7,215 research outputs found

    Multiscale computational first order homogenization of thick shells for the analysis of out-of-plane loaded masonry walls

    Get PDF
    This work presents a multiscale method based on computational homogenization for the analysis of general heterogeneous thick shell structures, with special focus on periodic brick-masonry walls. The proposed method is designed for the analysis of shells whose micro-structure is heterogeneous in the in-plane directions, but initially homogeneous in the shell-thickness direction, a structural topology that can be found in single-leaf brick masonry walls. Under this assumption, this work proposes an efficient homogenization scheme where both the macro-scale and the micro-scale are described by the same shell theory. The proposed method is then applied to the analysis of out-of-plane loaded brick-masonry walls, and compared to experimental and micro-modeling results.Peer ReviewedPostprint (author's final draft

    A Finite Element‑Based Methodology for the Thermo‑mechanical Analysis of Early Age Behavior in Concrete Structures

    Get PDF
    This paper presents a general procedure based on fracture mechanics models in order to analyze the level of cracking and structural safety in reinforced concrete elements at early ages, depending on the stripping time. Our procedure involves the development of a thermo-mechanical numerical model based on the finite element method that accounts for the change in the mechanical properties of concrete with time. Moreover, fracture mechanisms are analyzed by means of a material damage model, which is characterized via specific experimental results obtained for standard specimens and notched beams under three-point bending testing. The loading conditions are both thermal and mechanical, and are obtained from the hydration process for a given concrete dosage. The presented methodology allows for the determination of the optimal stripping time, whereas it helps assessing the analysis of the cracking and the stress states of the elements under consideration. A practical application, namely the analysis of a retaining wall, is used to validate our methodology, showing its suitability in engineering practice.Ministerio de Economía y Competitividad BIA2016-75431-

    A multi-level interface model for damaged masonry

    Get PDF
    The aim of the present work is to propose a new micro-mechanical model in the context of the deductive approach used to derive interface models. This model, based on a previous study introduced previously by A. Rekik and F. Lebon, is used to reproduce the damage in masonry by combining structural analysis and homogenization methods. The focal point of this method is to assume the existence of a third material, called interphase, which is a mixture of the two principal constituents of masonry, brick and mortar, and that is the interface between them. This new element presents a low thickness, a low stiffness and a given damage ratio. The mechanical problem of masonry, initially a 3D problem, is solved numerically as a 2D problem using finite element methods. The properties of the interface brick-mortar material are obtained using three essentials steps. First of all, an exact homogenisation of a laminates is used to define a first homogeneous equivalent medium named HEM-1. After, the assumption of damaged material is taken into account by using the general framework given by M. Kachanov to evaluate the global behaviour of the damaged HEM-1 defining thus a second equivalent homogeneous medium noted HEM-2. The last step consists in using an asymptotic analysis technique which is performed to model HEM-2 as an interface or a joint. The properties of this joint are deduced from those of the HEM-2 material as proposed in former papers. Particularly, through the second homogenization are taken into account the variability of microcracks oriented family and simultaneously the opening-closure effects (unilateral behaviour). Numerically this interface is modelled with connector finite elements. Numerical results are compared to experimental ones available in the literature

    CDPM2: A damage-plasticity approach to modelling the failure of concrete

    Get PDF
    A constitutive model based on the combination of damage mechanics and plasticity is developed to analyse the failure of concrete structures. The aim is to obtain a model, which describes the important characteristics of the failure process of concrete subjected to multiaxial loading. This is achieved by combining an effective stress based plasticity model with a damage model based on plastic and elastic strain measures. The model response in tension, uni-, bi- and triaxial compression is compared to experimental results. The model describes well the increase in strength and displacement capacity for increasing confinement levels. Furthermore, the model is applied to the structural analyses of tensile and compressive failure.Comment: arXiv admin note: text overlap with arXiv:1103.128
    corecore