3,708 research outputs found

    Proving Correctness of Graph Programs Relative to Recursively Nested Conditions

    Get PDF
    We propose a new specification language for the proof-based approach to verification of graph programs by introducing mu-conditions as an alternative to existing formalisms which can express path properties. The contributions of this paper are the lifting of constructions from nested conditions to the new, more expressive conditions and a proof calculus for partial correctness relative to mu-conditions. In particular, we exhibit and prove the correctness of a construction to compute weakest preconditions with respect to finite graph programs

    Towards a navigational logic for graphical structures

    Get PDF
    One of the main advantages of the Logic of Nested Conditions, defined by Habel and Pennemann, for reasoning about graphs, is its generality: this logic can be used in the framework of many classes of graphs and graphical structures. It is enough that the category of these structures satisfies certain basic conditions. In a previous paper [14], we extended this logic to be able to deal with graph properties including paths, but this extension was only defined for the category of untyped directed graphs. In addition it seemed difficult to talk about paths abstractly, that is, independently of the given category of graphical structures. In this paper we approach this problem. In particular, given an arbitrary category of graphical structures, we assume that for every object of this category there is an associated edge relation that can be used to define a path relation. Moreover, we consider that edges have some kind of labels and paths can be specified by associating them to a set of label sequences. Then, after the presentation of that general framework, we show how it can be applied to several classes of graphs. Moreover, we present a set of sound inference rules for reasoning in the logic.Peer ReviewedPostprint (author's final draft

    Verification of Graph Programs

    Get PDF
    This thesis is concerned with verifying the correctness of programs written in GP 2 (for Graph Programs), an experimental, nondeterministic graph manipulation language, in which program states are graphs, and computational steps are applications of graph transformation rules. GP 2 allows for visual programming at a high level of abstraction, with the programmer freed from manipulating low-level data structures and instead solving graph-based problems in a direct, declarative, and rule-based way. To verify that a graph program meets some specification, however, has been -- prior to the work described in this thesis -- an ad hoc task, detracting from the appeal of using GP 2 to reason about graph algorithms, high-level system specifications, pointer structures, and the many other practical problems in software engineering and programming languages that can be modelled as graph problems. This thesis describes some contributions towards the challenge of verifying graph programs, in particular, Hoare logics with which correctness specifications can be proven in a syntax-directed and compositional manner. We contribute calculi of proof rules for GP 2 that allow for rigorous reasoning about both partial correctness and termination of graph programs. These are given in an extensional style, i.e. independent of fixed assertion languages. This approach allows for the re-use of proof rules with different assertion languages for graphs, and moreover, allows for properties of the calculi to be inherited: soundness, completeness for termination, and relative completeness (for sufficiently expressive assertion languages). We propose E-conditions as a graphical, intuitive assertion language for expressing properties of graphs -- both about their structure and labelling -- generalising the nested conditions of Habel, Pennemann, and Rensink. We instantiate our calculi with this language, explore the relationship between the decidability of the model checking problem and the existence of effective constructions for the extensional assertions, and fix a subclass of graph programs for which we have both. The calculi are then demonstrated by verifying a number of data- and structure-manipulating programs. We explore the relationship between E-conditions and classical logic, defining translations between the former and a many-sorted predicate logic over graphs; the logic being a potential front end to an implementation of our work in a proof assistant. Finally, we speculate on several avenues of interesting future work; in particular, a possible extension of E-conditions with transitive closure, for proving specifications involving properties about arbitrary-length paths

    CoLoR: a Coq library on well-founded rewrite relations and its application to the automated verification of termination certificates

    Get PDF
    Termination is an important property of programs; notably required for programs formulated in proof assistants. It is a very active subject of research in the Turing-complete formalism of term rewriting systems, where many methods and tools have been developed over the years to address this problem. Ensuring reliability of those tools is therefore an important issue. In this paper we present a library formalizing important results of the theory of well-founded (rewrite) relations in the proof assistant Coq. We also present its application to the automated verification of termination certificates, as produced by termination tools

    Lazy Evaluation and Delimited Control

    Full text link
    The call-by-need lambda calculus provides an equational framework for reasoning syntactically about lazy evaluation. This paper examines its operational characteristics. By a series of reasoning steps, we systematically unpack the standard-order reduction relation of the calculus and discover a novel abstract machine definition which, like the calculus, goes "under lambdas." We prove that machine evaluation is equivalent to standard-order evaluation. Unlike traditional abstract machines, delimited control plays a significant role in the machine's behavior. In particular, the machine replaces the manipulation of a heap using store-based effects with disciplined management of the evaluation stack using control-based effects. In short, state is replaced with control. To further articulate this observation, we present a simulation of call-by-need in a call-by-value language using delimited control operations
    • …
    corecore