2,389 research outputs found

    Sparse Graph Codes for Quantum Error-Correction

    Full text link
    We present sparse graph codes appropriate for use in quantum error-correction. Quantum error-correcting codes based on sparse graphs are of interest for three reasons. First, the best codes currently known for classical channels are based on sparse graphs. Second, sparse graph codes keep the number of quantum interactions associated with the quantum error correction process small: a constant number per quantum bit, independent of the blocklength. Third, sparse graph codes often offer great flexibility with respect to blocklength and rate. We believe some of the codes we present are unsurpassed by previously published quantum error-correcting codes.Comment: Version 7.3e: 42 pages. Extended version, Feb 2004. A shortened version was resubmitted to IEEE Transactions on Information Theory Jan 20, 200

    Algebraic techniques in designing quantum synchronizable codes

    Get PDF
    Quantum synchronizable codes are quantum error-correcting codes that can correct the effects of quantum noise as well as block synchronization errors. We improve the previously known general framework for designing quantum synchronizable codes through more extensive use of the theory of finite fields. This makes it possible to widen the range of tolerable magnitude of block synchronization errors while giving mathematical insight into the algebraic mechanism of synchronization recovery. Also given are families of quantum synchronizable codes based on punctured Reed-Muller codes and their ambient spaces.Comment: 9 pages, no figures. The framework presented in this article supersedes the one given in arXiv:1206.0260 by the first autho

    Convolutional and tail-biting quantum error-correcting codes

    Full text link
    Rate-(n-2)/n unrestricted and CSS-type quantum convolutional codes with up to 4096 states and minimum distances up to 10 are constructed as stabilizer codes from classical self-orthogonal rate-1/n F_4-linear and binary linear convolutional codes, respectively. These codes generally have higher rate and less decoding complexity than comparable quantum block codes or previous quantum convolutional codes. Rate-(n-2)/n block stabilizer codes with the same rate and error-correction capability and essentially the same decoding algorithms are derived from these convolutional codes via tail-biting.Comment: 30 pages. Submitted to IEEE Transactions on Information Theory. Minor revisions after first round of review

    A Simplified Min-Sum Decoding Algorithm for Non-Binary LDPC Codes

    Full text link
    Non-binary low-density parity-check codes are robust to various channel impairments. However, based on the existing decoding algorithms, the decoder implementations are expensive because of their excessive computational complexity and memory usage. Based on the combinatorial optimization, we present an approximation method for the check node processing. The simulation results demonstrate that our scheme has small performance loss over the additive white Gaussian noise channel and independent Rayleigh fading channel. Furthermore, the proposed reduced-complexity realization provides significant savings on hardware, so it yields a good performance-complexity tradeoff and can be efficiently implemented.Comment: Partially presented in ICNC 2012, International Conference on Computing, Networking and Communications. Accepted by IEEE Transactions on Communication

    EVENODD: An Efficient Scheme for Tolerating Double Disk Failures in RAID Architectures

    Get PDF
    We present a novel method, that we call EVENODD, for tolerating up to two disk failures in RAID architectures. EVENODD employs the addition of only two redundant disks and consists of simple exclusive-OR computations. This redundant storage is optimal, in the sense that two failed disks cannot be retrieved with less than two redundant disks. A major advantage of EVENODD is that it only requires parity hardware, which is typically present in standard RAID-5 controllers. Hence, EVENODD can be implemented on standard RAID-5 controllers without any hardware changes. The most commonly used scheme that employes optimal redundant storage (i.e., two extra disks) is based on Reed-Solomon (RS) error-correcting codes. This scheme requires computation over finite fields and results in a more complex implementation. For example, we show that the complexity of implementing EVENODD in a disk array with 15 disks is about 50% of the one required when using the RS scheme. The new scheme is not limited to RAID architectures: it can be used in any system requiring large symbols and relatively short codes, for instance, in multitrack magnetic recording. To this end, we also present a decoding algorithm for one column (track) in error

    Construction of Near-Optimum Burst Erasure Correcting Low-Density Parity-Check Codes

    Full text link
    In this paper, a simple, general-purpose and effective tool for the design of low-density parity-check (LDPC) codes for iterative correction of bursts of erasures is presented. The design method consists in starting from the parity-check matrix of an LDPC code and developing an optimized parity-check matrix, with the same performance on the memory-less erasure channel, and suitable also for the iterative correction of single bursts of erasures. The parity-check matrix optimization is performed by an algorithm called pivot searching and swapping (PSS) algorithm, which executes permutations of carefully chosen columns of the parity-check matrix, after a local analysis of particular variable nodes called stopping set pivots. This algorithm can be in principle applied to any LDPC code. If the input parity-check matrix is designed for achieving good performance on the memory-less erasure channel, then the code obtained after the application of the PSS algorithm provides good joint correction of independent erasures and single erasure bursts. Numerical results are provided in order to show the effectiveness of the PSS algorithm when applied to different categories of LDPC codes.Comment: 15 pages, 4 figures. IEEE Trans. on Communications, accepted (submitted in Feb. 2007

    Design of a fault tolerant airborne digital computer. Volume 1: Architecture

    Get PDF
    This volume is concerned with the architecture of a fault tolerant digital computer for an advanced commercial aircraft. All of the computations of the aircraft, including those presently carried out by analogue techniques, are to be carried out in this digital computer. Among the important qualities of the computer are the following: (1) The capacity is to be matched to the aircraft environment. (2) The reliability is to be selectively matched to the criticality and deadline requirements of each of the computations. (3) The system is to be readily expandable. contractible, and (4) The design is to appropriate to post 1975 technology. Three candidate architectures are discussed and assessed in terms of the above qualities. Of the three candidates, a newly conceived architecture, Software Implemented Fault Tolerance (SIFT), provides the best match to the above qualities. In addition SIFT is particularly simple and believable. The other candidates, Bus Checker System (BUCS), also newly conceived in this project, and the Hopkins multiprocessor are potentially more efficient than SIFT in the use of redundancy, but otherwise are not as attractive
    corecore