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Abstract
The aim of the present work is to propose a new micro-mechanical model in the con-
text of the deductive approach used to derive interface models. This model, based on a

previous study introduced previously by A. Rekik and F. Lebon [31, 32], is used to re-
produce the damage in masonry by combining structural analysis and homogenization
methods. The focal point of this method is to assume the existence of a third material,

called interphase, which is a mixture of the two principal constituents of masonry,
brick and mortar, and that is the interface between them. This new element presents a
low thickness, a low stiffness and a given damage ratio. The mechanical problem of

masonry, initially a 3D problem, is solved numerically as a 2D problem using finite
element methods. The properties of the interface brick-mortar material are obtained

using three essentials steps. First of all, an exact homogenisation of a laminates is
used to define a first homogeneous equivalent medium named HEM-1. After, the as-
sumption of damaged material is taken into account by using the general framework

given by M. Kachanov [13, 24, 35, 36] to evaluate the global behaviour of the dam-
aged HEM-1 defining thus a second equivalent homogeneous medium noted HEM-2.

The last step consists in using an asymptotic analysis technique which is performed
to model HEM-2 as an interface or a joint. The properties of this joint are deduced
from those of the HEM-2 material as proposed in former papers [2, 15, 17, 34]. Par-

ticularly, through the second homogenization are taken into account the variability of
microcracks oriented family and simultaneously the opening-closure effects (unilat-
eral behaviour). Numerically this interface is modelled with connector finite elements.

Numerical results are compared to experimental ones available in the literature [7].

Keywords: Masonry, interfaces, damage, homogenization, microcracks, unilateral
effects, asymptotic analysis.



1 Introduction

Historically, the masonry is considered one of the oldest building material although
its mechanical behaviour is still the subject of many research activities. It is usually
described as a composite material formed by units (bricks, natural stones, marble,

granite, limestone, concrete block, etc.) and joint, with or without adhesive compo-
nent (mortar, concrete, clay, etc.), and different bond arrangements. Masonry is still

used nowadays to build houses because of its qualities of strength, solidity, durabil-
ity and fire resistance, and its elegant appearance, etc. It is certain that the problems
associated with modelling ancient and modern masonry structures are very different.

Physical evidence shows us that ancient masonry is a very complex material with
three-dimensional internal arrangement, usually unreinforced, but which can include

some form of traditional reinforcement. Moreover, these materials are associated with
complex structural systems, where the separation between architectural features and
structural elements is not always clear. However, masonry, which is not generally

thought to be a highly technological material, shows highly complex behaviour, due
in particular to the interactions between the components and the anisotropy induced
by the direction of the joints, which are a source of weakness. Even for simple geome-

tries and far from failure loadings, masonry structures exhibit a mechanical response
affected by extreme stiffness contrast between constituents, randomness of contact

points between bricks where unilaterality and Coulomb friction dominate. The inter-
play between extreme stiffness contrast and randomness on the one hand and reg-
ularity of the fabric on the other, yields stress distributions within masonry walls

that may present localized stress paths, evidencing stress concentrations and stress
relieves. It is classically held that the seismic vulnerability of masonry buildings de-
pends strongly on their resistance to shear forces. It is therefore of great interest to

model and test the shear responses of building components subjected to loading of
this kind, especially cyclic loading. These responses have generally been character-

ized by a peak load, loss of rigidity and energy dissipation. To summarize consider-
ably, two methods of modelling masonry structures have been used so far. The first
method involves macroscopic models, in which the wall is assumed to be a single

structural element characterized by a non linear response when it is exposed to shear
forces [5, 11, 23, 26, 27, 29, 33]. In continuum macro-models bricks, mortar and

brick-mortar interfaces are smoothed out into an homogeneous continuum, the aver-
age properties of which are identified at the level of the constituents, taking their ge-
ometric arrangement into account [20, 22]. This technique is particularly indicated in

global modelization of unreinforced masonry structures in which the very low tensile
strength of the material renders the use of non-linear constitutive behaviour more ob-
vious. This is particularly true in the assessment of existing structures and in seismic

analysis. To describe the inelastic behaviour of structural masonry, some authors have
combined homogenization techniques with a continuum damage mechanics approach

[2, 38]. On the other hand, somemodels of micro-analysis school have been developed
for predicting the evolution of damage into interface between two initially bonded de-
formable bodies [7, 9, 16, 18, 24, 25, 30, 35]. Twomainmodelling approaches used for



this purpose are phenomenological modelling and deductive modelling. In the first ap-

proach, the thickness of the interface is taken to be zero and the mechanical properties
are obtained from physical considerations and experiments (see for example [3, 8–10]

and references therein). The second approach consists in focusing on the thin layers
materials at the micro-mechanical level, which are usually called the interphase. Sev-
eral authors [1, 14, 15, 17, 19, 21, 28] have established that the interface elements

reflect the main interactions occurring between bricks and mortar. For this reason,
various studies have been presented for modelling the behaviour of interfaces with
zero thickness and predicting their failure modes. Some studies [6], for example, ex-

pressed the constitutive law at the interface in terms of contact traction and the relative
displacements of two surfaces interacting at the joint. The fracture of the joint and the

subsequent sliding are associated with the interface yield condition. Method based on
limit analysis combined with a homogenization technique was shown [5] to be a pow-
erful structural analysis tool, giving accurate collapse predictions. The brittle damage

model developed in [2, 28] involves an elementary cell composed of units, mortar
and a finite number of fractures at the interfaces. In this paper, a multi-level model

for interfaces based on homogenization and asymptotic techniques is presented. This
model is based on a previous study proposed by A. Rekik and F. Lebon [31, 32]. The
first part of this paper gives an accurate version of the mechanical modelling approach

used. The multi-level approach used is described. This approach takes into account
the mechanical characteristics of the mortar and bricks, the presence of micro-cracks
and the thickness of the interface into. In the second part, the numerical procedure

used and implemented using a finite element software program is presented and some
numerical examples are given and compared with experimental data [7, 11].

2 An accurate version of the Rekik-Lebon model [31, 32]

Masonry units have generally been discretized using continuum elements, whereas
joints have been modelled in the form of weakness planes, using interface elements.
The main limitation of this approach is the fact that the interactions between joints

and brick units cannot be satisfactorily described. The most original feature of this
kind of model is that it includes a third material inserted between the units and mortar,

which accounts for the noticeable differences generally existing between the mechan-
ical properties of bricks and mortar. In order to model interface damage to masonry
structures, the present method based on homogenization theories, asymptotic tech-

niques and finite element methods was developed. The main steps involved in this
method will be described below. Most studies on masonry structures have dealt with
only two materials: brick and mortar. In the present work, it is assumed the exis-

tence of a third material: the brick/mortar interface, which is considered as a mixture
of brick and mortar with a crack density ρ . To obtain the effective properties of the
damaged intermediate material, three steps are performed. First it is calculated the
exact effective properties of the crack-free material using homogenization techniques
for laminate composites, for the sake of simplicity it is considered to have the same



volume fraction for both constituents, and thus define a first homogeneous equivalent

medium, which will be referred below as HEM-1. In the second step, it is assigned a
proper crack density ρ to the previous material. To model the macroscopic behaviour

of the cracked material HEM-1, it is used the Kachanov model and then it is defined a
new homogeneous equivalent medium HEM-2. Finally, in order to be sandwiched be-
tween the brick and mortar, this material is given a small thickness, and its mechanical

behaviour is derived using asymptotic techniques to shift from the micro to the macro
level. With this interface law, the masonry structure problem can be solved using finite
element methods.

The following overall scheme (Fig.1) describes the principles underlying the proposed
model:

Figure 1: Principle of the proposed model

2.1 Undamaged stratified composite homogenization

It is proposed first to obtain the mechanical properties of the 3D interphase material by
homogenizing those of brick and mortar. Both constituents are assumed to be isotropic

and linear elastic materials. In the compliance form, their constitutive law reads:

ε
ζ
i j = S

ζ
i jkl

σ
ζ
ik
=
1+νζ

Eζ
σ

ζ
i j −

νζ

Eζ
σ

ζ
kk

δi j (1)

where Sζ , Eζ and νζ are respectively the compliance tensor, the Young’s modulus
and the Poisson ratio of phase ζ (ζ = b for the brick, ζ = m for the mortar). The



macroscopic behaviour law of the laminate brick/mortar reads:

ε̄ = S̄0 : σ̄ where ε̄ = ∑
ζ=b,m

f ζ εζ = ∑
ζ=b,m

f ζSζ : σ ζ (2)

where f ζ denotes the volume fractions of phase ζ and S̄0 is the effective fourth-order
compliance tensor of the homogeneous equivalent crack-free material supposed to be

transversely isotropic . According to the modified Voigt notation, the macroscopic law
(2) reads:
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(3)
The five independent coefficients of the compliance tensor S̄0 are determined by

applying three independent loads. The same results may be found in [4], where the

macroscopic law of the laminate is given in the stiffness form C̄0 =
(

S̄0
)−1

.
For the sake of simplicity the model is developed assuming the plane stress hypothesis
in direction e2 on the effective material, so that the 3D problem is reduced to a 2D

problem in the (e1,e3) plane.

2.2 Homogenization of the micro-cracked composite

In this section, the material HEM-1 is assumed to contain an arbitrary distribution
of rectilinear cracks located on the plane (e1, e3) in a representative area A = L0ε ,
where L0 is the bed mortar length and ε is the thickness of the micro-cracked HEM-2
material. Kachanov et al. [24, 35] provided an accurate approximation of the effective

behaviour of such a material for open cracks; the average strain ε̄ in a solid with N
families of microcracks can be written in the form:

ε̄ = S̄ : σ̄ = (S̄0+∆S̄) : σ̄ (4)

where S̄ (resp. S̄0) is the effective compliance of the cracked (resp. crack-free) material
and

∆S̄i jhl =
1

2A

N
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[n
(k)
i n
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h B jl+n

(k)
i n

(k)
l B jh+Bihn

(k)
j n

(k)
l +Biln

(k)
j n

(k)
h ](l(k))2 (5)

in which 2l(k) and n(k) are mean length and normal of the kth family of cracks and A

is the area of the representative 2D-domain.
The second rank symmetric tensor B(k) can be called the crack compliance tensor of

the kth family of cracks, which depends on the anisotropy of the virgin material [36]:

B(k) = (C(1−D)e1⊗ e1+C(1+D)e3⊗ e3) (6)
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E01 , E
0
3 , ν0

13 and G
0
13 are the effective elastic engineering constants of the crack-free

material HEM-1. These constants are easily derived from the effective elastic compli-
ances S̄0 as follows:















































E01 =
1

S01111

E03 =
1

S03333

ν0
13 =−

S01133

S01111

G0
13 =

1

4S01313

(8)

We note in (7) the dependence of the sign of D on the anisotropy ratio E01/E
0
3 .

We consider here a single family of microcracks normal to direction e3 with mean
length 2l. Substituting (7) and (8) into (6), we obtain the change of elastic compliance:

∆S̄i jhl =
1

2
ρ [(e3⊗ e3)ihB jl+(e3⊗ e3)ilB jh+Bih(e3⊗ e3) jl+Bil(e3⊗ e3) jh] (9)

where ρ = 1/A∑(l)2 is the proper scalar crack density parameter in 2D case The
compliance of the cracked material HEM-2 is thus given by:
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The elastic constantsC and D are given by (7). The engineering constants E1, E3, ν13
and G13 of the cracked material HEM-2 are given by relations similar to (10) thus:
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2.3 Third step: asymptotic analysis and interface law

In this section, it is considered a thin joint composed of the material defined above,
which is sandwiched between brick and mortar. Since the joint is thin and soft, it
is natural to use asymptotic techniques, to study the limit problem (by tending the

thickness to zero) and to replace the joint by an interface law defined along the limit
surface. It is taken ε to denote the thickness of the joint, which is assumed to be

constant and S to denote the limit surface of the joint (a line in 2D), corresponding to
a thickness equal to zero (see fig. 2). We take C to denote the elasticity tensor of the
joint and limci jkl/ε = c̄i jkl . The limits are assumed to exist. We take [ ] to denote the

Figure 2: the principle of the asymptotic techniques in a 2-D case

jump along S. We obtain

σ0
i3 = C̄i3i3

[

u0i
]

It is found an interface law which links the stress vector to the jump in the displace-
ment via a diagonal matrix. It is important to remark that this is a simplified choice

to reduce the continuous model of interface material to a simple mechanistic model
obtained considering springs in the normal and tangential direction. In this case, the
termsCN andCT in this matrix (corresponding to the normal and the tangential springs

stiffnesses) are given by











CN = C̄3333(ε → 0) where C̄3333 =
C̄3333

ε

CT = C̄1313(ε → 0) where C̄1313 =
C̄1313

ε

(12)



Using expressions (12) and writing the crack density scalar in the form: ρ =
l2/ε L0, where L0 denotes the joint length, it can be established that the normal and
tangential joint stiffnesses read:











CN =
L0

2C(1+D) l2

CT =
L0

2C(1−D) l2

(13)

Note that the choice of HEM-1 is quite irrelevant because the same functions CN and

CT can be obtained with various combinations of HEM-1 and material parameters.
The present model takes the evolution of the micro-crack into account by taking a

Figure 3: Function describing the evolution of the crack half length with respect to the
applied shear stress

variable crack half length l depending on the load. For the sake of simplicity, it is first
assumed that the half length l depends only on the predominant tangential stress τ by
neglecting its dependence on the normal stress. For its evolution, it is assumed that l

remains constant l = lc until a certain value τc of the shear stress has been reached.
From this value, the crack half length l evolves linearly with respect to the shear stress
τ up to a second value of the crack length lu reached at the maximum shear stress

value τu. It is experimentally proved that this evolution law can accurately model the
response of a quasi-brittle non-confined masonry structure subjected to a shear load.

Fig. 3 describes the evolution of the half crack length with respect to the shear stress
τ . The first step (where l is constant) corresponds to a stable state of the interface
material in which crack propagation occurs. The second step (where l evolves linearly



as a function of the shear stress τ) includes the crack propagation, which leads to the
failure of the interface.
The values of the shear stresses τc and τu are fixed in advance, based on experimen-
tal ’stress-displacement’ diagrams obtained on various masonries subjected to shear
conditions. The values of the crack evolution law parameters (lc and lu) result from
the minimization of the difference between the numerical and experimental ’stress-

displacement’ diagrams.

3 Numerical modelling

In this section, some numerical results are illustrated and a brief review of the ex-
periments which validate this damage model is done. The main goal is to evaluate

the strain and damage distribution in the unreinforced and strengthened masonry pan-
els which are submitted to a predominant shear load, taking into account the non-
linear behaviour of the material. It is known from the laboratory experiences that this

strongly non-linear shear behaviour of the masonry is mainly governed by phenomena
that occur at the brick/mortar interface.

3.1 An outline on experimental validations

The local behaviour of the interfaces at mode I and mode II fracture of brick masonry
bed joints, which are typical quasi-brittle interfaces has been studied by various labo-

ratory experiments [11].
In the following, the capability of the proposed interface constitutive model in repre-
senting the behaviour of the brick/mortar joints under different load conditions is vali-

date by experimental results obtained by F. Fouchal et al. [7]. The experimental device
(Fig. 4) was designed to study on the local scale the shear behaviour of a simple as-
sembly consisting of two and three full or hollow bricks (210 mm×100 mm×50 mm)

connected by a mortar joint 10mm thick. The samples were subjected to a monotonous
increasing load up to failure.

Figure 4: a) Experimental device involving two bricks, b) Experimental device involv-

ing three bricks



The following findings were obtained :

• occurrence of two kinds of fracture processes, the fracture can occur along the
interface or it can begin along the interface and then it propagates into the mortar

joint;

• the variations in the shear stresses show that the stress concentration develops

in the regions containing the discontinuities

• rigid elastic behaviour up to the failure, followed by friction sliding behaviour;

• the behaviour of full bricks was fragile beyond the limit strength;

• the behaviour of hollow bricks was quasi-fragile beyond the limit strength;

• hollow brick samples showed great dispersion, mainly due to the non uniform

distribution of the mortar spikes and local defects in the components of the
bricks;

• samples consisting of two and three bricks showed similar behaviour, so the
choice of basic cell therefore has no effect on the local scale.

3.2 Numerical processing

For the first numerical processes and in according to experiments is chosen to study a
simple model: a triplet of three full bricks bounded by two mortar joints. The geomet-
rical and mechanical properties of the sample are totally in agreement with those used

in Fouchal’s experiments (Tab.1). The boundary conditions are given in Fig. 5. The
finite element method is used to perform the spatial discretization. In the subsequent
modelling study, only the interface’s behaviour will therefore be of importance and

not the basic components used. The principal goal of the model is to analyze inter-
face’s stiffness degradation caused by microcracks. To begin with a model as simple

as possible brick and mortar are assumed to be linear elastic isotropic materials. A
plane stress modelling is pursued using a regular mesh of four node quadrangular el-
ements having two degree of freedom per nodes, four Gauss integration points and

lagrangian polynomials as shape functions in displacement formulation. This classi-
cal mesh choice is used both for brick and mortar elements. For brick/mortar interface

elements quadrangular finite elements are chosen also. Their modelling is made ex-
plicit below.

Let us briefly recall the weak formulation of a standard elastic problem, having the

following form :

∫

Ω
Aε(u) .ε(v) dΩ −

∫

Γs
C [u].[v] dΓs =

∫

Ω
f vdΩ +

∫

Γ1
s .v dΓ1 (14)



Young’s moduli (MPa) of full brick 9438

Poisson ratio of full brick 0.13
Young’s moduli (MPa) of mortar 4000
Poisson ratio of mortar 0.3

Table 1: Mechanical properties of the three-fold masonry constituents

brick

brick
brick

m
o
rtar

m
o
rtar

Figure 5: Initial geometrical configuration and loading conditions imposed

where f and s denote the volume and the surface forces, respectively, Γs is part of the
boundary ∂Ω. A is the fourth order elasticity tensor, and C is the symmetric stiffness

matrix depending on the damage:

C =

(

CT 0

0 CN

)

(15)

Writing the displacement jump [u] = N δ [u], the discretization of the surface term is
obtained as follows:
∫

Γs
C [u].[v] dΓs = ∑

seg

∫

seg
δ [v] Nt C N δ [u] dx = ∑

seg

∫

seg
δ [v] Ṽ δ [u] dx (16)

A linear interpolation is performed (Fig. 6.a), taking x to denote the abscissa associ-
ated with the segment of length h. V el is the order (8×8) elementary matrix associated
with the length of the segment h, .

V el =

∫ h

0
Ṽ dx =

∫ h

0
Nt C N dx (17)

After proceeding to the assembly of the matrix, we then obtain the linear systemwhere
K and V are the rigidity matrix and the matrix associated with the damage interface,

respectively.

K δu −V δ [u] = F (18)



Figure 6: a) Displacement jump, b) Quadrangular element at the interface.

An incremental explicit algorithms is used to solve the local problem. Due to the

contact conditions, a fairly small step increment is chosen. The mesh consists of 665
Q4 finite elements for the whole domain and of 76 Q4 finite elements for brick/mortar
interfaces (Fig. 7). The loading on the middle brick ranges from 0 to 53 KN.
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Figure 7: Meshing detail

The main goal of computation consists in determining the stiffness values of the
interfaces,CN and CT . The values of the load parameters Fc and Fu (or stresses τc and
τu) are determined from the experimental ”load-displacement” curves [7]. The values
of the lengths lc and lu are chosen so that the numerical global response matches the
experimental ”stress-strain” (or ”stress-displacement”) diagram satisfactorily.

The rigidity of the assembly depends mainly on the interface stiffness as expected.
Since the problem is highly non linear, even small perturbations in the stiffness coef-
ficients can greatly affect the numerical responses. In Figs. 8 e 9 stiffnesses CN and

CT degradation with respect to load increments and with respect to the micro-crack
length l evolution are plotted.

The analysis of the shear stresses σxy distribution map (Fig. 11) reveals that the
stress concentration develops in the regions containing the discontinuities, or more
specifically, at the interface level. Moreover, Figs. 10 show the evolution of the jump
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in the tangential displacements depending on the shear stresses increasing values at
interface. When the yield is reached, it is observed a sudden change of the global
stiffness which predicts the degradation of the mechanical properties and the failure.

It is possible to conclude that the future failure of the triplet model occurs in
brick/mortar interface zone by the excess of the strain capability of this interphase,
which agrees with the experimentally observed failure mode.



0 1 2 3 4 5 6

x 10
−9

0

500

1000

1500

2000

2500

3000

gap displacement [u]
T
      [m]

s
h
e
a
r 

s
tr

e
s
s

σ
T
  
 [
K

P
a
]

0 0.5 1 1.5 2

x 10
−9

0

200

400

600

800

1000

1200

1400

1600

gap displacement [u]
T
      [m]

s
h
e
a
r 

s
tr

e
s
s

σ
T
  
 [
K

P
a
]

Figure 10: Shear stresses at final elements of highest stressed brick/mortar interface
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4 Conclusions

An accurate version of the multi-scale model proposed by A. Rekik and F. Lebon

[31, 32] it is presented here. It is successfully used to simulate the experimental tests
in which failure occurred at the brick/mortar interface presented in [7], which provided
the coefficients required to model the interface, namely the stiffness parameters and



the length of the micro-cracks. The model is sensitive to these characteristics but the

results obtained are in line with the experimental data. From the practical point of
view, an optimization routine is needed to systematically determine the values of the

parameters describing the evolution of the crack length. This idea will be applied to
more complex masonry structures in a future study.

It is proposed in the future to enrich this model with a more complete homoge-

nization technique, in particular the one performed by C. Goidescu and H. Welemane
[12, 37]. Their work is devoted to a continuum micromechanics-based investigation
of the anisotropic multi-linear response of orthotropic materials containing microc-

racks. This response is often a very complex combination of two specific features
of such deteriorating phenomenon. First, the oriented nature of microcracks induces
an evolution of the material symmetry. Secondly, a change in the elastic response of

the material is expected, based on opening-closure microcracks state with respect to
loading situations. Their procedure leads to the proposal of a closed-form expression

of the macroscopic free energy corresponding to two dimensional initially orthotropic
materials weakened by arbitrarily oriented microcracks systems.

In a future study, it is planned to implement and validate this enriched model

with a software suite for finite element analysis and computer-aided engineering like
ABAQUS.
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