking the resulting operand and

fetching the operand values that are not obtained through data-forwarding. If the com-

pounding bit for an operand is set, then the module does not initiate the operand fetch

operation. As the fetch operations for the operands that are being forwarded are not

performed, the problem of issuing fetch-and-lock operations in accordance with data-

dependencies is this way removed (this namely concerns RAW hazards). This is true

under the condition that for the set of instructions that are concurrent in execution all

the data-dependencies are captured in the issue stage, which is subject to the size of

the dependency table. The maximum number of instructions that could be concur-

rent in execution, and for which RAW hazards can occur, is equal to the number of

CUs. It seems that if the size of the dependency table is at least the number of CUs,

then the RAW hazards would be removed. However, the control transfer instructions

are not considered during the issue stage. Namely, they are evaluated in the fetch-

and-branch unit, and thus do not take part in instruction compounding. Therefore,

data-dependencies between control transfer instructions and those evaluated in the rest

of the architecture are not captured during the issue stage. RAW hazards due to these

instructions remain, and the mechanism for preventing them still needs to be imple-

mented. An obvious solution for removing these hazards would be to move the execu-

tion of control transfer instructions with source operands out of the FBU. However, in

the current instruction set (covered in Section 5.5.5.1) the number of such instructions

is small and the improvement of such an approach would be negligible, if compared to

one in which control transfer instructions are not executed in the FBU at all. In addi-

tion, the size of the dependency table dictates the size of forwarding tables maintained

in each of the CUs. As the size of the forwarding table cannot be too large, if the

number of CUs is high the approach for removing the RAW hazards (by making the

size of the dependency table at least equal to the number of CUs) cannot be followed.
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5.5.4.1 Register bank arbitration for fetch-and-lock operations

Although the instructions are issued in-order, the operand fetch-and-lock operations in

the RB could be performed out-of-order. The idea is that the order is imposed only

when data-coherence is in danger.

When the instruction is received by the CU the compounding bit for each of its

operands are first checked. If the compounding bit for an operand is set, then the

operand value is forwarded and the CU does not initiate the operand fetch operation.

Otherwise, the CU needs to obtain this operand value from the RB. The RBA arbitrates

in this process. This arbitration is realised through granting the CU with permissions

to perform fetch-and-lock operations. Therefore, before the CU can issue a fetch or a

lock request to the RB, permission has to be obtained from the RBA.

Write-after-write (WAW) data-hazards are prevented by ensuring that the lock re-

quests for the same register are issued in program order. This is achieved by granting

instructions with exclusive permissions to lock a particular register in the order of their

issue, while locks for other registers can proceed out-of-order. For each register in the

RB, the RBA stores the lock reserve status (lockStatus). This status is binary and

can be set to RESERVED or NOT RESERVED. The status is set to RESERVED, if there is

an instruction that has reserved the right to lock the register, but has not locked it yet.

Otherwise, the status is set to NOT RESERVED. The NOT RESERVED status means that the

previous instruction has locked the register and no other instruction has reserved the

right to lock it next. There is no direct correspondence between the lock status of the

register in the RB, and the lockStatus of the register in the RBA. For a particular

register, only one lock request can be issued, and only one instruction can lock the

register. If the register is locked, and since an already locked register cannot be locked

again, the next lock can be reserved but it will be stalled in the RB until the previous

instruction unlocks the register. The lockStatus is set (RESERVED) when the lock is

reserved in the RBA, and reset (NOT RESERVED) after the instruction locks the register

in the RB.

This process of locking a register is shown in Figure 5.8. Algorithms 13, 15, 16,

17 and 19 describe the procedures performed in the CU, the RBA and the RB during

this operation. The summary of this process follows next:

Step 1 – Obtain the exclusive right to lock the register. After the instruction is re-

ceived, the CU initiates the reserveLock handshake with the RBA (see Al-

gorithm 16). When a request is received, if the register’s lockStatus is set to
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Figure 5.8: The three-step register lock procedure.

NOT RESERVED, then the lock is reserved, i.e., its lockStatus is set to RESERVED.

Even if the lockStatus of a register is NOT RESERVED, it does not mean that the

register is unlocked, but rather, that there is no other instruction that has reserved

the right to lock it in the future, and that the previous instruction has already

locked it. The reservation of the lock for a register is signalled with the high

acknowledge reserveLock signal. If, on the other hand, register’s lockStatus

is RESERVED, then the request is indexed and queued, as shown in Algorithm 16

and Figure 5.9.

Step 2 – Send the lock request to the RB. After the lock is reserved, the CU initiates

the regLock handshake with the RB, which requests the register to be locked, as

shown in Algorithm 13.

Step 3 – Lock the register and update its status. If the register is unlocked, the RB

locks the register and sends the update signal (see Algorithm 19) to the RBA

which resets its lockStatus (see Algorithm 15). An awaiting lock request for

the same register can now be reserved. If the register is locked, the lock request

is stalled until it is unlocked.

Figure 5.9: Register bank arbiter: reserveLock and grantRead queues.

If the register is locked by the previous instruction, the next lock request to the

same register can be issued. This request will not be able to lock the register until
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it becomes unlocked, but no other lock request could overtake it. It is clear that this

locking mechanism speeds up the register locking procedure. This is another example

of how fine-grain instruction level parallelism can be exploited. At any time, only one

instruction can lock a register and one more instruction can have the lock request to

the RB initialised although not completed. Once locked the register remains locked

until the result is written to it. The write-back of the result will cause the register to

be unlocked, awaiting reads to be performed and the pending lock-request to lock the

register.

Read-after-write (RAW) data-hazards are prevented by ensuring that the operand

fetch request to the RB is issued after the instruction that writes that register has locked

it. If the size of dependency table is large enough to gather all the RAW dependencies

and perform data-forwarding between instructions with these dependencies, then RAW

dependencies can occur only when executing the control transfer instructions which are

not included in data-forwarding.

Figure 5.10: The three-step register read procedure.

The three steps when fetching operands are illustrated in Figure 5.10, given in

Algorithms 12, 14 and 18, and also be summarised as follows:

Step 1 – Obtain the grant to read (fetch) the register value. If the compounding bit

for the operand is not set, the CU will initiate the grantRead handshake with

the RBA (see Algorithm 12). This read request is granted if the status of the

register is NOT RESERVED. Otherwise, the grantRead request is tagged with the

most recent entry index for the same register in the reserveLock queue, if one

exists, or with zero otherwise, and queued in the grantRead queue as shown in

Figure 5.9 and Algorithm 14. The request tagged with a zero is granted after

the update signal resets the status of the register, i.e., sets it to NOT RESERVED

(see Algorithm 15). Each time a lock request is reserved all reads with the same
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index have their indices updated to 0 and will be granted next (after the register

is locked and its lockStatus set to NOT RESERVED).

Step 2 – Send the read request to the RB. After the RBA grants the fetch operation, the

CU initiates the regRead request with the RB (see Algorithm 12).

Step 3 – Send the read response to the CU. The register value is read from the RB only

if it is valid, i.e., the register is written and unlocked. If the register is locked,

then the read requests will wait for this status to change (see Algorithm 18).

Although care is taken when issuing read and lock requests so that WAW and RAW

hazards are prevented, the order in which they are processed in the RB is still not guar-

anteed. The hazardous write-after-read (WAR) situation occurs when the subsequent

lock request manages to lock the register before the reads are performed. As the regis-

ter cannot be read unless it is unlocked, the incorrect register value is eventually read.

The order in which read and lock requests are processed in the RB depends on the num-

ber of these requests and the speed with which the RB can serve them. The RB records

the number of register reads performed for each register. Similarly, the IU records the

number of register reads that ought be performed before the register is locked (with

respect to data-forwarding). This information is attached to the instruction on issue

and sent as a part of the lock request to the RB. A simple comparison then prevents

WAR hazards. This solution is satisfactory, albeit ad-hoc, given that the validity of

architectural principles is being explored in this study.
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Algorithm 12 Communication unit: operand fetch procedure.
1: /*for each of the operands */

2: for operand = current inst.rs, current inst.rt do

3: /*if the operand value is not obtained through data-forwarding */

4: if operand.compounding bit == false then

5: /*send grantRead request to RBA */

6: grantRead[operand].data.regID = operand.regID;

7: grantRead[operand].req = high;

8: else

9: /*send regRead request to RB */

10: regRead[operand].data.regID = operand.regID;

11: regRead[operand].req = high;

12: end if

13: /*if the read is granted */

14: if grantRead[operand].ack == high then

15: /*send regRead request to RB */

16: regRead[operand].data.regID = operand.regID;

17: regRead[operand].req = high;

18: grantRead[operand].req = low;

19: end if

20: /*complete the regRead handshake */

21: if regRead[operand].ack == high then

22: regRead[operand].req = low;

23: end if

24: /*read response received */

25: if readResponse[operand].req == high then

26: operand.value = readResponse[operand].data.regValue;

27: readResponse[operand].ack = high;

28: end if

29: /*complete the readResponse handshake */

30: if readResponse[operand].req == low then

31: readResponse[operand].ack = low;

32: end if

33: end for



140 Chapter 5. Design of the Network-based Asynchronous Architecture

Algorithm 13 Communication unit: operand lock procedure.
1: /*send reserveLock to RBA */

2: reserveLock.data.regID = current inst.rd.regID;

3: reserveLock.req = high;

4: /*if the lock is reserved */

5: if reserveLock.ack == high then

6: /*send regLock to RB */

7: regLock.data.regID = current inst.rd.regID;

8: regLock.req = high; grantRead.req = low;

9: end if

10: /*destination register is locked */

11: if regLock.ack == high then

12: current inst.rd.locked = true;

13: regLock.req = low;

14: end if

Algorithm 14 Register bank arbiter: grantRead procedure.
1: /*for each of the units */

2: for all unitID do

3: /*if grantRead request is received */

4: if grantRead[unitID].req == high then

5: if lockStatus[grantRead[unitID].data.regID] == NOT RESERVED then

6: grantRead[unitID].ack = high;

7: else if rL = reserveLockQueue.find(grandRead[unitID].data.regID) != NULL then

8: grantReadQueue.add(grantRead[unitID].data, rL.index);

9: else

10: grantReadQueue.add(grantRead[unitID].data, 0);

11: end if

12: end if

13: /*complete the grantRead handshake */

14: if grantRead[unitID].req == low then

15: grantRead[unitID].ack = low;

16: end if

17: end for
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Algorithm 15 Register bank arbiter: update procedure.
1: /*received an update request from the RB */

2: if update.req == high then

3: lockStatus[update.data.regID] = NOT RESERVED;

4: for all gR = grandReadQueue.getNext() do

5: if gR.tag == 0 & gR.regID == update.data.regID then

6: grantRead[gR.unitID].ack = high;

7: grantReadQueue.delete(gR);

8: end if

9: end for

10: /*find the first lock request in the reserveLock queue */

11: if rL = reserveLockQueue.find(update.data.regID) != NULL then

12: lockStatus[update.data.regID] = RESERVED;

13: reserveLock[rL.unitID].ack = high;

14: reserveLockQueue.delete(rL);

15: for all gR = grantReadQueue.getNext() do

16: if gR.tag == rL.index then

17: gR.tag = 0;

18: end if

19: end for

20: end if

21: end if

22: /*complete the update handshake */

23: if update.req == low then

24: update.ack = low;

25: end if
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Algorithm 16 Register bank arbiter: reserveLock procedure.
1: /*for each of the units */

2: for all unitID do

3: /*if reserveLock request is received */

4: if reserveLock[unitID].req == high then

5: if lockStatus[reserveLock[unitID].data.regID] == NOT RESERVED then

6: lockStatus[reserveLock.data.regID] = RESERVED;

7: reserveLock.ack = high;

8: end if

9: else

10: reserveLockQueue.add(reserveLock.data, reserveLockQueue.index++);

11: end if

12: /*complete the reserveLock handshake */

13: if reserveLock[unitID].req == low then

14: reserveLock[unitID].ack = low;

15: end if

16: end for

Algorithm 17 Register bank: write procedure.
1: /*if regWrite is received */

2: if regWrite.req == high then

3: /*write the value and unlock the register */

4: registers[regWrite.data.regID] = regWrite.data.regValue;

5: locked[regWrite.data.regID] = false;

6: regWrite.ack = high;

7: end if

8: /*complete the regWrite handshake */

9: if regWrite.req == low then

10: regWrite.ack = low;

11: end if
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Algorithm 18 Register bank: read procedure.
1: /*for each of the read ports */

2: for all read port do

3: /*if regRead is received and the register is not locked */

4: if regRead[read port].req == high &

locked[regRead[read port].data.regID] == false then

5: /*send the read response and increment number of reads for the register */

6: readResponse.data.regID == regRead[read port].data.regID;

7: readResponse[read port].data.regValue = registers[regID];

8: reads[regRead[read port].data.regID]++;

9: readResponse[read port].req = high;

10: regRead[read port].ack = high;

11: end if

12: /*complete the regRead handshake */

13: if regRead[read port].req == low then

14: regRead[read port].ack = low;

15: end if

16: /*complete the readResponse handshake */

17: if readResponse[read port].ack == high then

18: regRead[read port].req = low;

19: end if

20: end for
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Algorithm 19 Register bank: lock procedure.
1: /*if regLock is received */

2: if regLock.req == high then

3: /*if the register in not locked and all the reads are performed */

4: if locked[regLock.data.regID] == false &

reads[regLock.data.regID] == regLock.data.reads then

5: /*lock the register and send the update to RBA*/

6: locked[regLock.data.regID] = true;

7: update.data.regID = regLoc.data.regID;

8: update.data.req = high;

9: regLock.ack = high;

10: end if

11: end if

12: /*complete the regLock handshake */

13: if regLock.req == low then

14: regLock.ack = low;

15: end if

5.5.5 Evaluation and write-back

Upon the completion of the operand fetch-and-lock stage, the CU transfers the control

of instruction execution over to the FU (when the FU is free and ready). The CU can

now complete the issue handshake with the IU and label itself as free and ready for the

next instruction. Note that operand fetch-and-lock in the CU and the evaluation stage

in the FU can belong to different instructions, although CU and FU are considered an

atomic functional unit. This means that the maximal throughput of the architecture is

twice the number of functional units.

The instruction evaluation stage (performed in the FU) consists of the following

tasks:

• Evaluate the instruction;

• Write the result to the RB;

• Write the result to the forwarding table in the CU.

Functional units are effectively isolated from the network and communicate only

with the CU and the RB. The communication with the CU consists of obtaining the

instruction and operands, and sending the result back to the CU. In a similar manner to
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the communication between the CU and the IU, the complete communication between

the FU and the CU is performed in a single handshake. The low acknowledge signal

means that the FU has evaluated the instruction and is now free and ready for the next

instruction. The write-back handshake with the RB is initiated in parallel with the

handshake that writes the result into the forwarding table in the CU (Figure 5.11).

Figure 5.11: Instruction evaluation and write-back.

The FUs are divided into four types:

1. Arithmetic Units (AU)

2. Logic Units (LU)

3. Multipliers (MULT)

4. Memory Units (MU)

The number of each of these four types can vary and can be adjusted to match the

specific needs of a particular code that is run on the architecture. Applications in which

arithmetic operations are dominant can achieve better performance if the architecture is

configured with a number of arithmetic units. In the case of cryptographic applications,

arithmetic and logic operations are predominant and, therefore, multiple arithmetic and

logic units would lead to improvement in both performance and security, as instructions

execute in parallel, contributing towards the non-deterministic order of their execution.

5.5.5.1 Instruction set

The instruction set implemented in the architecture is a subset of the MIPS instruction

set, and is divided into five groups, which are summarised below (a complete list of all

the instructions is given in Appendix B).

Group 1: Arithmetic instructions with zero, one or two source operands that are exe-

cuted in arithmetic units (AUs) and include additions and subtractions.
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Group 2: Logic instructions with one or two source operands that are executed in

logic units (LUs) and include bitwise operations, bit shifting, and logic opera-

tions such as ORs, ANDs and XORs.

Group 3: Multiplier instructions with one or two source operands that are executed

in multiplier units (MULTs) and include multiplication, division and modulo

operation.

Group 4: Memory instructions with one or two source operands that are executed in

memory units (MUs) and include load from and store to the memory operations.

Group 5: Branch and jump instructions with zero, one or two source operands that

are executed in a specialised module in the FBU and include jump instructions,

conditional and unconditional branches, call and return instructions.

5.5.5.2 Control transfer operations

In order to ensure fast instruction issue rate and prevent the issue stage from being

starved of instructions, control transfer instructions are implemented in the specialised

module in the FBU. This module is capable of executing jump, call, return, and both

conditional and unconditional branches, and directly updates the value of the PC regis-

ter (pcReg), and the link register (linkReg) that is used for storing the PC value in the

call instructions. The operands values (for the control transfer instructions with source

operands) are obtained from the RB through the RBA arbitration. The resulting pcReg

and the linkReg values are both maintained locally in the unit and in the RB.

The jump instruction updates the pcReg with the address specified by its operand,

and the FBU then resumes the instruction fetch from the new PC. A call instruction

causes the pcReg to be updated in the same way as jump instructions, with the differ-

ence that the value of pcReg is saved in the linkReg, before its value is updated. A

return instruction simply restores the pcReg value from the linkReg. Finally, branch

instructions modify the PC depending on the result of the register comparison. Once

the result of the comparison is committed, the FBU issues the next instruction deter-

mined by the new PC value.

5.5.5.3 Memory operations

Memory operations can restrict the available parallelism as they introduce implicit

data-dependencies through memory locations, i.e., a data dependency exists when two
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memory instructions refer to the same location. Therefore, if the store is ahead of a load

in the program order, the load cannot access the memory ahead of a store when they

both refer to the same memory address. Similarly, a store cannot access the memory

before a load when they refer to the same memory address, if the load is ahead in the

program order. Again, two stores cannot access the memory out of program order, if

they are referring to the same memory address.

The process of determining if two instructions access the same memory location is

called memory disambiguation. Memory disambiguation can be implemented either at

run-time, the dynamic memory disambiguation; or at compile-time, the static memory

disambiguation. The requirement for memory disambiguation is seen in architectures

in which instructions are either issued or executed out of program order, i.e., instruc-

tions can overtake while executing.

Dynamic memory disambiguation schemes keep track of the memory instructions

in the order in which they are decoded. When a memory instruction is to be issued,

its address must be compared to the addresses of all previously-decoded memory op-

erations, to check whether the address has been referenced. If such an entry exists,

the order of execution of the corresponding instructions has to be preserved. The dis-

advantage of this approach is that the hardware can become slow and complex as the

number of entries grows (e.g. [118]). Static memory disambiguation on the other hand,

has the flexibility of affording more aggressive algorithms to disambiguate the mem-

ory references, but the problem with this approach is that it is not always possible to

statically disambiguate memory references [118].

Maintaining data-coherence for memory access in the network-based asynchronous

architecture with multiple memory units is similar to maintaining register file data-

coherence. An obvious way to avoid memory disambiguation is to consider only one

memory unit. Since the instructions are issued in-order, this would ensure that loads

and stores access memory in program order. Multiple memory units, executing in an

independent manner make the situation of loads overtaking the stores and vice-versa

possible. Such situations are hazardous when loads and stores refer to the same mem-

ory location. If a store overtakes a load, it means that there is a true dependency

(RAW), whereas if a load overtakes a store, it represents an anti-dependency (WAR).

If two stores refer to the same memory address, it means that there is an output de-

pendency (WAW). Figure 5.12 provides an example of potential dependencies and the

memory data-hazards that can occur if the instructions with these dependencies are not

executed in program order.
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Figure 5.12: An example of memory data-hazards.

Preserving the data-coherence of the memory file in the presence of multiple mem-

ory units requires additional arbitration. The mechanism implemented for this purpose

is called the Memory Arbiter (MA). With the MA in place the memory instruction dat-

apath has an additional stage during which the memory operation is granted. One idea

to implement this additional stage would be similar to that of the RBA. This implemen-

tation would allow memory instructions to access memory out-of-order except when

the same memory location is to be accessed. Data-dependencies between instructions

that access the register file can be detected by simply comparing register identifiers.

For instructions that access memory this kind of comparison can be made only after

each instruction has calculated its memory address.

The frequency at which the same memory location is accessed should in practice

be small as such communication usually takes place through the register file [105].

Therefore, the simplest and the most economic way to implement the memory arbiter

was to enforce in-order memory access. This allows memory instructions to execute in

parallel with other instructions, but access memory in the order of their issue. The rest

of their execution, e.g., write-back stage in the case of loads, can progress out-of-order.

The MA is implemented as a reorder buffer providing in-order of issue memory

access. Each memory instruction is tagged with the small counter which loops around

when it reaches the number of memory units. The MA keeps its own record of the

instruction tag that has accessed the memory last and it will allow only the next incre-

ment to proceed. The process of granting a memory operation, shown in Figure 5.13,

can be summarised as the following three steps:

Step 1 – Obtain permission to execute the memory operation. The CU initiates a mem-

ory access handshake with the MA.

Step 2 – MA grants the operation. If the memory tag of the instruction in question is

equal to the instruction tag of the next memory instruction that is to be granted,
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then the memory access is granted. Otherwise, the request will wait for its turn.

Step 3 – Transfer of control to the FU. After the memory operation is granted, the

control is transfered to the FU that evaluates the memory address2 and accesses

the memory.

Figure 5.13: Memory access arbitration.

5.6 Data-forwarding

Data-forwarding is a commonly used technique in pipelined architectures for minimis-

ing the cost of functional unit stalls due to data-dependencies. It works by redirecting

the result of an instruction to be written in the register file to the following instruction

in the pipeline. In addition, data-forwarding may be preferable to obtaining operands

from the register file from the power consumption perspective even when performance

is unaffected [105]. Data-forwarding results in a reduction in register file traffic, which

reduces the total number of requests at read ports and thereby leads to a decrease in

their access times. The extent of forwarding may be increased by providing more for-

warding registers in the forwarding tables in each CU, and increasing the size of the

dependency table in the IU, thus allowing a higher number of results to be forwarded.

Data-forwarding is initiated by a request from the issue unit to the producer unit.

This request contains the register identifier, regID, and the consumer unit identifier,

unitID. Each unit maintains a small table, called the forwarding table, that contains

pending and already generated register values that can be forwarded on request. En-

tries in the forwarding table are tuples of the form: 〈regID, regValue, valid〉, which

specify the register, its value and the validity of its value. When the instruction is re-

ceived its destination regID is added to the table while the value and the validity bit are

2The memory unit contains an internal adder for calculating the effective memory addresses.
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left unset. These are set after the result is calculated and received from the FU. When

the unit receives the request for forwarding, it queries the forwarding table to find the

value of the register. Non-valid entries correspond to the results that are pending. If

the value is not valid, then this signal will wait for the value to become valid in order

to forward it. When the result is received from the FU, the forwarding table is updated

with a (valid) value for the result register. During this process care is taken to ensure

that there is only one entry per register in the table. The forwarding signals for the

awaiting forwarding request are next generated. If the same unit is both the producer

and the consumer in a particular compound, then the forwarding signal is not generated

but the operand value is directly updated.

The data-forwarding signal contains the following information:

1. The destination unit identifier, unitID, which is used to recognise that the des-

tination is reached.

2. The register identifier, regID, which determines which of the operand values is

forwarded, as both instruction operands can be obtained through data-forwarding.

3. The register value regValue.

4. The ticket, which specifies the routing path through the network, and is gener-

ated according to network topology (as discussed in the following section).

5.6.1 The network topology

The network in network-based architecture can have any topology. The ones consid-

ered in this work are binary hypercube and binary de Bruijn graph, both belonging to

the group of so-called graphs on alphabets [58, 81], widely used in multi-computer

interconnection networks. Hypercubes are sometimes categorised as a separate class,

hypercube graphs, because of their importance. Such a choice was made because these

topologies contain a large number of vertices while having a small diameter, and sup-

port oblivious routing algorithms. Efficient routing protocols in these graph topologies

have the following desirable properties:

1. It is not necessary to explicitly store the topology of the network in every vertex.

2. The shortest path routing can be performed.

3. Randomised routing algorithms can be efficiently implemented.
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A very common routing strategy is the dimension-order routing in which a packet is

routed along dimension 0 until it reaches its correct position, then along dimension

1, and so on. In the design of efficient routing algorithms, randomisation plays an

important role. A major theoretical breakthrough was the probabilistic permutation

routing on the binary hypercube proposed by Valiant and Brebner [130]. The two

phase algorithm consists of a randomised (Phase 1) and a deterministic routing (Phase

2). In Phase 1, the packet is routed to an independent, randomly selected node in

the network. The role of this phase is to decrease the difference between average

and worst-case performance. In Phase 2, the packet follows the shortest path to its

destination.

5.6.1.1 Hypercubes

Binary hypercubes [58, 81] represent an important class of graphs whose diameter

grows slowly with the number of vertices. The binary hypercube graphs are defined on

the basis of binary alphabets as described next.

Definition 5.6.1. Let n be a positive integer. A binary hypercube, denoted by H(n),

is a graph consisting of 2n vertices labelled with n-bit integers from 0 to 2n− 1. Let

(xn−1,xn−2, . . . ,x0) be the label of vertex x from H(n). Vertex x is adjacent to vertices:

(xn−1,xn−2, . . . ,xi+1, x̄i,xi−1, . . . ,x0),∀ 0≤ i≤ n−1,

where x̄ = 0, if x = 1, and x̄ = 1, if x = 0.

This defines a hypercube with the number of nodes equal to a power of two. For the

purposes of this architectural design it was more convenient to define a hypercube

with any number of nodes. Therefore, Definition 5.6.1 was modified to meet this

requirement.

Definition 5.6.2. Let N be a positive integer. A partial binary hypercube, denoted

by PH(N), is a graph consisting of N vertices, labelled with n-bit integers from 0 to

N− 1, where n is a positive integer such that 2n−1 ≤ N ≤ 2n. Let (xn−1,xn−2, . . . ,x0)

be the label of vertex x from PH(N). Vertex x is adjacent to vertices:

x′ = (xn−1,xn−2, . . . ,xi+1, x̄i,xi−1, . . . ,x0), i f x′ ≤ N,

and

x′′ = (0,xn−2, . . . ,xi+1, x̄i,xi−1, . . . ,x0), s.t. x′′ 6= x and x′′ 6= x′, otherwise,

for all 0≤ i≤ n−1.
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The partial hypercube PH(6), shown in Figure 5.14(b), has six vertices labelled

with three-bit integers from 0 = (000)2 to 5 = (101)2. The vertex labelled (100)2, in

H(3) connects to vertices (101)2, (110)2 and (000)2. However, vertex (110)2 is not

in PH(6) as (110)2 > 5, thus (100)2 connects to (010)2, i.e., node (010)2 acts as both

itself and node (110)2. This definition renders H(3) and PH(6) equivalent from the

point of view of connectivity and routing.

(a) H(3) (b) PH(6)

Figure 5.14: Binary hypercube H(3) and partial binary hypercube PH(6).

Most hypercube routing algorithms are oblivious. A deterministic oblivious routing

algorithm is one in which the path taken by a packet through the network is a function

of its origin and destination. A randomised oblivious algorithm is one in which each

packet independently chooses a path according to a probability distribution which is a

function of its origin and destination.

Deterministic source oblivious routing in a hypercube requires only the knowledge

of the source and the destination vertices. Current address and the destination address

are compared and if they match, the destination is reached. Otherwise the message

is sent along its first dimension where a mismatch occurred. This algorithm is called

greedy routing algorithm and it sends packets from source to destination along the

shortest path.

5.6.1.2 De Bruijn graphs

Both directed and undirected De Bruijn graphs [85, 24, 25, 81] have received consid-

erable attention as a graph topology for interconnection networks. They represent an

important family of graphs with small diameter and high number of vertices.
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Definition 5.6.3. Let d ≥ 1 and n ≥ 2 be two integers, and A an alphabet of size d.

A directed de Bruijn graph, denoted by DB(d,n), is a graph consisting of dn vertices

labelled with words of length n from alphabet A, where n represents the diameter and

d represents the degree of the graph. Let (xn−1,xn−2, . . . ,x0) be the label of vertex x

from DB(d,n). Vertex x is adjacent to vertices

(xn−2,xn−3, . . . ,x0,α),∀α ∈ A.

Definition 5.6.4. An undirected de Bruijn graph, denoted by UB(d,n), is a graph

consisting of dn vertices labelled with words of length n from the alphabet A. Let

(xn−1,xn−2, . . . ,x0) be the label of vertex x from UB(d,n). Vertex x is adjacent to

vertices

(α,xn−1,xn−2, . . . ,x1)

and (xn−2,xn−3, . . . ,x0,β), α,β ∈ A.

This definition can be generalised to any number of vertices. The vertices of these

graphs can be numbered with integers modulo N, where N is the number of vertices in

the graph. An edge is drawn from vertex x to vertex y if y≡ dx+α (mod N), where

0≤ α≤ d−1.

Definition 5.6.5. Let N ≥ 2 be an integer. A directed binary de Bruijn graph, denoted

by DB(N), is a graph consisting of N vertices labelled with integers modulo N. Vertex

x from DB(N) is adjacent to vertices:

x′ = 2x + α (mod N), α ∈ {0,1}.

A directed binary de Bruijn graph with 8 vertices is shown in Figure 5.15.

Figure 5.15: Directed binary de Bruijn graph DB(8).

The easiest routing in the network would be one which is source oblivious, i.e.,

at each point of time the next edge to be taken depends only on current vertex and
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the destination vertex, but not on the origin. Another routing technique that can be

applied in de Bruijn graphs is the so-called greedy routing. Greedy routing corre-

sponds to correcting dimensions from left to right, but it does not produce shortest

path routes. Valiant-Brebner’s [130] routing to random destinations can also be applied

on de Bruijn graphs. Aleliunas [16] extended this probabilistic algorithm to dynamic

routing on de Bruijn network.

5.6.2 Data-forwarding and randomised routing

For both the hypercube and the de Bruijn graph topologies the Valiant-Brebner [130]

routing strategy is employed. This type of routing consists of two phases: the ran-

domisation phase (Phase 1) and the deterministic routing phase (Phase 2). In Phase 1,

the packet is sent to an independent, randomly-selected node. In Phase 2, the packet

follows the deterministic path to the destination. In the case of a hypercube this path

is the shortest one and in the case of the de Bruijn graph the path is specified by

the greedy routing strategy. Each data-forwarding signal contains the destination unit

identifier, unitID, the register identifier, regID, the register value, regValue and the

ticket. The routing in both phases of the algorithm is predetermined by the ticket,

which specifies the order in which the dimensions of the hypercube are traversed, or

the destination node address used for greedy routing in the de Bruijn network. The dif-

ference is that the ticket for Phase 1 is randomly generated, while the ticket for Phase 2

is generated according to the destination node. The producer unit generates the ticket

for the routing in the Phase 1. Once the forwarded data reaches the randomly-chosen

node, a new ticket, that specifies the path to the destination (Phase 2 routing) is gener-

ated. There is a slight difference in the generation and interpretation of the ticket, and

the way in which the deterministic phase is performed for the two graph topologies

and will, therefore, be presented separately.

The initial stage of each of the phases of the routing procedure consists of ticket

initialisation. The ticket is initialised to contain information about the path that is taken

in that particular phase.

5.6.2.1 Randomised routing in binary hypercubes

In the case of a hypercube the ticket specifies the sequence in which the dimensions

of the graph are traversed. In Phase 1 the ticket is initialised to represent the path

to the random node. The initialisation procedure for ticket T is as follows [130]:



5.6. Data-forwarding 155

for i = 0 to size(T) do

T[i] = (rand() % 2 == 0) ? 0 : i+1;

pack(T);

end for

In Phase 2 the ticket is initialised to represent the shortest path to the destination node.

This initialisation procedure for ticket T is as follows:

for i = 0 to size(T) do

T[i] = ((cur node & (1 << i)) == (dest & (1 << i))) ? 0 : i+1;

pack(T);

end for

The initialisation part of both phases can be divided into two subroutines: (1) gen-

eration of the ticket according to the destination node for that phase (in the Phase 1 this

is a random node and in the Phase 2 the destination node); (2) packing of the ticket:

given the ticket T [0 . . .n−1] with r non-zero elements, non-zero elements are assigned

to T [0], . . . ,T [r−1], and zero elements are assigned to T [r], . . . ,T [n−1]. This facili-

tates the routing completion detection, since once all the non-zero dimensions of the

ticket are traversed the ticket expires, i.e., the destination is reached and the routing

stops. If the destination is reached before the ticket expires, then the routing stops

regardlessly.

5.6.2.2 Randomised routing in de Bruijn graphs

In the case of a de Bruijn graph, the ticket specifies the destination node, as the greedy

routing of correcting the dimensions from left to right is used. Given that the alphabet

used to represent a de Bruijn graph is binary, the Phase 1 ticket T initialisation is as

follows:

for i = 0 to size(T) do

T[i] = rand()%2;

de loop(T, current node);

pack db(T);

end for

The following subroutines in the ticket initialisation can be distinguished: (1) gen-

eration of the ticket according to the target node (randomly selected one in Phase 1,

and the destination node in Phase 2); (2) de-looping; and (3) packing of the ticket.
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Since the greedy (dimension correcting) routing strategy is used here, it is possible

for two consecutive nodes on the route to represent the same node. De-looping is per-

formed in order to remove such redundancy in the path, as shown below:

for i=0 to size(T) do

new node = current node << T[i];

if new node == current node then

T[i] = -1;

end if

current node = new node;

end for

Packing the ticket T is slightly different when compared to hypercube packing: given

the ticket T [0 . . .n−1], the r non-negative elements are assigned to T [0], . . . ,T [r−1],

and the negative elements to T [r], . . . ,T [n−1]. The packing of the ticket facilitates the

routing completion detection, since once all the non-negative elements of the ticket are

traversed the ticket expires, the random destination is reached and the routing stops.

5.6.2.3 Routing process

CUs are responsible for most of the communication in the network. A large portion of

this communication is data-forwarding, i.e., routing of register values in the network.

In accordance with the topology, each CU has a number of inports and outports through

which it communicates with other (neighbouring) CUs, as shown in Figure 5.16. Each

data-forwarding request received on the inports is queued in the forwarding queue. The

information that is received in this process contains: (1) the destination unit identifier

(unitID), (2) the register identifier (regID), (3) the register value (regValue) and (4)

the ticket. The ticket specifies the way in which the dimensions of the graph are

traversed, i.e., the routing path. Besides the path, the ticket contains a counter that

specifies which portion of that path is traversed up to that point. With this information

each node on the path can easily calculate the next node to send the information to.

The producer unit performs the initialisation of the ticket for Phase 1, at the end of

which, the packet is at the randomly-chosen node that performs the initialisation of

the ticket for Phase 2. Upon the arrival of a message at a node, there are two possible

actions that can be taken: (1) if the message is destined for that node itself, then the

routing stops and the node updates the status of the corresponding source operand; (2)

otherwise, the next node to send the message to is calculated, the ticket is updated and

the data is forwarded. The rate at which packets progress on their route depends on the
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load on the outports of nodes along the path, with data being forwarded from one node

to another as soon as the connecting port is available.

Figure 5.16: Data-forwarding communication in a hypercube network configuration.

5.6.3 Data-forwarding and secret-sharing

The approach of data-forwarding and randomised routing was adopted in order to hide

compromising information in the power traces. However, when forwarded, critical

register values actually influence the overall data-dependent power consumption. In

order to remove the direct contribution of data-forwarding to data-dependent power-

consumption, data-forwarding is modified to forward data in the form of data-shares.

The general technique is as follows: for each register value d, k− 1 random values,

r1, r2,. . . , rk−1, are generated and the k shares, d⊕ r1⊕ r2⊕·· ·⊕ rk−1, r1, r2, . . . , rk−1,

are forwarded. This differs from the idea of secret-sharing as given in [36], which

involves splitting every relevant bit into several shares and performing operations on

shares. This approach has been criticised as being impractical due to performance and

architectural overheads [103, 104]. In the network-based architecture, the architectural

overhead is minimal as only the number of packets that are routed is increased, which

contributes towards additional noise.
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5.6.4 On-chip random number generator

The network-based asynchronous architecture is designed for cryptographic devices,

such as smart-cards. It assumes the existence of a on-chip source of randomness used

for randomising data-forwarding routines. In most designs the source of “random”

numbers is provided by a pseudorandom number generator (PRNG). PRNGs use de-

terministic processes that output a series of numbers generated using an initial seed

state. Since the output is purely a function of the seed data, an attacker who can guess

the seed can predict the entire PRNG output. It is crucial, therefore, that the PRNG is

seeded by a true random source. A true random number generator (TRNG) produces

random numbers using an unpredictable source. Most TRNGs measure unpredictable

natural processes, such as thermal noise, atmospheric noise or nuclear decay, and use

them as a seed source.

Systems that do not have a hardware RNG, usually seed their RNGs using periph-

erals, such as mouse and keyboard. The most common techniques involve timing user

processes. However, these methods are often awkward and slow. On the other hand,

systems that implement hardware TRNGs tend to be slow, difficult to implement, re-

quire user involvement and often provide unknown amounts of true entropy [71]. It is

generally believed that “good random-number generators are hard to design because

their security often depends on the particulars of the hardware and software” [121].

An example of a “good random number generator” [71] is the Intel Random Num-

ber Generator, which samples thermal white-noise resulting from random electron and

material behaviour.

For smart-cards user-interface peripherals are not available for obtaining a random

source, so it is often unclear how smart-card RNGs can obtain true random seeds. Ex-

isting PRNG for smart-cards (e.g. Schlumberger’s CryptoFlex card) are considered

poor and not to be trusted for key generation. Some designs use a reasonable amount

of entropy for seeding, which is available through the card interface. However, se-

cure RNGs for smart-cards are either non-existent or the vendors do not publish their

designs.

In the case of the network-based architecture an on-chip source of randomness

(e.g. a PRNG) that is not seeded properly would result in every generated sequence

of (pseudo)random numbers, used in randomised routing, being the same for each run

of the code. This would result in no variation in execution timings, except for those

that are side-effects of asynchronous execution. Therefore, it is critical that the PRNG
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is properly seeded from a truly random source. Most criticism that PRNG’s receive is

connected to the reliability and randomness of secret key generation. There is no need

for on-chip key generation in the case of the network-based processor. The source

of randomness is only required for generating random trials during randomised data-

forwarding. These sequences are not reused, as in cases where keys are generated, so

the security issues of an on-chip PRNG are not as crucial. If the PRNG is implemented

using a TRNG for seeding, this would ensure that cryptographic devices using the

network-based design have randomised execution.

As stated earlier, the aim of this thesis is to evaluate the validity of network-based

architecture for introducing non-determinism in the execution. The point is not to give

a detailed specification of every building block of the architecture. The question of

providing true sources of randomness in smart-cards is outside the scope of this work.

5.7 An example

This section provides a step-by-step description of how compounded instructions are

executed in the network-based architecture. The program fragment is used to illustrate

the issue, operand fetch-and-lock and execution stages, and also the forwarding of

results between instructions. The output shown in Figure 5.17 is extracted from the

simulation of the AES encryption algorithm on the network configuration with four

units and the hypercube topology.

Figure 5.17 shows executed instructions in program order, the units that the in-

structions were issued to, the compounding bits and the producer units for each of the

operands. The sample instruction sequence consists of an addition (addi) executed in

the arithmetic unit (AU); a load operation (lb) executed in the memory unit (MU), and

a left bit shift (sll) executed in the logic unit (LU). Each unit is assigned an unitID.

The network configuration has four units connected as a hypercube H(2), as shown

in Figure 5.18. The fourth unit, the multiplier (MULT), is not shown in Figure 5.17,

as the execution output is restricted only to operations that concern the three given

instructions. Each of the rows represent operations that are taking place concurrently

in the functional units. The height of the row and the duration of time the specified

operations take are not related, but the rows correspond to the virtual time units in the

architectural simulator (see Section 6.2.1) in which the simulated time is discrete.

Prior to the issue of the first instruction the CUs of the AU, LU and MU are all free

and ready to accept the next instruction. Therefore, the IU is able to issue the instruc-
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Figure 5.17: A sample execution of compounded instructions.
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Figure 5.18: Hypercube H(2) organisation of functional units.

tions one after the other, in-order, although there are dependencies between instruc-

tions. The operations connected to execution of each of the instructions are coloured

in order to make execution of each instruction easier to follow.

At the issue of an instruction the forwarding signals to the producers are initiated

and the information about the resulting register and the unit the instruction is issued to

are added to the dependency table. Now, each CU will send the reserveLock requests

to the RBA, which grants it if the lockStatus of the register is NOT RESERVED (abbre-

viated to NR in Figure 5.17). For example, the AU requests for the lock to be reserved

for register 2 (specified in Figure 5.17 with resLock〈r=2〉). Since the lockStatus

of this register in the RBA is NOT RESERVED, the lock is reserved and the status of the

register becomes RESERVED (abbreviated to R in Figure 5.17). In the next event the AU

receives the forward initialisation for register 20. This register value should be for-

warded to unit with unitID = 0, which is the AU. This means (not shown in the figure)

that the value of register 20 is most recently generated in the AU. The operand value is

therefore available from the same unit, so both operand fetch and data-forwarding are

avoided. Next, the register lock request for register 2 is sent to the RB (regLock〈r=2〉).
Once the register is locked in the RB, the CU can transfer control to the FU which eval-

uates the instruction. At the same time, the RB sends the update signal to the RBA

to update the lockStatus for register 2. After the instruction is evaluated, the AU

responds to the forwarding request previously received, to forward the value of the

register 2 to the MU. The routing procedure specified for Phase 1 (see Section 5.6.2.1)

generates the path AU→LU→MU (00→01→11). Since the Phase 1 terminates at the

destination node, the routing is completed and the MU can update its operand. Both

phases of the routing procedure can be seen when routing value of register 20 from MU

to LU. Phase 1 routing (routing to a random node) follows the path MU→MULT→AU

(11→10→00), whereas Phase 2 routing (shortest path to the destination) specifies the

path AU→LU (00→01).
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Figure 5.17 does not show the execution of subsequent instructions. The availabil-

ity of the CU of a particular unit, enables the IU to issue the next instruction of the

same type to that unit. The points at which the CUs become available are noted in the

figure to hint at further operation of the architecture.

5.8 Features

The architecture model described in this chapter offers a number of interesting features.

The network-based asynchronous model is a scalar architecture that features a fast in-

order single issue unit, a network of functional units capable of executing concurrently

and specialised for forwarding results between the units, and an out-of-order write-

back stage. Having a fast single issue unit models a processor capable of issuing more

than one instruction at a time without the additional hardware cost of super-scalar

designs (e.g. [118]). This architectural model aims at exploiting fine-grain instruction

level parallelism of both instructions with and without data-dependencies in order to

achieve non-deterministic execution.

In VLIW and super-scalar architectures a fast issue rate is achieved through the

availability of streams of independent instructions, and by issuing multiple indepen-

dent instructions. The code for VLIW architectures is prior to issue analysed and

scheduled by a compiler, which enables these architectures to issue more than one

instruction at a time. As a consequence, the control unit of a VLIW architecture is

largely simplified. The super-scalar architectures, in contrast, require significant hard-

ware control for dynamic scheduling, when the compiler is unable to provide inde-

pendent instructions. The network-based architecture (similarly to VLIW architec-

tures) does not perform dynamic scheduling, and (similarly to super-scalar architec-

tures) prevents hazard at run-time. Instructions are issued at a rapid rate, regardless of

the data-dependencies, but at the expense of hardware necessary to perform dynamic

instruction compounding during the issue stage. The dependencies between instruc-

tions are recognised and used to forward register values between them, which has a

number of beneficial effects. The data-forwarding facilitates some of the problems

that are introduced by data-dependencies, such as RAW hazards caused by true data-

dependencies. Data-forwarding also reduces the register bank response times which

has a positive effect on the performance. Further, the randomised data-forwarding pro-

tocol introduces interleavings in the execution, which means that the order in which

instructions are executed is non-deterministic and is different for each execution of the
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algorithm. This in turn leads to decorrelation of power consumption profiles. Con-

sidering that the architecture is organised as a network in order to enable randomised

routing of register values, this is the key feature of this design.

The instruction compounds are formed at run-time and consist of a number of in-

structions from the same or different execution blocks. This allows the issue unit to

initiate forwarding operations in the producer units and avoid complicated synchroni-

sation and control mechanisms for data-forwarding seen elsewhere. The instructions

are issued in-order and as soon as there are available units, while the availability of

operands is not an issue. This is largely due to the operand fetch-and-lock stages being

moved to the CUs.

The distributed organisation of control, characterised primarily by the distribution

of the control over the fetch-and-lock stage among the communication units, and with

the novel approach to data-forwarding, enables instructions, both with and without

data-dependencies, to operate in parallel. Although the extent of parallel execution

of instructions with data-dependencies is subject to the availability of results, mutual

exclusion is not enforced. More importantly, the issue stage is not stalled due to these

instructions.

The drawback of the traditional implementation of data-forwarding, despite the fact

that it can reduce an instruction’s execution time, is that it requires that the operand

fetch stage is synchronised with the write-back stage. This synchronisation inevitably

slows down the faster stage, i.e., the fetch stage, when two dependent instructions are

fetched and issued one after the other. If the instructions are not scheduled one after

the other, or there is more then one instruction waiting for the result of the first instruc-

tion, then the write-back stage of the first instruction could be held up unnecessarily.

In the network-based asynchronous architecture data-forwarding, operand fetch stage

and the write-back are not synchronised, as explained in Section 5.5.4. In fact, the

consumer will not issue the operand-fetch for the register that is obtained through data-

forwarding and the write-back stage is completely uncorrelated to the data-forwarding,

as the latter is realised through communication of units. Although, the dependencies

between consecutive instructions do mean that the consumer would wait for the re-

sult to be ready and forwarded, this is still faster than writing to the register bank and

reading the result from it.

Out-of-order write-back schemes avoid the need to reorder write-back events when

results are ready to be committed. Reordering these events to maintain in-order write-

back introduces synchronisations, which reduce the benefits of asynchronous (average-
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case) execution. In addition, synchronisations are not desired in the architecture that

aims at exploiting non-deterministic execution. In particular, out-of-order write-back is

beneficial from the point of power analysis as write-back operations are often targeted

in the attacks. The use of both out-of-order execution and out-of-order write-back

helps to desynchronise the fragile points in the power traces.

In the network-based asynchronous architecture the fast issue rate, concurrent ex-

ecution of instructions and randomised data-forwarding are fundamental for achieving

non-deterministic execution. Direct synchronisation of different operations along the

datapath is not required, as the communication is purely data-driven. In comparison to

the MAP architecture [116] which also perceives the processor as a network of func-

tional units, the control in this architectural design is further distributed. Instructions

are issued at the faster rate and data-forwarding is implemented without synchronisa-

tion overheads. These novelties in the design introduce performance improvements

and further exploit non-deterministic execution, that is beneficial for preventing side-

channel attacks.

Power consumption is an important factor when designing computing systems. In

simple hardware systems, such as smart-cards, the power consumption is important be-

cause the power supply of these systems is usually limited. Current synchronous archi-

tectures extensively use clock-gating (a technique which isolates inactive circuits from

the clock) to save power. Although this technique can improve power consumption,

some of its main drawbacks are complicated circuit design and timing analysis [59].

Furthermore, from the security point of view, clock-gating could compromise the secu-

rity of the device. Namely, electromagnetic analysis is able of pinpointing the regions

of the device that are inactive and use that information in the analysis. Thus, on the

one hand clock-gating is useful technique, yet on the other hand it could compromise

the security of the device.

Asynchronous designs have the ability to reduce power consumption simply by

not having a clock and therefore avoiding the clock-related problems of synchronous

design. The event-driven nature of asynchronous circuits naturally avoids any unnec-

essary circuit activity. An asynchronous system activates only those parts of the circuit

which are required and so does not dissipate power in the rest of the circuit that is not

being used. Similarly to synchronous designs with clock-gating, this characteristic of

asynchronous designs could be a potentially exploited by electromagnetic analysis.

In the design of the network-based architecture the functional units that are not exe-

cuting the instructions could be used in data-forwarding and thus do not appear as inac-
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tive. Due to randomised routing, it is not possible to predetermine which any given unit

will be used by data-forwarding. In addition, due to the nature of execution, the issue

of instructions to functional units changes from one run to the other, as they complete

in different times and became available for new instructions in a non-deterministic or-

der. This is a useful characteristic when considering the electromagnetic analysis and

its ability to extract the locality information.

5.9 Summary

This chapter presented a novel architectural solution for preventing power analysis.

The network-based asynchronous design is an architectural approach for decorrelating

the power consumption measurements from the secret values handled in the device

by exploiting non-deterministic execution. This processor organisation is a network

of functional units that can perform data-forwarding in a randomised fashion and in

which the control and the state are distributed. Data-forwarding is used to both im-

prove performance and achieve non-deterministic instruction execution by introducing

instruction interleavings through the randomised routing of register values in the net-

work. This design features a fast in-order issue unit, a network of functional units

capable of concurrent non-deterministic execution and forwarding of results, and out-

of-order completion and write-back. Its datapath is characterised by instructions that

run as fast as their data requirements are fulfilled, may overtake each other and compete

for resources.

The next chapter presents the evaluation framework and the results of the secu-

rity and performance evaluations. It presents the stochastic event-driven asynchronous

simulation platform geared towards obtaining power and execution performance fig-

ures for the execution of algorithms under different architectural configurations. Fur-

ther, the next chapter presents the security and performance evaluation results and

compares different architectural configurations.





Chapter 6

Evaluation

6.1 Introduction

Chapter 5 presented the design of a network-based asynchronous architecture for ex-

ploiting non-deterministic execution targeted at secure cryptographic devices. The

goal is to render power-based side-channel attacks on the proposed architecture more

difficult, or even infeasible. The aim of this chapter is to provide quantitative mea-

sures in order to evaluate the proposed approach through simulation and to observe the

influence of different architectural configurations.

Section 6.2 presents the simulation platform for investigating the effectiveness of

randomised and non-deterministic execution for thwarting side-channel attacks. The

evaluation framework is parametrised and can be configured to cover a range of ar-

chitectural configurations in which different parameters, including the network topol-

ogy and component delays, can be varied. The architecture was modelled at the

instruction-set level and simulated in a stochastic event-driven simulator built on top of

the AVT simulation platform [120]. It executes assembly-level instructions compiled

from source code using the SUIF compiler [128]. In order to investigate the correla-

tion of the power traces to the source code, the simulator was equipped with power and

execution profiling features.

Next, the security and performance evaluation results of the network-based asyn-

chronous architecture are presented. These are divided into two sections: (1) results

based on performing differential power analysis attacks on power traces obtained from

simulating the execution of AES and DES cryptographic algorithms on different ar-

chitectural configurations (Section 6.3); and (2) results based on measuring the perfor-

mance improvements of the network-based approach (Section 6.4).
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6.2 Evaluation framework

6.2.1 Asynchronous event-driven simulator

The architecture was modelled at the instruction-set level and simulated in a stochas-

tic event-driven simulator developed on top of the AVT simulation environment [120].

It executes assembly-level instructions compiled from the source programs using the

SUIF compiler [128]. The AVT simulator (AVTSIM) is an event-driven sequential sim-

ulator for distributed asynchronous systems [120]. AVTSIM models a distributed sys-

tem consisting of processors connected by a network. Components (functional blocks)

of the architectural datapath are simulated as processors (also called entities) of the

AVT environment. Each entity has a number of inport and outport unidirectional con-

nections to other entities of the architecture. The number and type of these connec-

tions depend on the particular entity and its functionality. For example, the entity that

simulates the issue unit (IU) has N (the number of functional units (FU)) outport con-

nections used to transfer instructions to the communication units (CU), an inport from

the fetch and branch unit (FBU) used to transfer instructions into the instruction buffer

(IB), and another N connections to CUs used to initiate data-forwarding operations (as

shown in Figure 5.2 and Section 5.5.2).

The AVT simulation algorithm views the system under simulation as a collection

of logical processes (LP). The simulation is realised through communication and co-

operation of LPs, each of which simulates a part, in space and time, of the simulation

model. The simulation models in AVTSIM are described in terms of LPs (entities),

inputs and outputs, implemented by the classes Entity, InPort and OutPort, respec-

tively. Entities can have an arbitrary number of inputs and outputs. In the simulator for

the network-based architecture1 inports and outports are simulated using AsyncInPort

and AsyncOutPort classes. These classes are used to simulate the asynchronous com-

munication and asynchronous channels based on bundled data (single-rail) encoding

and the four-phase handshaking protocol (see Section 4.4 for description of encoding

schemes and handshaking protocols). This encoding scheme was chosen because it is

known not to be secure against side-channel analysis [136, 103], and one of the objec-

tives of this research is to investigate to what extent the non-determinism introduced

by the architecture improves resistance to power analysis. The choice of unprotected

implementation is, therefore, appropriate from this perspective. Each inport connec-

1The simulator for the network-based architecture is in the rest of this chapter referred to as the
simulator, and is not to be confused with AVT simulator, AVTSIM.
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tion in the simulator is implemented with the AsyncInPort class that contains class

members:

InPortTrace<Type> data;

InPortTrace<bool> req;

OutPortTrace<bool> ack;

Each outport connection is implemented with the AsyncOutPort class that contains

class members:

OutPortTrace<Type> data;

OutPortTrace<bool> req;

InPortTrace<bool> ack;

where InPortTrace and OutPortTrace are classes inherited from InPort and OutPort

classes, respectively, and are used to intercept and record all the signal value changes

as a part of the execution profiling mechanism.

In the architectural simulator, each functional block is modelled as a separate LP.

The LPs communicate with each other by a mechanism (part of AVTSIM) that is used

to synchronise activities, receive and propagate events. Each LP maintains a local sim-

ulation time clock, which indicates the time-stamp of the most recent event processed,

some local state, and a list of time-stamped events that have not yet been processed.

Entities react when they perceive a change at one or more input ports. An event-

message carrying the same value as before is not considered to be an event. The in-

coming events are processed in time-stamped order. The incoming event may cause

the local state to be updated, and outport events to be generated and propagated. The

time-stamp of the generated outport events must be greater than or equal to the simula-

tion time when the inport event was received and processed. The number of generated

outport events depends on the inport event and the entity’s functionality. For example,

when an instructions is received in the CU, the CU might generate grantRead and

reserveLock requests (see Section 5.5.4.1 for details) at the outports connected to the

register bank arbiter (RBA) or in case of a store instruction, for which the source

operands are forwarded (i.e. in the case of an instruction that does not have a destina-

tion operand and the source operands are not obtained from the register file), it does

not generate any events, but waits for the operand value(s) to be forwarded. The de-

lays on the output ports depend on the events and on the entity, as will be explained in

Section 6.2.2. Message delay, as defined in [120], is the amount of simulated real time

required to send an event-message from one processor to another. In the architectural
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simulator included in the message delay is the figure for the delay of the functional

block that had generated the event. Further details are given in Section 6.2.2.

At the highest level the architectural model is described in a structural form, de-

tailing the interconnections between datapath components. The AVT provides the plat-

form for exchanging messages between entities and time-keeping. The AVTSIM main-

tains the global time and associates a time reference with each event. The simulator

progresses with time and executes those events that have the same time-stamp. The

simulation finishes when the event list in the AVTSIM becomes empty. The simulated

time is measured in so-called virtual time units (VTU) [120], which do not exactly

correspond to real-world time units, but are interpreted for the particular simulation

model. It should be noted that comparisons were made for a common underlying simu-

lation model with different architectural configurations and, thus, a particular meaning

to VTUs was not given in the architectural simulator.

The functionality of the architectural components was modelled at the micro-operation

and register transfer level, providing explicit description of the interaction between

components of the datapath, but the architecture was not modelled at the gate level.

The functionality of an entity is described in method evaluate() which is called each

time at least one value on the inports of the entity changes. During the current call

of evaluate(), the entity can generate none, one or more events on its outports, and

is considered busy until the time-stamp of the last output generated. The handshake

based communication between entities ensures that the handshake that has been started

will have no messages lost, but some events could be lost if (due to the busy state of

the entity) the initial requests of the handshake is not perceived. This is undesirable

characteristic of the AVTSIM especially when simulating a processor architecture. A

solution to this problem in the architectural simulator required restriction on the length

of message delays, providing more balanced message delays. In this way, it is ensured

that the time period during which the entity is considered busy is not longer than the

delays of incoming events. Although this solution is ad-hoc and somewhat reduces the

possibility for exploring the variety of delays, it is considered acceptable in the current

simulation model.
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6.2.2 Parametric model

The description of the architecture is parametrised in order to include different types

of functional units and different connectivities between them. The following can be

configured:

• Network topology

• Network size (i.e. number of functional units)

• Number of shares used in data-forwarding

• Component delays

• Power consumption figures for various components and buses

• Size of the register bank

• Size of the data memory

Although the size of the register bank and the data memory can be specified in the

configuration file, they are not as freely varied as the network topology and size, be-

cause the former depend on the requirements of the compiled programs that are run

on the architecture. However, these parameters are configurable and the architectural

configuration can be easily adjusted to accommodate the requirements of the code that

runs on it.

The instruction set (listed in Appendix B) and the implemented functionality of

each functional unit type are hard-coded. The number of source and destination operands

is set to a maximum number of two, while the second destination operand is used

only in the case of PC-related instructions, in which the first operand is the PC reg-

ister (pcReg) and the second operand is the link register (linkReg) (the purpose of

the linkReg is explained in Section 5.5.5.2). All other instructions have none or one

destination operand.

The completion time of a functional unit in an asynchronous architecture depends

on both static and dynamic factors [118]. The type of the functional unit determines

the static factor, whereas the type of functional unit operation determines a range of

delays, which are used to model dynamic factors such as input data. The overall delay

of the functional unit is, therefore, specified to be a value in a range bounded by a min-

imum and a maximum value, as shown in Figure 6.1. Some of these values are based

on SPICE simulations from a prototype of a micronet datapath [21]. Unfortunately,
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more accurate values were not available for this implementation. In the experimenta-

tion, two delay models were used: one where delays are fixed (non-variable), and one

where the delays were chosen to be a random value from the specified range, as given

in Figure 6.1. The random model attempts to reflect delay values with reasonable vari-

ances, so that operations are not considered to complete in fixed times. To reduce the

number of power readings required to successfully perform the attacks, and still give

an accurate evaluation, power simulations were most extensively run for configurations

with non-variable delays. In addition, this delay model provides the measure of non-

determinism that is due to execution rather than the data. The random delay model is

somewhat optimistic as the actual delays of operations would be data-dependent rather

than random. In addition, when performing the timing analysis evaluation this type of

model would be inadequate. However, this model has not taken a significant part in the

experimentation so its inaccuracy is less crucial. The impact of a true data-dependent

delay model on security of the architecture would be more present in the evaluation

of the security against timing analysis which is not part of this research. From the

standpoint of power analysis, data-dependent delays could be useful in evaluation but

are not crucial, as the strength of the attack is in ability to align operations that deal

with sensitive data. In the delay model with fixed delays this process is even easier.

The separate issue is the vulnerability of asynchronous logic to timing analysis which

is not part of this research.

The delays specified in the Figure 6.1 imply that some operations are more ex-

pensive than others. This configuration presents arithmetic and logic units which are

relatively faster than the memory unit, since a memory operation may include an ad-

dition, and the actual process of loading from, and storing into, memory is relatively

slow [118]. Similarly, multiplications are considered more costly than arithmetic or

logic operations. The fetch and branch unit and the issue unit are considered faster

then any other component in order to model a fast single-issue architecture in which

functional units are kept busy.

All significant operations in the architectural simulator, such as computing results

and sending event-messages, are assigned costs. The assigned cost is given in the form

of a delay and power. When an event is created a delay is assigned to it. This delay

specifies the time after which the AVT scheduler will process the generated event. The

power profiling features are not part of the AVTSIM environment and are implemented

separately. The architecture was implemented to support two power models: Hamming

weight model and the transition count model, which are explained in Section 6.3.1.
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COMPONENT TYPE COMPONENT DELAY

MIN MAX

ARITHMETIC UNIT (AU) 2 4

LOGIC UNIT (LU) 2 4

MULTIPLIER UNIT (MULT) 4 8

MEMORY UNIT (MU) 10 20

REGISTER BANK (RB) 2 4

OTHER (FBU, IU, RBA, MA) 1 2

Figure 6.1: Delay distribution for different architectural components in virtual time units

(VTUs).

The assigned power cost depends on the power model implemented. For example, the

generation of an event in the configuration with the Hamming weight power model,

consists of the following operations:

/*place the data on the bus and consider it available after the delay */

outport->data.presentAfterDelay(data, delay);

/*record the power assigned with this operation*/

power logger->logPowerEvent(Hamming Weight(data)*base power,

start time, start time + delay, entity name, inst tag);

/*trigger the request signal after the delay */

outport->req.triggerAfterDelay(1, delay);

/*record the power associated with this operation*/

power logger->logPowerEvent(base power, start time, start time

+ delay, entity name, inst tag);

The simulator also implements the execution profiling features, and records every

change of the signals on the wires. This allows for all events specific to a particular

instruction to be easily extracted. Each time an event is placed on the output port, the

change on the bus (wire) is recorded in the event logger:

/*record the change on the wire at start time */

event logger->logEvent(start time, entity name, inst tag, colour,

data);
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6.2.3 SUIF compiler

The Stanford University Intermediate Format (SUIF) [128] is a compiler development

framework, which provides the necessary infrastructure for performing a range of com-

piler optimisations, from high-level transformations to dataflow optimisations. The

optimisation transformations can be performed progressively and interchangeably over

multiple passes, each producing the same output format. This enables the passes to be

reordered by running them in a different order. The SUIF toolkit contains a variety

of compiler passes, which can be inserted freely at any point during the compilation.

An ANSI C front end is available to translate source programs into SUIF intermedi-

ate representation, and after passing a number of SUIF passes, the system can directly

produce MIPS code. The assembly-level code run on the architectural simulator is

SUIF-generated MIPS code compiled from C implementations.

6.2.4 Power profiling

To investigate the correlation of the power traces to the source code the simulation was

equipped with power and execution profiling features. Power dissipation in CMOS

circuits largely depends on the switching activity caused by changes in input data [49],

and the power profiling was implemented accordingly. However, the power profiles

represent the worst-case scenario where all the noise produced by the processor has

been removed. Due to the independent data-driven operation of each subcircuit, asyn-

chronous architectures have random timing variations, which make signal averaging

in the differential power analysis problematic. To reduce the number of power read-

ings required to successfully perform the attacks, and still give an accurate evaluation,

power simulations were most extensively run for configurations with non-variable de-

lays. In this way a smaller number of power traces were needed for (in some cases)

successful application of power-based attacks. In addition, non-variable delay con-

figurations provide a measure of the introduced non-determinism. The architectural

simulator is implemented to support both variable and non-variable delays, and the

results of both types of simulations are given in Section 6.3.
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6.3 Security evaluation

The security evaluation process is given in Figure 6.2. This process starts with the

C implementation of the cryptographic algorithm, which is then compiled into MIPS

code that is run on the architecture simulator. The outputs of the architectural simula-

tion are the execution and power profiles that used to generate the power traces used

in power analysis. If successful, the analysis should yield the values of the secret key.

The following section gives further details about the experimental setup.

Figure 6.2: Security evaluation process.
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6.3.1 Experimental setup

The goal of the research presented in this thesis is to investigate the impact to the

security of non-determinism introduced in the execution of the network-based asyn-

chronous architecture. In order to investigate the amount of non-determinism that dif-

ferent architectural configurations yield, differential power analysis attacks were per-

formed on power traces obtained from simulating a number of different configurations

in which the following parameters were varied:

1. Network topology and size: The architecture is implemented to support two net-

work topologies: binary hypercubes and binary de Bruijn networks, as explained

in Section 5.6.1. The definition of binary hypercube is extended to support any

number of nodes, and is termed partial binary hypercube. The vertices of a par-

tial binary hypercube of size N, PH(N), are labelled with n-bit integers from 0

to N− 1, where 2n−1 ≤ N ≤ 2n. A vertex x = (xn−1,xn−2, . . . ,x0) in PH(N) is

adjacent to vertices:

x′ = (xn−1,xn−2, . . . ,xi+1, x̄i,xi−1, . . . ,x0), i f x′ ≤ N,

and

x′′ = (0,xn−2, . . . ,xi+1, x̄i,xi−1, . . . ,x0), s.t. x′′ 6= x and x′′ 6= x′, otherwise,

for 0≤ i≤ n−1.

The vertices of a binary de Bruijn network of size N, DB(N), are labelled with

integers modulo N. An edge is drawn from vertex x to vertex y, if

y≡ 2x+α (mod N), α ∈ {0,1}.

This choice of network topologies was made because: (1) routing in these topolo-

gies is oblivious, i.e., the path taken by a packet through the network is a function

of its origin and destination; (2) randomised routing protocols can be efficiently

implemented in these topologies.

In the experiments the size of the network was varied and the distribution of

different functional units in each of these variations is shown in Figure 6.3.

2. Cryptographic algorithm / side-channel attack: Detailed power simulations of

AES and DES cryptographic algorithms were performed. The power traces ob-

tained from simulating AES were subjected to a variation of the covariance at-

tack [35], that is based on observing the covariance between the plaintext bits



6.3. Security evaluation 177

#FU #AU #LU #MULT #MU

4 1 1 1 1

6 2 2 1 1

7 2 2 1 2

Figure 6.3: Distribution of functional units (FU) among arithmetic (AU), logic (LU), mul-

tiplier (MULT) and memory (MU) units.

and the power values of the initial key addition at every sample point for each

key bit. The power traces obtained from simulating DES were subject to the DPA

attack [78], that is based on observing the differential power trace of the guessed

key bits of the two distributions of power curves specified by the guessed key

bits.

3. Power model: The architecture is implemented to support two power mod-

els [97]:

(a) Hamming weight model, in which the power consumed is proportional to

the number of 1s written onto the bus.

(b) Transition count model, in which the power consumed is proportional to

the number of bits that change on the bus.

These two power models have been observed by Messerges et al. in [97] and

resemble the two types of data bus information leakage. The power profiling

in this implementation takes into account the power consumed by data buses,

the register bank and the memory, according to one of these two power mod-

els. The power leakage from the computational logic is taken into account, but

it is considered fixed for each functional unit and is not data-dependent. The

importance of the leakage from the computational logic is not diminished in this

way, but rather, on this level of architectural implementation, observing this type

of leakage would not be possible to simulate and any other model is likely to

be unrealistic. The leakage from the computational logic is data-dependent and

simulating it would require a gate-level implementation of the architecture. Fur-

thermore, this type of experimental evaluation of resistance to power analysis

would not possible at that level as it would be extremely time consuming. De-

signing logic gates that do not leak information during computation is outside

the scope of this research which focused on the architectural aspects.
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4. Data-forwarding mode: Forwarding critical register values through the network

induces power consumption directly dependent on the sensitive data. An idea to

remove this direct contribution was to split data into shares. Data-forwarding in

the form of k data-shares consists of generating k−1 random values: r1,. . . , rk−1,

and forwarding k values: d⊕ r1⊕·· ·⊕ rk−1, r1, . . . , rk−1, where d is the register

value. This provides blinding of critical register values that are written onto the

forwarding buses multiple times during data-forwarding. In addition, this pro-

cess increases the network activity (congestion), which results in further timing

variations and increased noise in the power traces. In the simulations the number

of shares was varied to characterise configurations with data-sharing, in which

the number of shares is k = 2, and configurations without data-sharing, in which

number of shares is k = 1.

The experiments consisted of varying these parameters over the following sic architec-

tural configurations:

PIPE: A linear single-pipeline asynchronous architecture. Data-forwarding is not

implemented in this configuration, but the result of the previous instruction is

reused. This is simulated with the configuration of the network-based architec-

ture in which the number of functional units is equal to one.

PHN: A configuration of the network-based asynchronous architecture in which the

network is a partial hypercube of size N, PH(N). The number of shares in data-

forwarding is equal to one, i.e., data-forwarding does not support data-sharing.

PHSN: A configuration of the network-based asynchronous architecture in which the

network is a partial hypercube of size N, PH(N). The number of shares in data-

forwarding is equal to two.

DBN: A configuration of the network-based asynchronous architecture in which the

network is a de Bruijn network of size N, DB(N). The number of shares in data-

forwarding is equal to one, i.e. data-forwarding does not support data-sharing.

DBSN: A configuration of the network-based asynchronous architecture in which the

network is a de Bruijn network of size N, DB(N). The number of shares in

data-forwarding is equal to two.

ASYNCN: An asynchronous architecture with N functional units which supports

concurrent execution in the same manner as network-based asynchronous archi-
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tecture but in which data-forwarding is turned off, and the network effectively

does not exist. Similar to the PIPE configuration, the result of the previous

instruction in each of the functional units can be reused.

6.3.2 Covariance attack on AES

The covariance attack [35] was performed on the runs of AES. The covariance of the

two variates is defined as follows:

Definition 6.3.1. Given two sets of variates X = {xi} and Y = {y j} the covariance,

σi j ≡ cov(xi,y j), is defined as:

cov(xi,y j)≡ 〈(xi−µX)(y j−µY )〉,

where 〈·〉 represents the mean operation and µX = 〈xi〉 and µY = 〈y j〉 are means of X

and Y , respectively.

The covariance of two variates provides a measure of how strongly these variates

are correlated. Thus, the covariance of the two independent variates is equal to zero.

If cov(xi,y j) > 0, then Y tends to increase as X increases, and if cov(xi,y j) < 0, then Y

tends to decrease as X increases.

The covariance attack performed on the runs of AES can be summarised in the

following three steps:

Step 1 – Obtain the power samples of the initial key addition for several encryptions

with the same key and different plaintexts.

Step 2 – For each bit i in the plaintext input, calculate the covariance between the bit

and power samples of the runs at every sample point.

Step 3 – For each bit i, investigate the covariance plot for all the sample points. It

should be flat except for a few strong peaks. The first significant peak should

correspond to the write of the plaintext to the register bank. The peak at another

important sample point should correspond to the write to the register bank of

the result of the initial key addition. If these peaks have the same sign, then the

i-th key bit is equal to zero, otherwise it is equal to one.

The covariance attack is based on observing the differences in the covariance values

derived from the power traces for the initial key addition at several reference points,
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for each key (plaintext) bit. The covariance plot for the i-th plaintext bit measures

the covariance between the values of the i-th plaintext bit and the power values at each

sample point. The two critical sample points, that are observed in the plots, correspond

to the covariance between the plaintext bit value and the power value before and after

the initial key addition, i.e., before and after the plaintext bit bi was XORed with the

key bit ki. The signs of the two peaks determine whether the value of the plaintext bit

was flipped during the XOR operation, thus the plot for the i-th plaintext bit reveals

the value of the i-th key bit. Namely, if the two peaks have different signs, then the

value of the plaintext bits was flipped during the initial key addition operation, and the

value of the corresponding key bit is equal to one. If the two peaks have the same sign,

then the value of the plaintext bit was not flipped, and the key bit is equal to zero. This

attack is based on the assumption that the contributions to the power mean when zero

and one bits are written on the bus (register bank) are different. Otherwise, the attack

would not be successful [35].

6.3.2.1 Results

The covariance attack was first performed on the single-pipeline asynchronous archi-

tecture, PIPE, with the Hamming weight power model and non-variable delays. The

covariance plots revealed the secret key with as few as 200 power profiles. A sample

covariance plot obtained from this experiment is shown in Figure 6.4. The covariance

plot is as expected, and specified in the attack description, mostly flat except for a few

strong peaks and correspond to the initial key addition.

 0  500  1000  1500  2000  2500  3000  3500
time

initial key additon

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

co
va

rin
ac

e

Figure 6.4: A sample covariance plot for the PIPE configuration with the Hamming

weight power model and non-variable delays, derived from 200 power profiles.

Figure 6.5(a) shows the portion of covariance plot for the first key bit that corre-

sponds to the initial key addition. The same sign of the two marked peaks suggests



6.3. Security evaluation 181

that the value of the first key bit is equal to zero. Similarly, Figure 6.5(b) shows the

same portion of the covariance plot for the fourth key bit. The different signs of the

two peaks suggest that the value of the fourth key bit is equal to one. This experiment

demonstrates that the single-pipeline architectural configuration with the Hamming

weight power model and non-variable delays is unprotected against the covariance

attack, which was easily mounted using only 200 power samples.
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(b) 4th key bit - value 1.

Figure 6.5: The covariance attack on the PIPE configuration with the Hamming weight

power model and non-variable delays.

In the PIPE configuration the instructions were executed one at a time on a single-

pipeline architecture. The instruction issue and completion are in-order. In order to

investigate whether concurrent execution on its own yields any security improvements,

the covariance attacks were performed on configurations of the network-based archi-

tecture in which data-forwarding is turned off, namely ASYNC4 and ASYNC6 con-

figurations, with the Hamming weight power model and non-variable delays. In these

configurations the network effectively does not exist: the instructions operate concur-

rently, but communicate only through the register bank. The instructions are issued

in-order to multiple units that operate at their own pace, but again, due to fixed delays,

the non-determinism that is found in asynchronous architectures executing in this man-

ner is not present. The goal was to investigate whether parallel execution can contribute

enough noise to make the attack more difficult to apply. Figures 6.6 and 6.8 show sam-

ple covariance plots for configurations ASYNC4 and ASYNC6, respectively. These

plots are mostly flat with a number of peaks that correspond to the operations when

the value of the plaintext bit was manipulated, i.e. initial key addition. Performing

the attack on these configurations has shown that 300 power samples were sufficient
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to read the secret key from the covariance plots. Figures 6.7 and 6.9 demonstrate the

ease with which the key bit values can be extracted from the covariance plots for each

of the configurations. Considering that the AES was broken with a low number (300)

of power samples in both cases, these results lead to conclusion that the parallelised

(non-randomised) execution on it own does not contribute sufficient noise to provide

any security improvements.

 3000 500 0  1000  1500  2000  2500
−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.6

 1.4

time

initial key addition

co
va

rin
ac

e

Figure 6.6: A sample covariance plot for the ASYNC4 configuration with the Hamming

weight power model and non-variable delays, derived from 300 power profiles.
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(b) 3rd key bit - value 1.

Figure 6.7: The covariance attack on the ASYNC4 configuration with the Hamming

weight power model and non-variable delays.

Next, the covariance attack was performed on three configurations of the network-

based architecture in which data is not forwarded in the form of data-shares and the net-

work topology is a partial hypercube, i.e., PH4, PH6 and PH7 configurations with the

Hamming weight power model and non-variable delays. Configuration PH4 specifies

a network-based architecture with four functional units: arithmetic, logic, multiplier

and memory unit. The delays are non-variable, which on one hand reduces the number
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Figure 6.8: A sample covariance plot for the ASYNC6 configuration with the Hamming

weight power model and non-variable delays, derived from 300 power profiles.
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(b) 3rd key bit - value 1.

Figure 6.9: The covariance attack on the ASYNC6 configuration with the Hamming

weight power model and non-variable delays.
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of necessary readings to successfully perform the attack, and on the other hand, demon-

strated the direct contribution of randomised data-forwarding to non-deterministic ex-

ecution. In the covariance attack on the PH4 configuration, 5000 power profiles were

needed to derive covariance plots from which the values of the secret key could be

read. A sample covariance plot obtained from this experiment is shown in Figure 6.10.

The portion of the covariance plot that corresponds to the initial key addition can be

easily observed, while the rest of the plot is mostly flat. Figures 6.11(a) and 6.11(b)

show portions of the covariance plots for the first and fourth key bit, respectively, that

correspond to the initial key addition. The signs of the peaks revealed that the value of

the first bit is equal to zero, and the value of the fourth bit is equal to one.
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Figure 6.10: A sample covariance plot for the PH4 configuration with the Hamming

weight power model and non-variable delays, derived from 5000 power profiles.
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Figure 6.11: The covariance attack on the PH4 configuration with the Hamming weight

power model and non-variable delays.

As the majority of operations in the AES implementation were arithmetic and logic

operations, instruction-level parallelism was expected to be exploited to a higher ex-
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tent with an increase in arithmetic and logic units. Thus, the attack was performed

on configurations PH6 and PH7 (PH6: 2 AUs, 2 LUs , 1 MULT and 1 MU; PH7: 2

AUs, 2 LUs, 1 MULT and 2 MUs) with the Hamming weight power model and non-

variable delays. For configurations PH6 and PH7, 25000 and 50000 power profiles,

respectively, were needed to derive covariance plots from which the values of the key

bits could be read. Although the covariance plots were considerably noisy, the por-

tion of the traces that corresponded to the initial key addition could be pin-pointed, as

shown in Figures 6.12 and 6.15. However, it was difficult to distinguish the covariance

plots for different key bit values, as the two peaks (or groups of peaks) that correspond

to the two critical operations in the attack were smeared across the covariance plots.

By carefully comparing covariance plots for several key bits, the plots for the bits of

value zero were distinguished from the ones for the bits of value one, which was then

used to discover other key bits. Figures 6.13 and 6.16, which represent the compar-

isons of covariance plots for the first key bit (value 0) and the fourth key bit (value 1),

respectively, demonstrate this approach.
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Figure 6.12: A sample covariance plot for the PH6 configuration with the Hamming

weight power model and non-variable delays, derived from 25000 power profiles.

Figure 6.14 shows the comparison of covariance plots for the first and the fourth

key bits derived from 5000 power samples from the PH6 configuration. No significant

difference between the two plots can be noticed from this comparison. This exam-

ples demonstrate what is meant by “observing” the covariance plots and shows that

the covariance plots derived from the same number of power samples, as those for

configuration PH4, in this case did not provide any key bit information.

To measure the contribution of data-forwarding to data-dependent power consump-

tion, attacks were performed on configurations where data is forwarded in the form

of two data-shares, i.e., configurations PHS4, PHS6 and PHS7 with the Hamming
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Figure 6.13: The covariance attack on the PH6 configuration with the Hamming weight

power model and non-variable delays. COV1 and COV4 are covariance plots for the

1st (value 0) and the 4th key bit (value 1).
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Figure 6.14: The covariance attack on the PH6 configuration with the Hamming weight

power model and non-variable delays using 5000 power samples. COV1 and COV4

are covariance plots for the 1st (value 0) and the 4th key bit (value 1).
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Figure 6.15: A sample covariance plot for the PH7 configuration with the Hamming

weight power model and non-variable delays, derived from 50000 power profiles.
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Figure 6.16: The covariance attack on the PH7 configuration with the Hamming weight

power model and non-variable delays. COV1 and COV4 are covariance plots for the

1st (value 0) and the 4th key bit (value 1).

weight power model and non-variable delays. The enhancement to the architecture to

support data-forwarding with two data-shares consisted of generating a random value

r and forwarding two messages: d⊕ r and r, where d is the data value. This increases

the number of messages in the network and introduces additional non-determinism as

the progress of each packet in the network depends on the number of messages that

are routed. The number of power samples required to successfully perform the attack

increased to 35000, 60000 and 75000 for PHS4, PHS6 and PHS7 configurations, re-

spectively. Figures 6.17, 6.18 and 6.19 show the comparisons of covariance plots for

different key bits for each of these configurations. These results show that although

parallel execution and randomised data-forwarding hide the information leaked in the

form of data-dependent power consumption, data-forwarding contributes its own data-

dependent leakage. As demonstrated, by splitting the data into shares, this leakage can

be reduced and the attack threshold further increased.

The covariance attack was also performed on the de Bruijn network configura-

tions, i.e., DB and DBS configurations, with the Hamming weight power model and

non-variable delays. The sample covariance plot for the DB4 configuration shown

Figure 6.20 was generated from 35000 power profiles. When compared to the plot for

PH4 configuration (Figure 6.10) that was obtained from 5000 power profiles, it was

observed that this plot is much noisier. Further observation was that the difference

between the covariance plots for different key bits is in this case finer, and it was con-

siderably harder to distinguish the covariance plots for different key bits. The peaks

that correspond to critical operations are now further smeared across the covariance

plot and were not as easy to spot.
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Figure 6.17: The covariance attack on the PHS4 configuration with the Hamming

weight power model and non-variable delays derived from 35000 power profiles. COV1

and COV4 are covariance plots for the 1st (value 0) and the 4th key bit (value 1).
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Figure 6.18: The covariance attack on the PHS6 configuration with the Hamming

weight power model and non-variable delays, derived from 60000 power profiles. COV1

and COV4 are covariance plots for the 1st (value 0) and the 4th key bit (value 1).
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Figure 6.19: The covariance attack on the PHS7 configuration with the Hamming

weight power model and non-variable delays, derived from 75000 power profiles. COV1

and COV4 are covariance plots for the 1st (value 0) and the 4th key bit (value 1).
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Figure 6.20: A sample covariance plot for the DB4 configuration with the Hamming

weight power model and non-variable delays, derived from 35000 power profiles.
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Figure 6.21: The covariance attack on the configuration DB4 with the Hamming weight

power model and non-variable delays. COV1 and COV4 are covariance plots for the

1st (value 0) and the 4th key bit (value 1).
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Figure 6.22: The covariance attack on the configuration DB6 with the Hamming weight

power model and non-variable delays, derived from 85000 power profiles. COV1 and

COV4 are covariance plots for the 1st (value 0) and the 4th key bit (value 1).
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Figure 6.21 shows the comparison of covariance plots for the first (value 0) and the

fourth (value 1) key bit, obtained from the covariance attack on configuration DB4.

The covariance plots were derived from 35000 simulations and contained sufficient

information for the plots for different key bit values to be distinguished. Similarly,

Figure 6.22 compares covariance plots for configuration DB6 obtained from 85000

power simulations. The success of this attack was dependent on the ability to deter-

mine the exact portion of the power trace in which the targeted operations took place.

Although the portion that corresponds to the initial key addition can be easily observed

in the plots, as shown in Figure 6.20, it is extremely noisy and peaks that correspond to

critical operations can be confused with other noise. In these experiments, this was fa-

cilitated by the execution profiling feature that the simulation environment provided. In

their absence, the precise knowledge of the algorithm source code and the parameters

of the architecture, or a more sophisticated attack methodology would be necessary.

The complete results of the covariance attacks performed on different de Bruijn

network configurations are given in Figure 6.23. Due to the fact that these experiments

are extremely time-consuming2, final figures for DBS6 and DBS7 configurations were

not obtained, but the ones given suggest that data-sharing improves the resistance to the

covariance attack, and confirms the benefit of using data-sharing in data-forwarding.

A simple comparison of these results and those obtained for hypercube configurations

(Figure 6.25), leads to the conclusion that architectural configurations with de Bruijn

network configurations provide more non-determinism when compared to hypercube

network configurations.

CONFIGURATION NUMBER OF POWER SAMPLES

K=1 K=2

DB4 35000 50000

DB6 85000 > 90000

DB7 120000 > 100000

Figure 6.23: Number of power samples necessary to attack de Bruijn network configu-

rations with the Hamming weight power model and non-variable delays.

2The fastest simulation of a single run of AES on the DB7 configuration on a 2.4 GHz Pentium 4
machine with 1GB of RAM, takes approximately 1 minute. The fastest simulation of a single run of
DES on the DB7 configuration and the same machine, takes approximately 3 minutes. The statistical
post-processing of the obtained data from multiple runs of these algorithms takes between 2 to 48
hours depending on the complexity of the attack, and it requires some manual processing connected to
guessing the key bits from the obtained covariance/differential traces.
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The next set of experiments consisted of performing the covariance attack on the

power traces obtained from running AES on PIPE and PH configurations with the

transition count power model and non-variable delays. The summary of these results

is given in Figure 6.24. In case of the PIPE configuration, most of the key bits were

readable from as little as 200 power plots. The attack on PH4 configuration yielded

the first 16 bits from 30000 power profiles, but the rest of the guessed key bits were

essentially random, if readable at all. The covariance plots from PH6 and PH7 con-

figurations yielded essentially random key bit values, from 50000 and 100000 power

profiles. These figures suggest that the the architectural implementations with the tran-

sition count power model show considerably better security characteristics when com-

pared to those with the Hamming weight power model.

CONFIGURATION NUMBER OF POWER SAMPLES

PIPE 200

PH4 > 30000

PH6 > 50000

PH7 > 100000

Figure 6.24: Number of power samples used in the attacks on PIPE and PH configura-

tions with the transition count power model and non-variable delays.

The summary of the results of the covariance attacks on AES running on architec-

tural configurations in which the network topology and size, power model and data-

forwarding modes are varied, is given in Figure 6.25.

The architecture was implemented to support both variable and non-variable de-

lays. The security evaluations are most extensively performed for configurations with

non-variable delays, because the number of power samples required to successively

perform the power analysis attacks is much reduced. To illustrate this fact, Figure 6.26

summarised the results of the performed covariance attacks on PH configurations with

variable delays. For configuration PH4 with variable delays, 30000 power samples

were required to extract secret key values from the power plots. In the case of PH6

and PH7 configurations 45000 and 100000, respectively, were not sufficient to cor-

rectly extract all the key bits from respective power samples. Figure 6.26 also shows

the comparison of the number of samples necessary to attack the configurations with

non-variable and variable delays. As expected, the number of samples is much re-

duced for non-variable delays (from 30000 to 5000 power samples for PH4 config-
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CONFIGURATION POWER MODEL

HAMMING WEIGHT TRANSITION

K=1 K=2 COUNT (K=1)

PIPE 200 – 200

ASYNC4 300 – –

ASYNC6 300 – –

PH4 5000 35000 > 30000

PH6 25000 60000 > 50000

PH7 50000 75000 > 100000

DB4 35000 50000 –

DB6 85000 > 90000 –

DB7 120000 > 100000 –

Figure 6.25: Number of power samples used to perform the covariance attack on AES

run on different architectural configurations with non-variable delays.

uration). Since the power simulations were considerably time consuming, the final

figures for configurations PH6 and PH7 were not obtained. However, the presented

figures testify that variability of delays in asynchronous architectures contributes to-

wards complicating the application of the power analysis attacks. In some cases the

variability of delays could be exploited to mount timing attacks [136], as the delays

are data-dependent. However, when combined with non-deterministic execution in the

network-based architecture, variable delays should work as additional noise and the

extraction of information using the timing channel would not be as easy to achieve in

this case.

CONFIGURATION NUMBER OF POWER SAMPLES

NON-VARIABLE DELAYS VARIABLE DELAYS

PH4 5000 30000

PH6 25000 > 45000

PH7 50000 > 10000

Figure 6.26: Number of power samples necessary to attack hypercube network config-

urations with the Hamming weight power model.
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6.3.3 Differential power analysis of DES

This section reports on the results of performing DPA attacks on power samples ob-

tained from running DES on the hypercube network configurations with the Hamming

weight power model and non-variable delays. The DPA attack is performed on the first

round of DES and therefore uses known plaintexts. In each of the 16 rounds of DES 8

S-box lookups are performed. The 6-bit input to each of the S-boxes is generated using

the 6 bits of the round key and 6 bits of the intermediate result (register R). Therefore,

a bit in the 4-bit output of an S-box is influenced by only 6 bits of the round key. As

explained in Section 3.5.2, this fact can be used to discover the 48 bits of the first round

key by repeatedly applying the attack on the outputs of the 8 S-boxes. The remaining 8

bits of the DES key can be discovered using exhaustive search. The steps of the attack

can be summarised as follows (see Section 3.5.2 for further details of DES):

Step 1 – Obtain the power samples of the first rounds of DES for several encryptions

with the same key and different plaintexts.

Step 2 – For each of the 64 (26) possible guesses for the 6 bits of the round key, par-

tition the power traces according to the value of the bit that is output from the

S-box (defined by the selection function) and calculate the differential power

trace of the subpopulations for each partition.

Step 3 – The differential power trace for the correctly guessed 6 bits of the key should

show the largest biases, therefore the correct 6 bits correspond to the differential

power trace with the largest peaks.

By defining the selection function to be equal to the value of the first bit output from

an S-box, the 6 bits of the key that have influenced this bit value can be obtained. By

repeating Steps 2 and 3 for the remaining 7 S-boxes the entire 48 bits of the first round

key can be discovered.

6.3.3.1 Results

The differential power plots obtained from running DES on the PIPE configuration

revealed 42 correct key bits from 750 power samples. No correct guesses were made

from differential traces PH4 and PH6 configurations, derived from 40000 and 35000

power samples, respectively.

Figure 6.27 shows differential power plots for a correct and an incorrect key guess.

The power simulations of the DES implementation in the architecture were extremely
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(a) Differential trace of the correct guess.
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(b) Differential trace of the incorrect guess.

Figure 6.27: The DPA attack on 35000 power profiles obtained from running DES on

PH6 configuration with the Hamming weight power model and non-variable delays.

time consuming which is the reason why further security evaluation is not carried out.

The figures suggest that the DES algorithm run on the same architectural configura-

tion is more resistant to differential power analysis attack when compared to the AES

algorithm. However, one should bear in mind that the side-channel attacks are based

not on the algorithmic properties of the particular cryptographic algorithm but on the

particular implementation and the physical characteristic of the underlying device that

the algorithm is running on (as discussed in Chapter 3). Therefore, this only means

that the particular implementation is more resistant to power analysis. In addition, the

point of this research is not to compare the resistance of particular implementation of

cryptographic algorithms to power analysis, but to compare the physical characteristics

that different architectural configurations provide. Therefore, the following conclusion

can be drawn: the implementation of DES run on the different configurations of the

network-based architecture shows better resistance to the DPA attack when compared

to the implementation of AES used in the evaluation.

CONFIGURATION NUMBER OF POWER SAMPLES

PIPE 750

PH4 > 40000

PH6 > 35000

Figure 6.28: Number of power samples used to perform the DPA attack on DES run

on the PIPE and PH configurations of the architecture with the Hamming weight power

model and non-variable delays.
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The results of performing the DPA attack on DES running on hypercube configura-

tions with the Hamming weight power model and non-variable delays are summarised

in Figure 6.28.

6.4 Performance evaluation

This section reports on the dynamics of computation of different architectural config-

urations in which the network topology and network size are varied. The performance

evaluation results are obtained from running AES on different configurations of the

architecture.

Figure 6.29 shows the relative execution times of hypercube architectural config-

urations without and with data-sharing, i.e., PH and PHS configurations. The Fig-

ure 6.29 demonstrates that the performance improves as the network size increases,

and the different distribution of units between arithmetic, logic and memory units,

give slightly different results3. The overhead of using data-sharing is small, between

5% and 11%, as shown in Figure 6.30.
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Figure 6.29: Relative execution times of PH and PHS configurations. DIST1, DIST2

and DIST3 represent different distribution of units.

The architecture was designed as an asynchronous network with the aim of decorre-

lating the power consumption measurements by exploiting the inherent non-determinism

of instructions executing in parallel over a network that uses randomised routing. The

idea was to introduce different instruction interleavings and in that way decorrelate

power consumption measurements. Figure 6.31 shows how the execution times change

3Given the small number of multiplications in the code, there is less scope for exploiting ILP with
greater number of multiplier units.
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Figure 6.30: Performance overheads of data-sharing for PH and PHS configurations.

DIST1, DIST2 and DIST3 represent different distribution of units.

for the successive runs of the same code on the same (hypercube) network configu-

ration. The figure shows that the execution times for 20 runs of AES on the PH7

configuration varied between 15680 and 15760 VTUs, i.e., the observed variation in

execution time is 0.5%. On the other hand, the execution times for 20 runs of AES

on the PHS7 configuration varied between 16880 and 17060 VTUs, i.e., the observed

variation in the execution times is equal to 1.1%. These results confirm that, due to

non-determinism in the execution, different runs of the same code on the same ar-

chitectural configuration have different execution times. In PHS configurations data-

sharing contributes towards decorrelating power consumption measurements from the

data in the following way. Firstly, the increase in the number of forwarded register val-

ues through the network introduces the higher variation in execution times. These in

turn are beneficial for removing time references in the power traces. The existence of

time references in the power traces is crucial for successful application of power-based

attacks. Further, by forwarding register values in the form of data-shares the direct

correlation between the data and the measured power consumption is removed. These

two effects of data-sharing work together towards further decorrelating the power con-

sumption measurements as the results in Section 6.3 have confirmed.

Figures 6.32 and 6.33 show relative execution times and overheads of data-sharing

for de Bruijn network configurations without and with data-sharing, i.e., DB and DBS

configurations. Figure 6.32 shows that for small network sizes, performance improves

with the increase in number of functional units. However, as the Figure 6.32 shows, for

the networks size greater than 8 this trend is not followed. The performance overheads

of data-sharing in the case of de Bruijn network configurations was between 7% and
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Figure 6.31: Variations in execution times of successive runs of the same algorithm for

PH7 and PHS7 configurations.

40% (Figure 6.33). Clearly this overhead is higher than the overhead of data-sharing

for PHS configurations. This higher overhead is the result of routing in de Bruijn

networks. Namely, in a de Bruijn network the path lengths between nodes are on

average longer than the path lengths in a hypercube network of the same size. This

increases the duration of routing, which appears as if a higher number of packets are

being routed, as each packet remains in the network for a longer period of time. This

causes forwarding queues to be more populated and, therefore, the routing to be slowed

down. On the other hand, despite the observed performance overhead, DB and DBS

configurations show better security properties as shown in Section 6.3.
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Figure 6.32: Relative execution times of DB and DBS configurations. DIST1, DIST2

and DIST3 represent different distribution of units.
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Figure 6.33: Performance overheads of data-sharing for DB and DBS configurations.

DIST1, DIST2 and DIST3 represent different distributions of units.

Figure 6.34 shows the variation in execution times for successive runs of the same

code on the same de Bruijn network configuration. The execution time for 20 runs

on the DB7 configuration varied between 16160 and 16280 VTUs, i.e., the observed

variation is the execution times is 0.75%. On the other hand, the execution time for

20 runs on the DBS7 configuration varied between 20000 and 20450 VTUs, i.e., the

variation in the execution times is 2.25%. This shows that de Bruijn network con-

figurations provide more variation in execution times when compared to hypercube

network configurations, which contributes to its security characteristics, albeit with

worse performance characteristics.
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Figure 6.34: Variations in execution times of successive runs of the same algorithm for

DB7 and DBS7 configurations.
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Figure 6.35 compares five different configurations of the architecture as the num-

ber of functional units changes. Figure 6.35 clearly shows that data-forwarding does

improve the performance (plot ASYNC is above all other plots). When comparing

configurations with data-forwarding, the best performance show PH configurations

and the worst DBS configurations. For the small number of units (≤ 8) the perfor-

mance progressively improves for all five architectural configurations. This figure

shows that the network-based organisation, besides providing considerable security

improvements, also shows performance improvements.
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Figure 6.35: Performance comparisons of five architectural configurations.

6.5 Summary

In this chapter the results of the security and performance evaluations for different

configurations of the network-based architecture were presented. The results were

obtained from running implementations of AES and DES cryptographic algorithms.

Since the obtained results depend both on the architectural platform and the algorithm

implementation, and since different implementations of the same cryptographic algo-

rithm can show different security features, the security features of AES and DES when

run on the architecture were not compared. The goal of this research is not to show

whether these algorithms are resistant to the power analysis, but to use them as bench-

marks for measuring the introduced non-determinism in the execution of the network-

based architecture. The two algorithms were selected for the security evaluation due

to their historical and practical importance.

In the current experimentation different configurations of the architecture in which

different parameters are varied, were compared. The parametric model was based on
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the delay and power figures that were available at the time of the experimentation.

However, any further investigation of the security and performance features of the

proposed architecture would require more detailed data-dependent delay and power

information.

Although the precise figures for a few of the security evaluation experiments were

not obtained, the following conclusions can be drawn:

• De Bruijn network configurations provide more scope for non-deterministic exe-

cution than hypercube configurations. This is due to the fact that the path lengths

in de Bruijn networks are longer than those of a partial hypercube, and provide

more variation in the execution times and, therefore, more randomness in the

execution.

• The increase in the network size provides more scope for non-deterministic exe-

cution, but it also has a positive effect on performance as shown in Figures 6.29

and 6.32.

• Data-forwarding in the form of data-shares improves resistance to power analy-

sis attacks. Not only is the direct contribution to the power of routing sensitive

register values removed in this way, but also further variations in execution times

are introduced, as shown in Figures 6.31 and 6.34. However, routing more regis-

ter values introduces performance overheads, as shown in Figures 6.29 and 6.32.

This suggests that the trade-off between the desired level of security and perfor-

mance might have to be made.

• If the power model of an architecture is characterised with the transition count

power model, then the architecture is more resistant to power analysis than the

one with the Hamming weight power model.

• Non-deterministic execution and forwarding register values through the network

of functional units does not produce a performance overhead as shown in Fig-

ure 6.35. However, the performance improvements do not necessarily improve

with the increase of the network size, i.e., number of functional units.

These results confirm that the network-based architecture is indeed more robust to

differential power analysis than the simple pipelined alternatives. By implementing

the architecture as a network both higher security and performance improvements are

gained, which should make this approach attractive for cryptographic devices.



Chapter 7

Conclusions and Future Work

7.1 Summary

With the introduction of side-channel analysis and the development of different side-

channel attack strategies the challenge of improving the security of cryptographic de-

vices has become increasingly important. While most practical implementations seem

ad-hoc, even theoretically sound solutions show weaknesses when implemented. As

the question of achieving tightly secure cryptographic systems (in theory and practice)

remains open, one of the approaches to consider is to increase the cost of performing

side-channel attacks.

One of the proposed ideas toward increasing the cost of performing side-channel at-

tacks was to introduce randomness and non-determinism in the execution [80, 78, 36, 91].

Some of the investigations into this idea [91, 92, 66] have demonstrated that the

paradigm of randomising the execution can help make the side-channel attacks more

difficult to apply. These solutions harness the algorithm’s instruction level parallelism

(ILP) in order to achieve non-deterministic execution and obscure the compromising

information in the power traces.

This thesis presented the network-based asynchronous architecture in which ex-

ecution is non-deterministic. The network-based architecture presents a novel archi-

tectural idea in which functional units in the processor datapath are connected as an

asynchronous network rather than as a linear pipeline. The architecture is a network

of functional units that operate concurrently and communicate register values through

the network. The non-deterministic execution is achieved by: (1) exploiting fine-grain

instruction level parallelism, where concurrent execution of both instruction with and

without data-dependencies is utilised; and (2) performing data-forwarding using ran-
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domised routing of register values through the network. The investigations performed

in this thesis focused on exploring architectural principles which could be beneficial

for efficiently and effectively decorrelating power consumption measurements, rather

than on providing a detailed and complete low-level architectural description.

In [91] non-deterministic execution is achieved by exploiting instruction level par-

allelism in the algorithm. Namely, independent instructions are grouped together and

issued in random order, thus removing the correlation between features in the DPA

profile and the algorithm source code. This approach is further combined with random

register renaming [92] and the addition of random operations to the algorithm [66] in

order to increase the noise in the device’s power profile. In the network-based archi-

tecture a different approach is taken in order to achieve a similar goal. The instructions

are issued in-order to multiple functional units which operate concurrently. The de-

pendencies between instructions, that would normally cause synchronisations or stalls

in the issue stage, are exploited in order to enable both concurrent and randomised

execution. The instructions execute at their own pace, and may overtake one another,

compete for resources, and complete different execution stages out-of-order and, thus,

render the execution non-deterministic.

In most implementations data-dependencies impose serialisation in the execution

of instructions and, thus, restrain the scope for exploiting ILP. For example, read-after-

write (RAW) dependencies require the completion of the instruction before its result

can be used by a dependent instruction. In hardware, the data-forwarding mechanism

was conceived to avoid the penalty of having to write the result to the register bank,

and some time later read the result from it. Thus, the ILP can be exploited by issuing

instructions without data-dependences in parallel and by forwarding register values

between instructions with data-dependencies. This general paradigm was used in the

design of the network-based architecture, but exploiting fine-grain parallelism even

between instructions with data dependencies is also achieved.

In the micronet architecture [116] the instruction issue rate is limited by data-

dependencies and the availability of functional units. In the network-based architec-

ture, stalls in the instruction issue stage due to data-dependencies are not present, and

the issue rate is effectively limited only by the availability of functional units. Al-

though the instructions are issued one at a time, the issue unit operates at a faster speed

than the rest of the components, which emulates multiple instruction issue.

The instructions are issued in-order rapidly to the functional units of the appropriate

type. The instruction issue initiates a series of micro-operations in the respective com-
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munication units (that are part of the target functional units) that deal with the given

instruction. The processes of identifying data-dependencies (instruction compound-

ing) and initialising data-forwarding operations is also performed in the issue unit. A

small table is used to store the information about a number of previously issued in-

structions and determine dependencies between instructions. If no dependencies are

found, then the instruction is able to progress at its own pace without synchronising

with the execution stages of other instructions. If data-dependencies are found, then

the issue unit initiates data-forwarding operation(s) to the producer unit(s). The mutual

exclusion of instructions with data-dependencies is not enforced, but rather, they are

issued successively, and allow them to execute concurrently subject to availability of

operands. This leads to efficient utilisation of functional units, further distribution of

both state and control, and minimisation of high-level synchronisations and stalls that

are usually caused by data-dependencies.

Although the performance gains of data-forwarding are evident (as shown in Sec-

tion 6.4), they are not the primary goal of this design. The focus is on the variation

in execution times and power signatures that the network-based design introduces.

Namely, the data is routed according to a randomised routing protocol, that depends

on the implemented network topology. In general, the routing consists of two parts: (1)

the data is routed to a randomly chosen unit, and (2) the data follows the deterministic

route to its destination (the consumer unit). The randomised routing introduces varia-

tions in instruction execution times. Asynchronous execution and randomised routing

introduce different execution times even when the same instruction with the same input

data is observed.

Therefore, the order in which different micro-operations are performed changes

from one run to the other, allowing the results of instructions to be available out of

program order. In-order write-back to the register bank was not enforced as it would

be a performance overhead and could introduce synchronisations. Out-of-order in-

struction completion and write-back is beneficial from the security point of view, as

writes to the register bank are often targeted in attacks. An example of this was seen

in the case of covariance attack performed on the runs of AES (see Section 6.3.2).

The security evaluation results (presented in Section 6.3) have shown that, when

compared to simple pipelined configurations, the resistance to power analysis of algo-

rithms running on the networked configurations is considerably improved. The level of

improvement depends on a number of parameters: network topology and the amount

of randomness that it provides, the size of the network, the data-forwarding imple-
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mentation, and the algorithm implementation. Both AES and DES were simulated and

subjected to power-based attacks. Although cracking DES was more difficult when

compared to AES, the purpose of this research was not to compare these algorithms, or

their (unprotected) implementations, but to measure the non-determinism introduced

by the network-based architectural approach. The simulated results in the case of both

algorithms have confirmed that the introduced non-determinism considerably increases

the cost of performing the power analysis attacks.

The evaluation results also included the performance comparisons (Section 6.4) of

different architectural configurations, and have shown that the network-based organisa-

tion provides performance improvements. The performance gains, similarly to security

improvements, depend on the network configuration, number of functional units in the

network, the distribution of functional unit types, and the number of data-shares used

in the data-forwarding. However, one should remember that performance is not the pri-

mary goal of this design, and that tradeoffs between performance and security might

be necessary, depending on the desired level of security/performance.

7.2 Future work

Future research could proceed in a number of different directions. A further and more

detailed evaluation of both performance and security features can be performed. How-

ever, these investigations would require more detailed delay and power consumption

figures, which were not available for the current experimentation. Also, comparisons

of the presented approach could be made with existing techniques for increasing the

cost of side-channel analysis attacks. For example, this approach could be compared

with the secret-sharing scheme (see Section 3.5.7.5).

A further exploration of possible improvements to the architectural implementa-

tion could also be beneficial. Besides exploring ways for achieving non-deterministic

execution, this thesis has presented a novel approach for distributing the control and

execution in asynchronous architectures. The non-deterministic execution is achieved

through exploiting the fine-grain ILP of instructions both with and without data de-

pendencies. However, the current implementation does not implement any of the con-

ventional techniques for increasing ILP and parallelism in general. One of the issues

that can be investigated is the relation of the design of the network-based architecture

to performance improving dynamic techniques in microprocessors, such as specula-

tive execution, instruction and data caches, speculative branches and multithreading.
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When addressing these, an important issue would also be to investigate the expected

overheads in terms of hardware implementation.

Correct operation in the presence of data-dependencies often requires serialisation

in the execution of instructions, which in turn limits the scope for exploiting paral-

lelism. This is particularly true in case of RAW dependences, which require the com-

pletion of the instruction before its result can be used by a dependent instruction. One

of the hardware approaches to this problem is data-forwarding. In software, the effect

of true dependencies could be minimised through the use of instruction scheduling. In

the case of the network-based architecture instruction scheduling could be also used

to remove both resource contention and stalls in the operand fetch and branch stage.

Namely, if the result of the producer instruction is already available when forward-

ing requests are initiated, then the instruction execution could be further improved and

stalls reduced. Stalls are also undesirable from the security point of view as they can be

easily observed in the power traces. Electromagnetic attacks are even more threatening

as they can exploit locality information.

In the network-based asynchronous architecture, if the size of the dependency table

in the issue unit is equal to the number of functional units, then all RAW dependences

between non-control transfer instructions are covered by data-forwarding. This is be-

cause RAW hazards occur only between instructions that are currently in execution.

Having the operand fetch stage distributed to the communication units, the number of

instructions that are in flight at any point is bounded from above by twice the num-

ber of functional units. This can be characterised as the theoretical throughput of the

architecture. The actual (average) throughput depends on the particular code. This is

another area where scheduling could be used: to improve the throughput of architec-

tures and potentially bring it closer to its theoretical best, which could have a positive

effect on non-deterministic execution and performance.

The number of instructions that can be affected by RAW hazards is equal to the

number of instructions that are currently in the operand fetch and lock stage and is

bounded by the number of functional units. Therefore, appropriately adjusting the size

of the dependency table (see Section 5.5.2) eliminates most of the RAW hazards at

no additional cost. RAW hazards between control transfer instructions and the rest of

the instruction set are not removed this way. Exploring techniques for removing these

dependencies could also be one of the future tasks.
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7.3 Conclusions

This thesis presented the design and evaluation of the network-based asynchronous

architecture. It focused on exploring a particular hardware paradigm for exploiting

non-deterministic execution in order to benefit cryptographic devices. These investi-

gations confirmed that the level of introduced non-determinism increases resistance to

power analysis, when compared to simple pipelined configurations, as it makes power

analysis attacks considerably more difficult to apply. In addition, the non-deterministic

execution does not present a performance overhead, although a tradeoff between the

desired level of the non-determinism (i.e. security) and performance might need to

made for a particular implementation.

This thesis introduced a general approach for achieving non-deterministic execu-

tion in processors. This approach can be complementary to and combined with exist-

ing software and/or hardware countermeasures in order to achieve further resistance to

side-channel analysis. For instance, it could be combined with the randomised schedul-

ing techniques presented in [91, 92, 66] to further randomise the execution; or it could

be implemented using balanced asynchronous logic as a possible way to hide the sen-

sitive information in the power and electromagnetic traces, which is still found to be

present in balanced systems [49]. Electromagnetic attacks are of particular concern as

they have proven to be able to extract information even when the power channel pro-

vides no information. The non-deterministic and distributed manner of operation of

the network-based architecture could potentially be beneficial against electromagnetic

attacks and their ability to exploit the locality information.

Although asynchronous circuits have been shown to be a suitable platform for ex-

ploiting non-deterministic execution, some characteristics of asynchrony can be ex-

ploited in side-channel analysis. For example, data-dependent latencies could be a

source of information. One of the aims of this approach is to introduce fine-grain exe-

cution timing variations through randomised routing, which can help reduce this type

of information leakage.

In summary, the investigations performed in this thesis have shown that the in-

troduced level of non-determinism considerably complicates the application of power

analysis attacks and suggests that the introduced architectural concepts could be bene-

ficial to cryptographic devices.
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Appendix B

Instruction Set

Arithmetic instructions

INSTRUCTION DESCRIPTION

li $rd, I rd.word = I;

la $rd, I ( $rs ) rd.word = I + rs.word;

lai $rd, I1 ( I2 ) rd.word = I1 + I2;

move $d, $rs rd. word = rs.word;

add $rd, $rs, $rt rd.word = rs.word + rt.word;

addi $rd, $rs, I rd.word = rs.word + I;

sub $rd, $rs, $rt rd.word = rs.word - rt.word;

subi $rd, $rs, I rd.word = rs.word - I;

seq $rd, $rs, $rt rd.word = rs.word == rt.word;

seqi $rd, $rs, I rd.word = rs.word == I;

sge $rd, $rs, $rt rd.word = rs.word >= rt.word;

sgei $rd, $rs, I rd.word = rs.word >= I;

sgt $rd, $rs, $rt rd.word = rs.word > rt.word;

sgti $rd, $rs, I rd.word = rs.word > I;

sle $rd, $rs, $rt rd.word = rs.word <= rt.word;

slei $rd, $rs, I rd.word = rs.word <= I;

slt $rd, $rs, $rt rd.word = rs.word < rt.word;

slti $rd, $rs, I rd.word = rs.word < I;

sne $rd, $rs, $rt rd.word = rs.word != rt.word;

snei $rd, $rs, I rd.word = rs.word != I;
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Logic instructions

INSTRUCTION DESCRIPTION

and $rd, $rs, $rt rd.word = rs.word & rt.word;

andi $rd, $rs, I rd.word = rs.word & I;

or $rd, $rs, $rt rd.word = rs.word | rt.word;

xor $rd, $rs, $rt rd.word = rs.word ˆ rt.word;

sll $rd, $rs, I rd.word = rs.word << I;

srl $rd, $rs, I rd.word = rs.word >> I;

Multiplication instructions

INSTRUCTION DESCRIPTION

mul $rd, $rs, $rt rd.word = rs.word * rt.word;

muli $rd, $rs, I rd.word = rs.word * I;

div $rd, $rs, $rt rd.word = rs.word / rt.word;

divi $rd, $rs, I rd.word = rs.word / I;

rem $rd, $rs, $rt rd.word = rs.word % rt.word;

remi $d, $s0, I rd.word = rs.word % I;

Memory instructions

INSTRUCTION DESCRIPTION

lw $rd, I ( $rs ) rd.word = readData ( I + rs.word, 4 );

lh $rd, I ( $rs ) rd.word = readData(I + rs.word, 2);

lb $rd, I($rs) rd.word = readData(I + rs.word, 1);

sw $rs, I($rt) writeData(I + rt.word, rs.word, 4);

sh $rs, I($rt) writeData(I + rt.word, rs.word, 2);

sb $rs, I($rt) writeData(I + rt.word, rs.word, 1);

lwi $d, I1, I2 rd.word = readData(I1 + I2, 4);

swi $s0, I1, I2 eriteData(I1 + I2, rs.word, 4);
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Control transfer instructions

INSTRUCTION DESCRIPTION

bra L pcReg.word = L;

j L pcReg.word = L;

jr $rs pcReg.word = rs.word;

jal L linkReg.word = pcReg.word + 4;

pcReg.word = L;

jalr $rs linkReg.word = pcReg.word + 4;

pcReg.word = rs.word;

beq $rs, $rt, L rs.word == rt.word ? pcReg.word = L : {};
bne $rs, $rt, L rs.word != rt.word ? pcReg.word = L : {};
ble $s0, $s1, L rs.word <= rt.word ? pcReg.word = L : {};
blt $rs, $rt, L rs.word < rt.word ? pcReg.word = L : {};
bge $rs, $rt, L rs.word >= rt.word ? pcReg.word = L : {};
bgt $rs, $rt, L rs.word > rt.word ? pcReg.word = L : {};
beqz $rs, L rs.word == 0 ? pcReg.word = L : {};
bnez $rs, L rs.word != 0 ? pcReg.word = L : {};
blez $rs, L rs.word <= 0 ? pcReg.word = L : {};
bltz $rs, L rs.word < 0 ? pcReg.word = L : {};
bgez $rs, L rs.word >= 0 ? pcReg.word = L : {};
bgtz $rs, L rs.word > 0 ? pcReg.word = L : {};





Appendix C

Rijndael and DES Tables

Nr Nb = 4 Nb = 6 Nb = 8

Nk = 4 10 12 14

Nk = 6 12 12 14

Nk = 8 14 14 14

Figure C.1: Rijndael: Number of rounds as a function of the block and key length.

Nb C1 C2 C3

4 1 2 3

6 1 2 3

8 1 3 4

Figure C.2: Rijndael: Shift offsets for different block lengths
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32 1 2 3 4 5

4 5 6 7 8 9

8 9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 1

Figure C.3: DES: E bit-selection table.

57 49 41 33 25 17 9

1 58 50 42 34 26 18

10 2 59 51 43 35 27

19 11 3 60 52 44 36

63 55 47 39 31 23 15

7 62 54 46 38 30 22

14 6 61 53 45 37 29

21 13 5 28 20 12 4

Figure C.4: DES: Key schedule permuted choice 1.

14 17 11 24 1 5

3 28 15 6 21 10

23 19 12 4 26 8

16 7 27 20 13 2

41 52 31 37 47 55

30 40 51 45 33 48

44 49 39 56 34 53

46 42 50 36 29 32

Figure C.5: DES: Key schedule permuted choice 2.
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ITERATION NUMBER NUMBER OF LEFT SHIFTS

1 1

2 1

3 2

4 2

5 2

6 2

7 2

8 2

9 1

10 2

11 2

12 2

13 2

14 2

15 2

16 1

Figure C.6: DES: Key schedule left shift order.
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[31] É. Brier and M. Joye. Weierstrass Elliptic Curves and Side-Channel Attacks. In

D. Naccache and P. Paillier, editors, The Proceedings of the 5th International

Workshop on Practice and Theory in Public Key Cryptosystems (PKC 2002),

volume 2274-LNCS, pages 335–345. Springer-Verlag, 2002.

[32] D. Brumley and D. Boneh. Remote Timing Attacks are Practical. In The Pro-

ceedings of the 12th USENIX Security Symposium. USENIX Association, 2003.

[33] J. A. Brzozowski and C.-J. H. Seger. Asynchronous Circuits. Springer-Verlag

New York Inc., 1995.

[34] S. M. Burns and A. J. Martin. Syntax-directed Translation of Concurrent Pro-

grams into Self-timed Circuits. In J. Allen and F. Thomson Leighton, editors,

The Proceedings of the Fifth MIT Conference on Advanced Research in VLSI,

March 1988, pages 35–50. MIT Press, 1988.

[35] S. Chari, C. Jutla, J. Rao, and P. Rohatgi. A Cautionary Note Regarding Eval-

uation of AES Candidates on Smart-Cards. In Second Advanced Encryption

Standard (AES) Candidate Conference, Rome, Italy, 1999.

[36] S. Chari, C. Jutla, J. Rao, and P. Rohatgi. Towards Sound Approaches to

Counteract Power-Analysis Attacks. In M. J. Wiener, editor, The Proceed-

ings of the 19th Annual International Conference on Advances in Cryptology

(CRYPTO’99), volume 1666-LNCS, pages 398–412. Springer-Verlag, 1999.



Bibliography 233

[37] S. Chari, C. Jutla, J. Rao, and P. Rohatgi. Template Attacks. In B. S. Kaliski, Ç.
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[100] B. Möller. Securing Elliptic Curve Point Multiplication against Side-Channel

Attacks. In G. I. Davida and Y. Frenkel, editors, The Proceedings of the 4th

International Conference on Information Security (ISC 2001), volume 2200-

LNCS, pages 324–334. Springer-Verlag, 2001.

[101] P. L. Montgomery. Speeding the Pollard and Elliptic Curve Methods for Factor-

ization. Mathematics and Computation, 48:243–264, 1987.

[102] S. Moore, R. Anderson, P. Cunningham, R. Mullins, and G. Taylor. Improving

Smart Card Security using Self-timed Circuits. In The Proceedings of the Eight

International Symposium on Asynchronous Circuits and Systems (ASYNC’02),

pages 211–218. IEEE Computer Society Press, 2002.

[103] S. Moore, R. Anderson, R. Mullins, G. Taylor, and J. Fournier. Balanced Self-

Checking Asynchronous Logic for Smart Card Applications. Microprocessors

and Microsystems, 2003.

[104] J. A. Muir. Techniques of Side Channel Cryptanalysis. Master’s thesis, Univer-

sity of Waterloo, 2001.

[105] R. D. Mullins. Dynamic Instruction Scheduling and Data Forwarding in Asyn-

chronous Superscalar Processors. PhD thesis, University of Edinburgh, 2001.

[106] K. Okeya, H. Kurumatani, and K. Sakurai. Elliptic Curves with the Montgomery

Form and their Cryptographic Applications. In H. Imai and Y. Zheng, editors,

The Proceedings of the Third International Workshop on Practice and Theory

in Public Key Cryptography (PKC 2000), volume 1751-LNCS, pages 238–257.

Springer-Verlag, 2000.



Bibliography 241

[107] K. Okeya and K. Sakurai. Power Analysis Breaks Elliptic Curve Cryptosystems

Even Secure against the Timing Attack. In B. Roy and E. Okamoto, editors, The

Proceedings of the First International Conference in Cryptology in India (IN-

DOCRYPT 2000), volume 1977-LNCS, pages 178–ff. Springer-Verlag, 2000.

[108] K. Okeya and T. Takagi. A More Flexible Countermeasure against Side Channel

Attacks Using Window Method. In C. Walter, Ç. K. Koç, and C. Par, editors,
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