134,634 research outputs found

    On Constraint Satisfaction Problems below P

    Get PDF
    Symmetric Datalog, a fragment of the logic programming language Datalog, is conjectured to capture all constraint satisfaction problems (CSP) in L. Therefore developing tools that help us understand whether or not a CSP can be defined in symmetric Datalog is an important task. It is widely known that a CSP is definable in Datalog and linear Datalog iff that CSP has bounded treewidth and bounded pathwidth duality, respectively. In the case of symmetric Datalog, Bulatov, Krokhin and Larose ask for such a duality [2008]. We provide two such dualities, and give applications. In particular, we give a short and simple new proof of the result of Dalmau and Larose that "Maltsev + Datalog -> symmetric Datalog" [2008]. In the second part of the paper, we provide some evidence for the conjecture of Dalmau [2002] that every CSP in NL is definable in linear Datalog. Our results also show that a wide class of CSPs ---CSPs which do not have bounded pathwidth duality (e.g. the P-complete Horn-3Sat problem)--- cannot be defined by any polynomial size family of monotone read-once nondeterministic branching programs. We consider the following restrictions of the previous models: read-once linDat(suc) (1-linDat(suc)), and monotone readonce nondeterministic branching programs (mnBP1). Although restricted, these models can still define NL-complete problems such as directed st-Connectivity, and also nontrivial problems in NL which are not definable in linear Datalog. We show that any CSP definable by a 1-linDat(suc) program or by a poly-size family of mnBP1s can also be defined by a linear Datalog program. It also follows that a wide class of CSPs ---CSPs which do not have bounded pathwidth duality (e.g. the P-complete Horn-3Sat problem)--- cannot be defined by any 1-linDat(suc) program or by any poly-size family of mnBP1s

    Translationally Invariant Constraint Optimization Problems

    Get PDF
    We study the complexity of classical constraint satisfaction problems on a 2D grid. Specifically, we consider the complexity of function versions of such problems, with the additional restriction that the constraints are translationally invariant, namely, the variables are located at the vertices of a 2D grid and the constraint between every pair of adjacent variables is the same in each dimension. The only input to the problem is thus the size of the grid. This problem is equivalent to one of the most interesting problems in classical physics, namely, computing the lowest energy of a classical system of particles on the grid. We provide a tight characterization of the complexity of this problem, and show that it is complete for the class FPNEXPFP^{NEXP}. Gottesman and Irani (FOCS 2009) also studied classical translationally-invariant constraint satisfaction problems; they show that the problem of deciding whether the cost of the optimal solution is below a given threshold is NEXP-complete. Our result is thus a strengthening of their result from the decision version to the function version of the problem. Our result can also be viewed as a generalization to the translationally invariant setting, of Krentel's famous result from 1988, showing that the function version of SAT is complete for the class FPNPFP^{NP}. An essential ingredient in the proof is a study of the complexity of a gapped variant of the problem. We show that it is NEXP-hard to approximate the cost of the optimal assignment to within an additive error of Ω(N1/4)\Omega(N^{1/4}), for an N×NN \times N grid. To the best of our knowledge, no gapped result is known for CSPs on the grid, even in the non-translationally invariant case. As a byproduct of our results, we also show that a decision version of the optimization problem which asks whether the cost of the optimal assignment is odd or even is also complete for PNEXPP^{NEXP}.Comment: 75 pages, 13 figure

    The Complexity of Rooted Phylogeny Problems

    Full text link
    Several computational problems in phylogenetic reconstruction can be formulated as restrictions of the following general problem: given a formula in conjunctive normal form where the literals are rooted triples, is there a rooted binary tree that satisfies the formula? If the formulas do not contain disjunctions, the problem becomes the famous rooted triple consistency problem, which can be solved in polynomial time by an algorithm of Aho, Sagiv, Szymanski, and Ullman. If the clauses in the formulas are restricted to disjunctions of negated triples, Ng, Steel, and Wormald showed that the problem remains NP-complete. We systematically study the computational complexity of the problem for all such restrictions of the clauses in the input formula. For certain restricted disjunctions of triples we present an algorithm that has sub-quadratic running time and is asymptotically as fast as the fastest known algorithm for the rooted triple consistency problem. We also show that any restriction of the general rooted phylogeny problem that does not fall into our tractable class is NP-complete, using known results about the complexity of Boolean constraint satisfaction problems. Finally, we present a pebble game argument that shows that the rooted triple consistency problem (and also all generalizations studied in this paper) cannot be solved by Datalog

    Solving constraint-satisfaction problems with distributed neocortical-like neuronal networks

    Get PDF
    Finding actions that satisfy the constraints imposed by both external inputs and internal representations is central to decision making. We demonstrate that some important classes of constraint satisfaction problems (CSPs) can be solved by networks composed of homogeneous cooperative-competitive modules that have connectivity similar to motifs observed in the superficial layers of neocortex. The winner-take-all modules are sparsely coupled by programming neurons that embed the constraints onto the otherwise homogeneous modular computational substrate. We show rules that embed any instance of the CSPs planar four-color graph coloring, maximum independent set, and Sudoku on this substrate, and provide mathematical proofs that guarantee these graph coloring problems will convergence to a solution. The network is composed of non-saturating linear threshold neurons. Their lack of right saturation allows the overall network to explore the problem space driven through the unstable dynamics generated by recurrent excitation. The direction of exploration is steered by the constraint neurons. While many problems can be solved using only linear inhibitory constraints, network performance on hard problems benefits significantly when these negative constraints are implemented by non-linear multiplicative inhibition. Overall, our results demonstrate the importance of instability rather than stability in network computation, and also offer insight into the computational role of dual inhibitory mechanisms in neural circuits.Comment: Accepted manuscript, in press, Neural Computation (2018

    A Landscape Analysis of Constraint Satisfaction Problems

    Full text link
    We discuss an analysis of Constraint Satisfaction problems, such as Sphere Packing, K-SAT and Graph Coloring, in terms of an effective energy landscape. Several intriguing geometrical properties of the solution space become in this light familiar in terms of the well-studied ones of rugged (glassy) energy landscapes. A `benchmark' algorithm naturally suggested by this construction finds solutions in polynomial time up to a point beyond the `clustering' and in some cases even the `thermodynamic' transitions. This point has a simple geometric meaning and can be in principle determined with standard Statistical Mechanical methods, thus pushing the analytic bound up to which problems are guaranteed to be easy. We illustrate this for the graph three and four-coloring problem. For Packing problems the present discussion allows to better characterize the `J-point', proposed as a systematic definition of Random Close Packing, and to place it in the context of other theories of glasses.Comment: 17 pages, 69 citations, 12 figure

    A Simple Model to Generate Hard Satisfiable Instances

    Full text link
    In this paper, we try to further demonstrate that the models of random CSP instances proposed by [Xu and Li, 2000; 2003] are of theoretical and practical interest. Indeed, these models, called RB and RD, present several nice features. First, it is quite easy to generate random instances of any arity since no particular structure has to be integrated, or property enforced, in such instances. Then, the existence of an asymptotic phase transition can be guaranteed while applying a limited restriction on domain size and on constraint tightness. In that case, a threshold point can be precisely located and all instances have the guarantee to be hard at the threshold, i.e., to have an exponential tree-resolution complexity. Next, a formal analysis shows that it is possible to generate forced satisfiable instances whose hardness is similar to unforced satisfiable ones. This analysis is supported by some representative results taken from an intensive experimentation that we have carried out, using complete and incomplete search methods.Comment: Proc. of 19th IJCAI, pp.337-342, Edinburgh, Scotland, 2005. For more information, please click http://www.nlsde.buaa.edu.cn/~kexu/papers/ijcai05-abstract.ht

    Structural Decompositions for Problems with Global Constraints

    Full text link
    A wide range of problems can be modelled as constraint satisfaction problems (CSPs), that is, a set of constraints that must be satisfied simultaneously. Constraints can either be represented extensionally, by explicitly listing allowed combinations of values, or implicitly, by special-purpose algorithms provided by a solver. Such implicitly represented constraints, known as global constraints, are widely used; indeed, they are one of the key reasons for the success of constraint programming in solving real-world problems. In recent years, a variety of restrictions on the structure of CSP instances have been shown to yield tractable classes of CSPs. However, most such restrictions fail to guarantee tractability for CSPs with global constraints. We therefore study the applicability of structural restrictions to instances with such constraints. We show that when the number of solutions to a CSP instance is bounded in key parts of the problem, structural restrictions can be used to derive new tractable classes. Furthermore, we show that this result extends to combinations of instances drawn from known tractable classes, as well as to CSP instances where constraints assign costs to satisfying assignments.Comment: The final publication is available at Springer via http://dx.doi.org/10.1007/s10601-015-9181-

    Random subcubes as a toy model for constraint satisfaction problems

    Full text link
    We present an exactly solvable random-subcube model inspired by the structure of hard constraint satisfaction and optimization problems. Our model reproduces the structure of the solution space of the random k-satisfiability and k-coloring problems, and undergoes the same phase transitions as these problems. The comparison becomes quantitative in the large-k limit. Distance properties, as well the x-satisfiability threshold, are studied. The model is also generalized to define a continuous energy landscape useful for studying several aspects of glassy dynamics.Comment: 21 pages, 4 figure

    The power of linear programming for general-valued CSPs

    Full text link
    Let DD, called the domain, be a fixed finite set and let Γ\Gamma, called the valued constraint language, be a fixed set of functions of the form f:Dm→Q∪{∞}f:D^m\to\mathbb{Q}\cup\{\infty\}, where different functions might have different arity mm. We study the valued constraint satisfaction problem parametrised by Γ\Gamma, denoted by VCSP(Γ)(\Gamma). These are minimisation problems given by nn variables and the objective function given by a sum of functions from Γ\Gamma, each depending on a subset of the nn variables. Finite-valued constraint languages contain functions that take on only rational values and not infinite values. Our main result is a precise algebraic characterisation of valued constraint languages whose instances can be solved exactly by the basic linear programming relaxation (BLP). For a valued constraint language Γ\Gamma, BLP is a decision procedure for Γ\Gamma if and only if Γ\Gamma admits a symmetric fractional polymorphism of every arity. For a finite-valued constraint language Γ\Gamma, BLP is a decision procedure if and only if Γ\Gamma admits a symmetric fractional polymorphism of some arity, or equivalently, if Γ\Gamma admits a symmetric fractional polymorphism of arity 2. Using these results, we obtain tractability of several novel classes of problems, including problems over valued constraint languages that are: (1) submodular on arbitrary lattices; (2) kk-submodular on arbitrary finite domains; (3) weakly (and hence strongly) tree-submodular on arbitrary trees.Comment: A full version of a FOCS'12 paper by the last two authors (arXiv:1204.1079) and an ICALP'13 paper by the first author (arXiv:1207.7213) to appear in SIAM Journal on Computing (SICOMP
    • …
    corecore