In this paper, a simple, general-purpose and effective tool for the design of
low-density parity-check (LDPC) codes for iterative correction of bursts of
erasures is presented. The design method consists in starting from the
parity-check matrix of an LDPC code and developing an optimized parity-check
matrix, with the same performance on the memory-less erasure channel, and
suitable also for the iterative correction of single bursts of erasures. The
parity-check matrix optimization is performed by an algorithm called pivot
searching and swapping (PSS) algorithm, which executes permutations of
carefully chosen columns of the parity-check matrix, after a local analysis of
particular variable nodes called stopping set pivots. This algorithm can be in
principle applied to any LDPC code. If the input parity-check matrix is
designed for achieving good performance on the memory-less erasure channel,
then the code obtained after the application of the PSS algorithm provides good
joint correction of independent erasures and single erasure bursts. Numerical
results are provided in order to show the effectiveness of the PSS algorithm
when applied to different categories of LDPC codes.Comment: 15 pages, 4 figures. IEEE Trans. on Communications, accepted
(submitted in Feb. 2007