281 research outputs found

    Additive and Hybrid Nonlinear Two-Level Schwarz Methods and Energy Minimizing Coarse Spaces for Unstructured Grids

    Get PDF
    Nonlinear domain decomposition (DD) methods, such as, e.g., ASPIN (Additive Schwarz Preconditioned Inexact Newton), RASPEN (Restricted Additive Schwarz Preconditioned Inexact Newton), Nonlinear-FETI-DP, or Nonlinear-BDDC methods, can be reasonable alternatives to classical Newton-Krylov-DD methods for the solution of sparse nonlinear systems of equations, e.g., arising from a discretization of a nonlinear partial differential equation. These nonlinear DD approaches are often able to effectively tackle unevenly distributed nonlinearities and outperform Newton’s method with respect to convergence speed as well as global convergence behavior. Furthermore, they often improve parallel scalability due to a superior ratio of local to global work. Nonetheless, as for linear DD methods, it is often necessary to incorporate an appropriate coarse space in a second level to obtain numerical scalability for increasing numbers of subdomains. In addition to that, an appropriate coarse space can also improve the nonlinear convergence of nonlinear DD methods. In this paper, four variants how to integrate coarse spaces in nonlinear Schwarz methods in an additive or multiplicative way using Galerkin projections are introduced. These new variants can be interpreted as natural nonlinear equivalents to well-known linear additive and hybrid two-level Schwarz preconditioners. Furthermore, they facilitate the use of various coarse spaces, e.g., coarse spaces based on energy-minimizing extensions, which can easily be used for irregular domain decompositions, as, e.g., obtained by graph partitioners. In particular, Multiscale Finite Element Method (MsFEM) type coarse spaces are considered, and it is shown that they outperform classical approaches for certain heterogeneous nonlinear problems. The new approaches are then compared with classical Newton-Krylov-DD and nonlinear one-level Schwarz approaches for different homogeneous and heterogeneous model problems based on the p-Laplace operator

    Nonlinear Preconditioning: How to use a Nonlinear Schwarz Method to Precondition Newton's Method

    Get PDF
    For linear problems, domain decomposition methods can be used directly as iterative solvers, but also as preconditioners for Krylov methods. In practice, Krylov acceleration is almost always used, since the Krylov method finds a much better residual polynomial than the stationary iteration, and thus converges much faster. We show in this paper that also for non-linear problems, domain decomposition methods can either be used directly as iterative solvers, or one can use them as preconditioners for Newton's method. For the concrete case of the parallel Schwarz method, we show that we obtain a preconditioner we call RASPEN (Restricted Additive Schwarz Preconditioned Exact Newton) which is similar to ASPIN (Additive Schwarz Preconditioned Inexact Newton), but with all components directly defined by the iterative method. This has the advantage that RASPEN already converges when used as an iterative solver, in contrast to ASPIN, and we thus get a substantially better preconditioner for Newton's method. The iterative construction also allows us to naturally define a coarse correction using the multigrid full approximation scheme, which leads to a convergent two level non-linear iterative domain decomposition method and a two level RASPEN non-linear preconditioner. We illustrate our findings with numerical results on the Forchheimer equation and a non-linear diffusion problem

    Composing Scalable Nonlinear Algebraic Solvers

    Get PDF
    Most efficient linear solvers use composable algorithmic components, with the most common model being the combination of a Krylov accelerator and one or more preconditioners. A similar set of concepts may be used for nonlinear algebraic systems, where nonlinear composition of different nonlinear solvers may significantly improve the time to solution. We describe the basic concepts of nonlinear composition and preconditioning and present a number of solvers applicable to nonlinear partial differential equations. We have developed a software framework in order to easily explore the possible combinations of solvers. We show that the performance gains from using composed solvers can be substantial compared with gains from standard Newton-Krylov methods.Comment: 29 pages, 14 figures, 13 table

    Nonlinear Schwarz preconditioning for nonlinear optimization problems with bound constraints

    Full text link
    We propose a nonlinear additive Schwarz method for solving nonlinear optimization problems with bound constraints. Our method is used as a "right-preconditioner" for solving the first-order optimality system arising within the sequential quadratic programming (SQP) framework using Newton's method. The algorithmic scalability of this preconditioner is enhanced by incorporating a solution-dependent coarse space, which takes into account the restricted constraints from the fine level. By means of numerical examples, we demonstrate that the proposed preconditioned Newton methods outperform standard active-set methods considered in the literature

    Domain decomposition preconditioning for non-linear elasticity problems

    Get PDF
    We consider domain decomposition techniques for a non-linear elasticity problem. Our main focus is on non-linear preconditioning, realized in the framework of additive Schwarz preconditioned inexact Newton (ASPIN) methods. The standard 1-level ASPIN method is extended to a 2-level method by adding a non-linear coarse solver. Numerical experiments show that the coarse component is necessary for scalability in terms of linear iterations inside the Newton loop. Moreover, for problems that are dominated by nonlinearities that are not localized in space the non-linear coarse iterations are crucial for achieving computational efficiency.publishedVersio

    Linear and nonlinear substructured Restricted Additive Schwarz iterations and preconditioning

    Get PDF
    Iterative substructuring Domain Decomposition (DD) methods have been extensively studied, and they are usually associated with nonoverlapping decompositions. It is less known that classical overlapping DD methods can also be formulated in substructured form, i.e., as iterative methods acting on variables defined exclusively on the interfaces of the overlapping domain decomposition. We call such formulations substructured domain decomposition methods. We introduce here a substructured version of Restricted Additive Schwarz (RAS) which we call SRAS. We show that RAS and SRAS are equivalent when used as iterative solvers, as they produce the same iterates, while they are substantially different when used as preconditioners for GMRES. We link the volume and substructured Krylov spaces and show that the iterates are different by deriving the least squares problems solved at each GMRES iteration. When used as iterative solvers, SRAS presents computational advantages over RAS, as it avoids computations with matrices and vectors at the volume level. When used as preconditioners, SRAS has the further advantage of allowing GMRES to store smaller vectors and perform orthogonalization in a lower dimensional space. We then consider nonlinear problems, and we introduce SRASPEN (Substructured Restricted Additive Schwarz Preconditioned Exact Newton), where SRAS is used as a preconditioner for Newton’s method. In contrast to the linear case, we prove that Newton’s method applied to the preconditioned volume and substructured formulation produces the same iterates in the nonlinear case. Next, we introduce two-level versions of nonlinear SRAS and SRASPEN. Finally, we validate our theoretical results with numerical experiments
    • …
    corecore