
On Constraint Satisfaction Problems below P∗

László Egri

School of Computer Science, McGill University
Montreal, Canada
laszlo.egri@mail.mcgill.ca

Abstract
Symmetric Datalog, a fragment of the logic programming language Datalog, is conjectured to
capture all constraint satisfaction problems (CSP) in logarithmic space [10]. Therefore developing
tools that help us understand whether or not a CSP can be defined in symmetric Datalog is an
important task. A simple, well-known fact is that for any CSP, a fixed set of structures O (an
obstruction set) can be defined such that a CSP instance I is a yes-instance iff no structure in
O maps homomorphically to I. A CSP having X-duality means that the set O can be chosen to
have property X. It is widely known that a CSP is definable in Datalog and linear Datalog iff
that CSP has bounded treewidth [12] and bounded pathwidth duality [6], respectively. In the case
of symmetric Datalog, Bulatov, Krokhin and Larose ask for such a duality in [4]. We provide
two such dualities, and we give applications. In particular, we give a short and simple new proof
of the main result of [8] that “Maltsev + Datalog ⇒ symmetric Datalog”.

In the second part of the paper, we provide some evidence for the conjecture that every CSP
in nondeterministic logarithmic space (NL) is definable in the Datalog fragment linear Datalog
[6]. We recall that every problem in NL can be defined by a linear Datalog program with
negation and access to an order over the domain of its input (linDat(suc,¬)) [6, 13, 15], or
by a poly-size family of nondeterministic branching programs [20]. We consider the following
restrictions of the previous models: read-once linDat(suc) (1-linDat(suc)), and monotone read-
once nondeterministic branching programs (mnBP1). Although restricted, these models can still
define NL-complete problems such as directed st-Connectivity, and also nontrivial problems in
NL which are not definable in linear Datalog. We show that any CSP definable by a 1-linDat(suc)
program or by a poly-size family of mnBP1s can also be defined by a linear Datalog program.
It also follows that a wide class of CSPs–CSPs which do not have bounded pathwidth duality
(e.g. the P-complete Horn-3Sat problem)–cannot be defined by any 1-linDat(suc) program or
by any poly-size family of mnBP1s.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases Constraint satisfaction problems, complexity classes, Datalog fragments

Digital Object Identifier 10.4230/LIPIcs.CSL.2011.203

1 Introduction

Constraint satisfaction problems (CSP) constitute a unifying framework to study various
computational problems arising naturally in various branches of computer science, including
artificial intelligence, graph homomorphisms, and database theory. Loosely speaking, an
instance of a CSP consists of a list of variables and a set of constraints, each specified by an
ordered tuple of variables and a constraint relation over some specified domain. The goal is

∗ Research supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).
We thank Benoit Larose and Pascal Tesson for useful discussions and comments. We also thank the
anonymous referees for their in-depth reviews.

© László Egri;
licensed under Creative Commons License ND

Computer Science Logic 2011 (CSL’11).
Editor: Marc Bezem; pp. 203–217

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62916457?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CSL.2011.203
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

204 On Constraint Satisfaction Problems below P

then to determine whether variables can be assigned domain values such that all constraints
are simultaneously satisfied.

Recent efforts have been directed at classifying the complexity of the so-called nonuniform
CSP. For a fixed finite set of finite relations Γ, CSP(Γ) denotes the nonuniform CSP
corresponding to Γ. The difference between an instance of CSP(Γ) and an instance of the
general CSP is that constraints in an instance of CSP(Γ) take the form (xi1 , . . . , xik) ∈ R
for some R ∈ Γ. Examples of nonuniform CSPs include k-Sat, Horn-3Sat, Graph
H-Coloring, and many others.

For a relational structure B, the homomorphism problem HOM(B) takes a structure
A as input, and the task is to determine if there is a homomorphism from A to B. For
instance, consider structures that contain a single symmetric binary relation, i.e. graphs. A
homomorphism from a graph G to a graph H is a mapping from VG to VH such that any edge
of G is mapped to an edge of H. If H is a graph with a single edge then HOM(H) is the set
of graphs which are two-colorable. There is a well-known and straightforward correspondence
between the CSP and the homomorphism problem. For this reason, from now on we work
only with the homomorphism problem instead of the CSP. Nevertheless, we call HOM(B) a
CSP and we also write CSP(B) instead of HOM(B), as it is often done in the literature.

The CSP is of course NP-complete, and therefore research has focused on identifying
“islands” of tractable CSPs. The well-known CSP dichotomy conjecture of Feder and Vardi
[12] states that every CSP is either tractable or NP-complete, and progress towards this
conjecture has been steady during the last fifteen years. From a complexity-theoretic
perspective, the classification of CSP(B) as in P or being NP-complete is rather coarse and
therefore somewhat dissatisfactory. Consequently, understanding the fine-grained complexity
of CSPs gained considerable attention during the last few years. Ultimately, one would like
to know the precise complexity of a CSP lying in P, i.e. to identify a “standard” complexity
class for which a given CSP is complete. Towards this, it was established that Schaefer’s
P− NP dichotomy for Boolean CSPs [19] can indeed be refined: each CSP over the Boolean
domain is either definable in first order logic, or complete for one of the classes L, NL, ⊕L,
P or NP under AC0-reductions [2]. The question whether some form of this fine-grained
classification extends to non-Boolean domains is rather natural. The two most important
tools to study CSPs whose complexity is below P are symmetric Datalog and linear Datalog,
syntactic restrictions of the database-inspired logic programming language Datalog. We
say that co-CSP(B)–the complement of CSP(B)–is definable in (linear, symmetric) Datalog
if the set of structures that do not homomorphically map to B is accepted by a (linear,
symmetric) Datalog program.1

Symmetric Datalog programs can be evaluated in logarithmic space (L), and in fact, it
is conjectured that if co-CSP(B) is in L then it can also be defined in symmetric Datalog
[10]. There is a considerable amount of evidence supporting this conjecture (see, for example,
[10, 9, 8, 16, 5]), and therefore providing tools to show whether co-CSP(B) can be defined
in symmetric Datalog is an important task. It is well known and easy to see that for any
structure B, there is a set of structures O, called an obstruction set, such that a structure A
homomorphically maps to B iff there is no structure in O that homomorphically maps to A.
In fact, there are many possible obstruction sets for any structure B. We say that B has
duality X, if B has an obstruction set which has the special property X. The following two
well-known theorems relate definability of co-CSP(B) in Datalog and linear Datalog to B

1 The reason we define co-CSP(B) instead of CSP(B) in (linear, symmetric) Datalog is a technicality
explained in Section 2.5.

László Egri 205

having bounded treewidth duality and bounded pathwidth duality, respectively:
1. co-CSP(B) is definable in Datalog iff B has bounded treewidth duality [12];
2. co-CSP(B) is definable in linear Datalog iff B has bounded pathwidth duality [6].

It was stated as an open problem in [4] to find a duality for symmetric Datalog in the
spirit of the previous two theorems. We provide two such dualities: symmetric bounded
pathwidth duality (SBPD) and piecewise symmetric bounded pathwidth duality (PSBPD).
We note that SBPD is a special case of PSBPD. For both bounded treewidth and bounded
pathwidth duality, the structures in the obstruction sets are restricted to have some special
form. For SBPD and PSBPD the situation is a bit more subtle. In addition that we require
the obstruction sets to contain structures only of a special form (they must have bounded
pathwidth), the obstruction sets must also possess a certain “symmetric closure” property.
To the best of our knowledge, this is the first instance of a duality where in addition to the
local requirement that each structure must be of a certain form, the set must also satisfy an
interesting global requirement.

Using SBPD, we give a short and simple new proof of the main result of [8] that “Maltsev
+ Datalog ⇒ symmetric Datalog”. Considering the simplicity of this proof, we suspect
that SBPD (or PSBPD) could be a useful tool in an attempt to prove the symmetric
Datalog conjecture [16], a conjecture that proposes an algebraic characterization of all CSPs
lying in L. An equivalent form of this conjecture is that “Datalog + n-permutability ⇒
symmetric Datalog” (by combining results from [14],[3] and [17]), where n-permutability is a
generalization of Maltsev.

One way to gain more insight into the dividing line between CSPs in L and NL is through
studying the complexity of CSPs corresponding to oriented paths. The only known thing
regarding the complexity of these CSPs is that they are all in NL (by combining results from
[11, 7, 6]). To make progress in this direction, it is natural to ask whether there are oriented
paths for which the CSP is NL-complete and L-complete. We provide two classes of oriented
paths, C1 and C2, such that for any B1 ∈ C1, the corresponding CSP is NL-complete, and for
any B2 ∈ C2, the corresponding CSP is L. In fact, it can be seen with the help of [16] that
for most B2 ∈ C2, CSP(B2) is L-complete. To prove the membership of CSP(B2) in L (for
B2 ∈ C2), we use PSBPD in an essential way. One can hope to build on this work to achieve
an L-NL dichotomy for oriented paths.

In the second part of the paper, we investigate CSPs in NL. Based on the observation
that any CSP known to be in NL is also known to be definable by a linear Datalog program,
Dalmau conjectured that every CSP in NL can be defined by a linear Datalog program [6].
Linear Datalog(suc,¬) (linDat(suc,¬)) denotes the extension of linear Datalog in which we
allow negation and access to an order over the domain of the input. It is known that any
problem in NL can be defined by a linDat(suc,¬) program [6, 13, 15], and therefore one
way to prove the above conjecture would be to show that any CSP that can be defined by
a linDat(suc,¬) program can also be defined by a linear Datalog program. We consider a
restriction of the conjecture because proving it in its full generality would separate NL from
P (using [1]).

Read-once linear Datalog(suc) (1-linDat(suc)) is a subclass of linDat(suc,¬), but a subclass
that has interesting computational abilities, and for which we are able to find the chink in the
armor. We can easily define some NL-complete problems in 1-linDat(suc), such as the CSP
directed st-connectivity (st-Conn), and also problems that are not homomorphism-closed,
such as determining if the input graph is a clique on 2n vertices, n ≥ 1. Because any problem
that can be defined with a linear Datalog program must be homomorphism closed, it follows
that 1-linDat(suc) can define nontrivial problems which are in NL but which are not definable

CSL’11

206 On Constraint Satisfaction Problems below P

by any linear Datalog program. However, our main result shows that if co-CSP(B) can be
defined by a 1-linDat(suc) program, then co-CSP(B) can also be defined by a linear Datalog
program. The crux of our argument applies the general case of the Erdős-Ko-Rado theorem
to show that a 1-linDat(suc) program does not have enough “memory” to handle structures
of unbounded pathwidth.

Our proof establishing the above result for 1-linDat(suc) programs can be adapted to
show a parallel result for a subclass of nondeterministic branching programs, which constitute
an important and well-studied class of computational models (see the book [20]). More
precisely, we show that if co-CSP(B) can be defined by a poly-size family of read-once2
monotone nondeterministic branching programs (mnBP1(poly)) then co-CSP(B) can also
be defined by a linear Datalog program.3

Finally, our results can be interpreted as lower-bounds on a wide class of CSPs: if B
does not have bounded pathwidth duality, then co-CSP(B) cannot be defined with any
1-linDat(suc) program or with any mnBP1(poly). A specific example of such a CSP would
be the P-complete Horn-3Sat problem, and more generally, Larose and Tesson showed that
any CSP whose associated variety admits the unary, affine or semilattice types does not have
bounded pathwidth duality (see [16] for details).

2 Preliminaries

2.1 Algebra

A vocabulary (or signature) is a finite set of relation symbols with associated arities. The
arity function is denoted with ar(·). If A is a relational structure over a vocabulary τ , then
RA denotes the relation of A associated with the symbol R ∈ τ . The lightface equivalent of
the name of the structure denotes the universe of the structure, e.g. the universe of A is A.

A tuple structure Ã over a vocabulary τ is a set of pairs (R, t) where R ∈ τ and t
is an ar(R)-tuple. We associate a domain Ã with a tuple structure: Ã contains every
element that appears in some tuple in A, and possibly some other elements. Clearly, tuple
structures are equivalent to relational structures. If A is a relational structure, we denote the
equivalent tuple structure with Ã, and vice versa. For convenience, we use the two notations
interchangeably. We note that all structures in this paper are finite.

Let B be a structure of the same signature as A. A homomorphism from A to B is a map
f from A to B such that f(RA) ⊆ RB for each R ∈ τ . A structure is called a core if it has
no homomorphism to any of its proper substructures. If there exists a homomorphism from
A to B, we often denote it with A→ B. If that homomorphism is f , we write A f−→ B. We
denote by CSP(B) the class of all τ -structures A such that A→ B, and by co-CSP(B) the
complement of CSP(B). If we are given a class of τ -structures C such that for any A ∈ C,
and any B such that A→ B it holds that B ∈ C, then we say that C is homomorphism-closed.
Isomorphism closure is defined in a similar way.

An n-ary operation on a set A is a map f : An → A. Given an h-ary relation R and
an n-ary operation f on the same set A, we say that f preserves R or that R is invariant
under f if the following holds: given any matrix M of size h× n whose columns are in R,

2 Our read-once restriction for nondeterministic branching programs is less stringent than the usual
definition because we require the programs to be read-once only on certain inputs.

3 A 1-linDat(suc) can be converted into an mnBP1(poly), so another way to present our results would be
to do the proofs in the context of mnBP1s, and then to conclude the parallel result for 1-linDat(suc).

László Egri 207

applying f to the rows of M produces an h-tuple in R. A polymorphism of a structure B is
an operation f that preserves each relation in B.

I Definition 1 (Maltsev Operation). A ternary operation f : A3 → A on a finite set A is
called Maltsev if it satisfies the following identities: f(x, y, y) = f(y, y, x) = x, ∀x, y ∈ A.

2.2 Datalog
We provide only an informal introduction to Datalog and its fragments, and the reader can
find more details, for example, in [18, 6, 10]. Datalog is a database-inspired query language
whose connection with CSP-complexity is now relatively well understood (see e.g. [3]). Let τ
be some finite vocabulary. A Datalog program over τ is specified by a finite set of rules of
the form h← b1 ∧ · · · ∧ bt, where h and the bi are atomic formulas R(x1, . . . , xk). When we
specify the variables of an atomic formula, we always list the variables from left to right, or
we simply provide a tuple x of variables whose i-th variable is x[i]. We distinguish two types
of relational predicates occurring in a Datalog program: predicates I that occur at least once
in the head of a rule (i.e., its left-hand side) are called intensional database predicates (IDBs)
and are not in τ . The predicates which occur only in the body of a rule (its right-hand side)
are called extensional database predicates (EDBs) and must all lie in τ . A rule that contains
no IDB in the body is called a nonrecursive rule, and a rule that contains at least one IDB in
the body is called a recursive rule. A Datalog program contains a distinguished IDB of arity
0 which is called the goal predicate; a rule whose head IDB is a goal IDB is called a goal rule.

Linear Datalog is a syntactic restriction of Datalog in which there is at most one IDB in
the body of each rule. The class of linear Datalog programs that contains only rules with at
most k variables and IDBs with at most j ≤ k variables is denoted with linear (j, k)-Datalog.
We say that the width of such a linear Datalog program is (j, k).

Symmetric Datalog is a syntactic restriction of linear Datalog. A linear Datalog program
P is symmetric if for any recursive rule I(x) ← J(y) ∧ Ē(z) of P (except for goal rules),
where Ē(z) is a shorthand for the conjunction of the EDBs of the rule over variables in z,
the symmetric pair J(y)← I(x) ∧ Ē(z) of that rule is also in P. The width of a symmetric
Datalog program is defined similarly to the width of a linear Datalog program.

We explain the semantics of linear (symmetric) Datalog using derivations (it could also
be explained with fixed point operators, but that would be inconvenient for the proofs). Let
P be a linear Datalog program with vocabulary τ . A P-derivation with codomain D is a
sequence of pairs D = (ρ1, λ1), . . . , (ρq, λq), where ρ` is a rule of P , and λ` is a function from
the variables V` of ρ` to D, ∀` ∈ [q]. The sequence D must satisfy the following properties.
Rule ρ1 is nonrecursive, and ρq is a goal rule. For all ` ∈ [q − 1], the head IDB I of ρ` is the
IDB in the body of ρ`+1, and if the variables of I in the head of ρ` and the body of ρ`+1 are
x and y, respectively, then λ`(x[i]) = λ`+1(y[i]), ∀i ∈ [ar(I)].

Let R(z) be an EDB with variables in some rule ρ` of a derivation D . Then we write
R(t) to denote that λ`(z) = t, i.e. that λ` instantiates the variables of R(z) to t, and we say
that R(t) appears in ρ`, or less specifically, that R(t) appears in D . Given a structure A and
a derivation D with codomain A for a program P , we say that D is a derivation for A if for
every R(t) that appears in a rule of D , (R, t) ∈ Ã. We denote a P-derivation for a structure
A with DP(A). A linear (symmetric) Datalog program P accepts an input structure A if
there exists a P-derivation for A.

I Definition 2 (Read-Once Derivation). We say that a derivation D is read-once if every
R(t) that appears in D appears exactly once in D , except when R is the special EDB suc,
first, or last, defined in Section 4.

CSL’11

208 On Constraint Satisfaction Problems below P

An example is given in Fig. 1. The vocabulary is τ =
{
E2, S1, T 1}, where the superscripts

denote the arity of the symbols. Notice that in the symmetric Datalog program P, rules of
types 2 and 3 form a symmetric pair. It is not difficult to see that P accepts a τ -structure A
iff there is an oriented path (see Section 3.1) in EA from an element in SA to an element in
TA.

[rcl]I(x) ← S(x) (1)
I(y) ← I(x) ∧ E(x, y)(2)
I(x) ← I(y) ∧ E(x, y)(3)
G ← I(x) ∧ T (x)(4)

a

b
c

d

SG = {a}
TG = {d}

e
f g

I(a)

S(a)

I(b)

E(a, b)

I(c) I(d) G

E(c, b) E(c, d) T (d)

ρ1 ρ2 ρ3 ρ4 ρ5

λ1(x) = a λ2(x) = a
λ2(y) = b

λ3(x) = c
λ3(y) = b

λ4(x) = c
λ4(y) = d

λ5(x) = d

Figure 1 Top left: Symmetric Datalog program P. Top right: Input structure G where
the binary relation EG is specified by the digraph. Bottom: Visualization of a P-derivation
DP(G) = (ρ1, λ1), . . . , (ρ5, λ5) for G, where ρ1 is nonrecursive, ρ2, ρ4 are rules of type 2, ρ3 is a rule
of type 4, and ρ5 is the goal rule. For example, the dashed box corresponds to rule ρ2, and it is the
rule I(y)← I(x) ∧ E(x, y) of P, where λ2 assigns a to variable x and b to variable y. Observe that
DP(G) is read-once.

2.3 Path-Decompositions and Derivations
I Definition 3. [Path-Decomposition] Let S be a τ -structure. A (j, k)-path-decomposition
of S is a sequence S0, . . . , Sn−1 of subsets of A such that
1. For every (R, (a1, . . . , aar(R))) ∈ Ã, ∃` ∈ {0, . . . , n− 1} such that

{
a1, . . . , aar(R)

}
⊆ S`;

2. If a ∈ Si ∩ Si′ (i < i′) then a ∈ S` for all i < ` < i′;
3. ∀` ∈ {0, . . . , n− 1}, |S`| ≤ k, and ∀` ∈ {0, . . . , n− 2}, |S` ∩ S`+1| ≤ j.

For ease of notation, it will be useful to introduce a concept closely related to path-
decompositions. Let τ be a vocabulary. Let S be a τ -structure that can be expressed as
S = S0 ∪ · · · ∪ Sn−1, where the S0, . . . , Sn−1 (the universes of the Si) satisfy properties 2
and 3 above. Note that ∪ here denotes union, not disjoint union of τ -structures. We say that
S is a (j, k)-path, and that (S0, . . . ,Sn−1) is a (j, k)-path representation of S. We denote
(j, k)-path representations with script letters, e.g. S = (S0, . . . ,Sn−1). The substructure
Si ∪ · · · ∪ Si′ of S (assuming a (j, k)-representation is fixed) is denoted with S[i,j]. We call
n the length of the representation. Obviously, a structure is a (j, k)-path iff it admits a
(j, k)-path-decomposition.

Let D = (ρ1, λ1), . . . , (ρq, λq) be a derivation for some linear or symmetric program P
with vocabulary τ . We can extract from D a τ -structure Ex(D) such that D is a derivation
for Ex(D). We specify Ex(D) as a tuple structure Ã: for each R(t) that appears in D

László Egri 209

(R ∈ τ), we add the pair (R, t) to Ã, and set Ã to be the set of those elements that appear
in a tuple.

Let D = (ρ1, λ1), . . . , (ρq, λq) be a derivation. For each x that is in a rule ρ` for some
` ∈ [q], call x` the indexed version of x. We define an equivalence relation Eq(D) on the set
of indexed variables of D . First we define a graph G = (V,E) as:

V is the set of all indexed versions of variables in D ;
(x`, y`′) ∈ E if `′ = `+ 1, x is the i-th variable of the head IDB I of ρ`, and y is the i-th
variable of the body IDB I of ρ`+1.

Two indexed variables x` and y`′ are related in Eq(D) if they are connected in G. Observe
that if C =

{
x`1

1 , x
`2
2 , . . . , x

`c
c

}
is a connected component of G, then it must be that

λ`1(x1) = λ`2(x2) = · · · = λ`c
(xc).

I Definition 4 (Free Derivation). Let P be a linear Datalog program and D = (ρ0, λ0), . . . ,
(ρq, λq) be a derivation for P. Then D is said to be free if for any two (x`, y`′) 6∈ Eq(D),
λ`(x) 6= λ`′(y).

Intuitively, this definition says that D is free if any two variables in D which are not “forced”
to have the same value are assigned different values.

2.4 Canonical Programs
Fix a τ -structure B and j ≤ k. Let Q1, . . . , Qn be all possible at most j-ary relations over B.
The canonical linear (j, k)-Datalog program for B ((j, k)-CanL(B)) contains an IDB Im of the
same arity as Qm for each m ∈ [n]. The rule Ic(x)← Id(y) ∧ Ē(z) belongs to the canonical
program if it contains at most k variables, and the implication Qc(x)← Qd(y)∧ Ē(z) is true
for all possible instantiation of the variables to elements of B. The goal predicate of this
program is the 0-ary IDB Ig, where Qg = ∅.

The canonical symmetric (j, k)-Datalog program for B ((j, k)-CanS(B)) has the same
definition as (j, k)-CanL(B), except that it has less rules due to the following additional
restriction. If Ic(x)← Id(y)∧ Ē(z) is in the program, then both Qc(x)← Qd(y)∧ Ē(z) and
Qd(y)← Qc(x)∧ Ē(z) must hold for all possible instantiation of the variables to elements of
B. The program (j, k)-CanS(B) is obviously symmetric. When it is clear from the context,
we write CanL(B) and CanS(B) instead of (j, k)-CanL(B) and (j, k)-CanS(B), respectively.

2.5 Defining CSPs
The following discussion applies not just to Datalog but also to its symmetric and linear
fragments. It is easy to see that the class of structures accepted by a Datalog program is
homomorphism-closed, and therefore it is not possible to define CSP(B) in Datalog. However,
it is often possible to define co-CSP(B) in Datalog. The following definition is key.

I Definition 5 (Obstruction Set). A set O of τ -structures is called an obstruction set for B,
if for any τ -structure A, A 6→ B iff there exists S ∈ O such that S→ A.

If O above can be chosen to have property X, then we say that B has X-duality.

3 On CSPs in symmetric Datalog

3.1 Definitions
An oriented path is a digraph obtained by orienting the edges of an undirected path, i.e.
an oriented path has vertices v0, . . . , vq+1 and edges e0, . . . , eq, where ei is either (vi, vi+1),

CSL’11

210 On Constraint Satisfaction Problems below P

or (vi+1, vi). The length of an oriented path is the number of edges it contains. We call
(vi, vi+1) a forward edge and (vi+1, vi) a backward edge. Oriented paths can be thought of as
relational structures over the vocabulary

{
E2}, so we denote them with boldface letters.

For an oriented path P, we can find a mapping level : P → {0, 1, 2, . . . } such that
level(b) = level(a) + 1 whenever (a, b) is an edge of P. Clearly, there is a unique such
mapping with the smallest possible values. The level of an edge (a, b) of P is level(a), i.e. the
level of the starting vertex of (a, b). The height(P) of an oriented path P is maxa∈P level(a).
We say that an oriented path P is minimal if there is precisely one vertex a such that
level(a) = 0, and precisely one vertex b such that level(b) = height(P).

A zigzag operator ξ takes a (j, k)-path representation S = (S0, . . . ,Sn−1) of a (j, k)-path
S and a minimal oriented path P = e0, . . . , eq such that height(P) = n, and it returns
another (j, k)-path ξ(S ,P). Intuitively, ξ(S ,P) is the (j, k)-path S “modulated” by P such
that the forward and backward edges ei of P are mimicked in ξ(S ,P) by “forward and
backward” copies of Slevel(ei). Before the formal definition, it could help the reader to look
at the right side of Fig. 2, where the oriented path used to modulate the (j, k)-path over
the vocabulary E2 (i.e. digraphs) with representation (S0,S1,S2) is P on the left side. The
right side is a more abstract example, and the reader might find it useful after reading the
definition.

We inductively define the (j, k)-path ξ(S ,P) as (Se0 ,Se1 , . . . ,Seq) together with a
sequence of isomorphisms ϕe0 , ϕe1 , . . . , ϕeq

, where ϕei
is an isomorphism from Sei

to Slevel(ei),
0 ≤ i ≤ q. For the base case, we define Se0 to be an isomorphic copy of S0, and ϕe0 to
be the isomorphism that maps Se0 back to S0. Assume inductively that Se0 , . . . ,Sei−1 and
ϕe0 , . . . , ϕei−1 are already defined. Let S′ei

be an isomorphic copy of Slevel(ei) with domain
disjoint from Se0 ∪ · · · ∪ Sei−1 , and fix ϕ′ei

to be the isomorphism that maps back S′ei
to

Slevel(ei). We “glue” S′ei
to Sei−1 by renaming some elements of S′ei

to elements of Sei−1 . To
facilitate understanding, we can think of the already constructed structures Se0 , . . . ,Sei−1 as
labels of the edges e0, . . . , ei−1 of P, respectively, and we want to determine Sei

, the label of
the next edge. The connection between Sei−1 and Sei

will be defined such that Sei−1 and
Sei “mimic” the orientation of the edges ei−1 and ei.

We resume our formal definition. Set ` = level(ei), and let `′ = `− 1 if ei is a forward
edge, and `′ = `+ 1 if ei is a backward edge. If an element x ∈ S′ei

and an element y ∈ Sei−1

are both copies of the same element a ∈ S` ∩ S`′ , then rename x to y in S′ei
. After all such

elements are renamed, S′ei
becomes Sei . That is, for all a ∈ S` ∩ S`′ , rename ϕ′−1

ei
(a) in S′ei

to ϕ−1
ei−1

(a) to obtain Sei
.

We define the isomorphism ϕei from Sei to Slevel(ei) as:

ϕei
(x) =

{
ϕ′ei

(x) if x ∈ Sei
and x 6∈ Sei−1

ϕei−1(x) if x ∈ Sei ∩ Sei−1 .

3.2 Two Dualities for Symmetric Datalog
The two main theorems (Theorems 9 and 16) of this section can be combined to obtain:

I Theorem 6. For a finite structure B, TFAE:
1. There is a symmetric Datalog program that defines co-CSP(B);
2. B has symmetric bounded pathwidth duality (for some parameters);
3. B has piecewise symmetric bounded pathwidth duality (for some parameters).
Details follow.

László Egri 211

S0

S1

S2

e0

e1 e3

e4

e2

Se0

Se2 Se3

Se4

ba b′a′

dc

S P ξ(S ,P)

d′′c′′

b′′a′′

Se1

d′c′

S0

S1

S2

Se0

Se2 Se3

Se4

Se1

S ξ(S ,P)

ξ

Figure 2 Left: Applying a zigzag operator to the (j, k)-path S with the (j, k)-representation
S = (S0,S1,S2). Suppose that S0 ∩ S1 = {a, b} and S1 ∩ S2 = {c, d}. We demonstrate how Se0

and Se2 are obtained. Se0 is a disjoint copy of S0 (and the copy of a and b in Se0 are a′ and b′,
respectively). To obtain Se2 , first make a disjoint copy S′

e2 of Slevel(e2) = S1. Set ` = level(e2) = 1.
Since e1 is a forward edge and e2 is a backward edge, `′ = ` + 1 = 2. Therefore to “glue” S′

e2 to
Se1 , we need to look at S` ∩ S`′ = {c, d}. Assume that the copy of c and d in Se1 are c′ and d′,
respectively. Furthermore, assume that the copy of c and d in S′

e2 are c̃ and d̃, respectively. To
obtain Se2 , we rename c̃ to c′, and d̃ to d′ in S′

e2 . Right: A specific example when S0,S1,S2 are the
digraphs in the boxes. The dashed lines indicate identification of vertices.

3.2.1 Symmetric Bounded Pathwidth Duality
IDefinition 7 ((j, k)-symmetric). Assume thatO is a set of (j, k)-paths. Suppose furthermore
that a (j, k)-path representation can be fixed for each structure in O such that the following
holds. For every S ∈ O with representation S of some length n, and every minimal oriented
path P of height n, it holds that ξ(S ,P) ∈ O. Then O is said to be (j, k)-symmetric.

I Definition 8 (SBPD). A structure B has (j, k)-symmetric bounded pathwidth duality
((j, k)-SBPD) if there is an obstruction set O for B that consists of (j, k)-paths, and in
addition, O is (j, k)-symmetric.

I Theorem 9. For a finite structure B, co-CSP(B) can be defined by a symmetric (j, k)-
Datalog program if and only if B has (j, k)-SBPD.

To prove Theorem 9, first we prove Lemma 10 using the standard canonical Datalog
argument:

I Lemma 10. If CanS(B) accepts a structure A, then A 6→ B.

The following is the main technical lemma of the section.

I Lemma 11. For any τ -structures A and B, if there exists a structure S with a (j, k)-path
representation S of some length n such that S→ A, and for any minimal oriented path P
of height n, it holds that ξ(S ,P) 6→ B, then (j, k)-CanS(B) accepts A.

Proof of Theorem 9. If CSP(B) is defined by a symmetric (j, k)-Datalog program P, then
using the symmetric property of P, it is laborious but straightforward to show that

O =
⋃

D is a free
derivation of P

{Ex(D)}

CSL’11

212 On Constraint Satisfaction Problems below P

is a (j, k)-symmetric obstruction set for B.
For the converse, assume that B has (j, k)-SBPD. Let O be a symmetric obstruction set

of width (j, k) for B. We claim that (j, k)-CanS(B) defines CSP(B). Assume that A→ B.
Then by Lemma 10, (j, k)-CanS(B) does not accept A. Suppose now that A 6→ B. Then by
assumption, there exists a (j, k)-path S ∈ O with a representation S of length n such that
S→ A. Furthermore, since O is symmetric, for any minimal oriented path P of height n,
ξ(S ,P) 6→ B. It follows from Lemma 11 that CanS(B) accepts A. J

From the above proof it is obvious that:

I Corollary 12 ([8]). If a symmetric (j, k)-Datalog program defines CSP(B), then so does
(j, k)-CanS(B).

3.2.2 Piecewise Symmetric Bounded Pathwidth Duality
Piecewise symmetric bounded pathwidth duality (PSBPD) for symmetric Datalog is less
stringent than SBPD; however, the price is larger program width. Although the following
definitions might seem technical, the general idea is simple: a piecewise symmetric obstruction
set O does not need to contain all (j, k)-paths obtained by zigzagging (j, k)-paths in O in
all possible ways. It is sufficient to zigzag a (j, k)-path S using only oriented paths which
“avoid” certain segments of S: some constants c and d are fixed for O, and there are at most
c fixed segments of S that are avoided by the zigzag operator, each of size at most d. We
give the formal definitions.

I Definition 13 ((c, d)-filter). Let S be a (j, k)-path with a representation S = S0, . . . ,Sn−1.
A (c, d)-filter F for S is a set of intervals {[s1, t1], [s2, t2], . . . , [sc′ , tc′]} such that

c′ ≤ c; 0 ≤ s1; tc′ ≤ n− 1; si ≤ ti,∀i ∈ [c′]; and t` + 2 ≤ s`+1,∀` ∈ [c′ − 1];
|
⋃
i∈[s`,t`] Si| ≤ d,∀` ∈ [c′].

Elements of F are called delimiters. An oriented path P of height n obeys a (c, d)-filter F

if for any delimiter [si, ti] ∈ F , the set of edges e of P such that si ≤ level(e) ≤ ti form a
(single) directed path. A demonstration is given in Fig. 3.

S FS P

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

Figure 3 S is a (j, k)-path representation of S. FS is the (3, 2k)-filter {[0, 0][3, 4][7, 8]} for S .
P is an oriented path that obeys the filter. For example, observe that the edges at levels 3 and 4
form a directed subpath, and that “zigzagging” happens only at those parts of P that do not fall
into the intervals of the filter.

I Definition 14 (Piecewise Symmetric). Assume that O is a set of (j, k)-paths, and c and d
are nonnegative integers. Suppose furthermore that for each S ∈ O, there is a (j, k)-path
representation S , and a (c, d)-filter FS such that the following holds. For every S ∈ O of
some length n, and every minimal oriented path P of height n that obeys the filter FS, it
holds that ξ(S ,P) ∈ O. Then O is (j, k, c, d)-piecewise symmetric.

László Egri 213

Roughly speaking, an oriented path P is allowed to modulate only those segments of S

which do not correspond to any delimiters in FS. Compare Definition 14 with Definition 7,
and observe that the only difference is that in the piecewise case, the oriented paths must
be of a restricted form. Therefore a set that is (j, k)-symmetric is also (j, k, c, d)-piecewise
symmetric for any c and d. We simply associate the empty (c, d)-filter with each structure.

I Definition 15 (PSBPD). A structure B has (j, k, c, d)-piecewise symmetric bounded path-
width duality ((j, k, c, d)-PSBPD) if there is an obstruction set O for B that consists of
(j, k)-paths, and in addition, O is (j, k, c, d)-piecewise symmetric.

I Theorem 16. For a finite structure B, B has SBPD (for some parameters) if and only if
B has PSBPD (for some parameters).

3.3 Applications
3.3.1 Datalog + Maltsev ⇒ symmetric Datalog
Using SBPD, we give a short and simple re-proof of the main result of [8]:

I Theorem 17 ([8]). Let B be a finite core structure. If B is invariant under a Maltsev
operation and co-CSP(B) is definable in Datalog, then co-CSP(B) is definable in symmetric
Datalog (and therefore CSP(B) is in L by [10]).

We only need to show that if co-CSP(B) is in linear Datalog and B is preserved by a
Maltsev operation, then co-CSP(B) is in symmetric Datalog. The “jump” from Datalog
to linear Datalog essentially follows from already established results, as observed in [8].
Therefore to re-prove Theorem 17, we show the following lemma using an SBPD argument.

I Lemma 18. If co-CSP(B) is definable by a linear Datalog program and B is invariant
under a Maltsev operation m, then co-CSP(B) is definable by a symmetric Datalog program.

To get ready for the proof of Lemma 18, we define an N of size s as an oriented path that
consists of s forward edges, followed by s backward edges, followed by another s forward
edges. Proposition 19 is easy to prove, and the Maltsev properties are used in Lemma 20.

I Proposition 19. A minimal oriented path is either a directed path, or it contains a subpath
which is an N .

I Lemma 20. Let B be a structure invariant under a Maltsev operation m, S be a (j, k)-path
with a (j, k)-representation S = (S0, . . . ,Sn−1), and P = e0, . . . , eq be a minimal oriented
path of height n. If ξ(S ,P)→ B, then S→ B.

Proof. Using Proposition 19, there is an index t such that Q = et, et+1, . . . , et+(3s−1) is an
N of size s in P. Assume that the first and last vertices of Q are v and w, respectively.
Let P′ be the oriented path obtained from P by removing Q, and adding a directed path
Q′ = ft, ft+1, . . . , ft+(s−1) of length s from v to w. We claim that there is a homomorphism γ

from ξ(S ,P′) to B. Once this is established, a repetition of this argument sufficiently many
times yields that S → B because if we repeatedly “remove” N -s from a minimal oriented
path, eventually we must reach a directed path.

Let ξ(S ,P) = (Se0 , . . . ,Seq
), and ϕe0 , . . . , ϕeq

be the corresponding isomorphisms (recall
the zigzag operator definition in Section 3.1). Similarly, let ξ(S ,P′) = (Sf0 , . . . ,Sfq−2s

),
and ψf0 , . . . , ψfq−2s

be the corresponding isomorphisms. Because S[e0,et−1] and S[et+3s,eq] are
isomorphic to S[f0,ft−1] and S[ft+s,fq−2s], respectively, γ for elements in S[f0,ft−1]∪S[ft+s,eq−2s]
is defined in the natural way. It remains to define γ for every d ∈ S[ft,ft+(s−1)].

CSL’11

214 On Constraint Satisfaction Problems below P

Assume that d ∈ Sft+`
for some ` ∈ {0, . . . , s− 1}. Find the original of d in S and let it be

do, i.e. do = ψft+`
(d). Then we find the three copies d1, d2, d3 of do in S[ft,ft+(3s−1)]. That is,

first we find the three edges e`1 , e`2 , e`3 of Q which have the same level as ft+` (all levels are
with respect to P and P′). Then di = ϕ−1

e`i
(do), i ∈ [3]. We define γ(d) = m(d1, d2, d3). By the

Maltsev properties of m, γ is well-defined. As B is invariant under m, ξ(S ,P′) γ−→ B. J

Proof of Lemma 18. If co-CSP(B) can be defined by a linear (j, k)-Datalog program, then
there is an obstruction set O for B in which every structure is a (j, k)-path by [6]. We
construct a symmetric obstruction set Osym for B as follows. First we define a sequence of
sets O1,O2, . . . inductively, where O1 = O. To construct Oi+1, for every (j, k)-path S with
a (j, k)-representation S = S0, . . . ,Sn−1 in Oi, and any minimal oriented path P of height
n, place ξ(S ,P) into Oi+1. Set Osym =

⋃
1≤iOi. By construction Osym is symmetric.

Observe that O ⊆ Osym, so it remains to show that no element of Osym maps to B.
For contradiction, take an element T ∈ Osym such that T → B. By definition of Osym,
there is a T0 ∈ O and a sequence of oriented paths P1, . . . ,Pd such that T is obtained from
T0 as follows. First T1 = ξ(T0,P1) was constructed (and placed into O1), where T0 is a
(j, k)-path representation of T0. Then T2 = ξ(T1,P2) was constructed (and placed into O2),
where T1 is a (j, k)-path representation of T1, and so on, until Td = T is constructed. We
find the largest i such that Ti 6→ B. Lemma 20 tells us that if Ti+1 → B, then Ti → B, a
contradiction. J

3.3.2 A class of oriented paths for which the CSP is in L, and a class
for which the CSP is NL-complete

In this section we define a class C of oriented paths such that if B ∈ C then co-CSP(B) is
in symmetric Datalog. Our strategy is to find an obstruction set O for B ∈ C, and then to
show that our obstruction set is piecewise symmetric. We need some notation.

We say that a directed path is forward to mean that its first and last vertices are the
vertices with indegree zero and outdegree zero, respectively. Let P be an oriented path with
first vertex v and last vertex w. Then the reverse of P, denoted with P̄, is a copy of the
oriented path P in the reverse direction, i.e. the first vertex of P̄ is a copy of w and its last
vertex is a copy of v. Let Q be another oriented path. The concatenation of P and Q is the
oriented path PQ in which the last vertex of P is identified with the first vertex of Q. For a
nonnegative integer r, Pr denotes P1P2 . . .Pr, where the P` are disjoint copies of P. Given
two vertices v and w, we denote the presence of an edge from v to w with v → w.

I Definition 21 (Wave). If an oriented path Q can be expressed as E1(PP̄)rPE2, where
Ei (i ∈ [2]) denotes the forward directed path that is a single edge, P is a forward directed
path of length `, and r ≥ 0, then Q is called an `-wave. A 2-wave is shown in Fig. 4, 1.

I Theorem 22. Let Q be a wave. Then Q has PSBPD, co-CSP(Q) is definable in symmetric
Datalog, and CSP(Q) is in L.

We state the following generalization of waves.

I Definition 23 (Staircase). A monotone wave is an oriented path of the form (P̄P)rP̄,
where P is a forward directed path and r ≥ 0. We call the vertices of a monotone wave in
the topmost level peaks, and the vertices in the bottommost level troughs.

If a minimal oriented path Q can be expressed as P1W1P2W2 . . .Pn−1Wn−1Pn, where
P1, . . . ,Pn are forward directed paths, W1, . . . ,Wn−1 are monotone waves, and for any
i ∈ [n− 1], the troughs of Wi are in a level strictly below the level of the troughs of Wi+1,

László Egri 215

and also, the peaks of Wi are in a level strictly below the level of the peaks of Wi+1, then
Q is called a staircase. An example is given in Fig. 4, 2.

I Theorem 24. Let Q be a staircase. Then Q has PSBPD, co-CSP(Q) is definable in
symmetric Datalog, and CSP(Q) is in L.

We also give a large class of oriented paths for which the CSP is NL-complete.

I Theorem 25. Let B be a core oriented path that contains a subpath P1P2P3 of some
height h with the following properties: P1,P2 and P3 are minimal oriented paths, they
all have height h, and there is a minimal oriented path Q of height h such that Q → P1,
Q→ P3 but Q 6→ P2. Then CSP(B) is NL-complete.

An example is given in Fig. 4, 3 and 4.

P1

P2

P3

P4

P5

E1

E2

Q

1 2 3 4

P1

P2

P3

Figure 4 1: A 2-wave. 2: A staircase. 3: An example oriented path for which the CSP is
NL-complete. 4: The oriented path Q in Theorem 25 corresponding to the oriented path in 3.

4 On CSPs in NL

4.1 Preliminaries and Definitions
Let τ be a vocabulary. A successor τ -structure S is a relational structure with vocabulary
τ ∪ {first, last, suc}, where first and last are unary symbols and suc is a binary symbol. The
domain S is defined as {1, . . . , n}, firstS = {1}, lastS = {n}, and sucS contains all pairs
(i, i+ 1), i ∈ [n− 1]. Because firstS, lastS and sucS depend only on n, they are called built-in
relations. When we say that a class of successor structures is homomorphism/isomorphism-
closed, all structures under consideration are successor structures, and we understand that
homomorphism/isomorphism closure, respectively, is required only for non-built-in relations.

I Definition 26 (Split Operation). A split operation produces a τ -structure A′ from a
τ -structure A as follows. For an element a ∈ A let Ta be defined as

Ta =
{

(t, R, i) | t = (t1, . . . , tr) ∈ RA where R ∈ τ , and ti = a
}
.

If |Ta| ≤ 1, no split operation can be applied. Otherwise we choose a strict nonempty
subset T of Ta, and for each triple (t, R, i) ∈ T , we replace t = (t1, . . . , tr) in RA with
(t1, . . . , ti−1, a

′, ti+1, . . . , tr) to obtain A′ (and A′ = A ∪ {a′}).

I Definition 27 (Split-Minimal, Critical). Let C be a class of structures over the same
vocabulary. We say that a structure A ∈ C is split-minimal in C if for every possible
nonempty sequence of split operations applied to A, the resulting structure is not in C. We
say that a structure A ∈ C is critical in C if no proper substructure of A is in C.

For a class of isomorphism-closed successor τ -structures, criticality and split-minimality
is meant only with respect to the non-built-in relations.

CSL’11

216 On Constraint Satisfaction Problems below P

I Definition 28 (Read-Once Datalog). Let P be a (linear, symmetric) Datalog program that
defines a class of structures C. If for every critical and split-minimal element of C there is a
P-derivation that is read-once, then we say that P is read-once.

I Definition 29 (Read-Once mnBP1). A monotone nondeterministic branching program
(mnBP) H with variables X = {x1, . . . , xn} computes a Boolean function fH : {0, 1}n →
{0, 1}. H is a directed graph with distinguished nodes s and t and some arcs labeled with
variables from X (not all arcs must be labeled). An assignment σ to the variables in X

defines in a natural way a subgraph Hσ of H. The function fH is defined as fH(σ) = 1 iff
Hσ has a directed path from s to t (an accepting path). The size of an mnBP is |VH |.

Let F be a poly-size family of mnBP1s (mnBP1(poly)) that defines a class of structures
C over a vocabulary τ . (The encoding is done in the straightforward manner, i.e. there is a
variable for every possible (R, t) where R ∈ τ and t is a tuple.) If for every structure in C
there is an accepting path that queries every variable at most once, then we say that F is
read-once. (This read-once condition can be made a bit weaker.)

We give some examples of problems definable by a 1-linDat(suc) program or by an
mnBP1(poly). The program in Section 2.2, Fig. 1 without rule 3 is a read-once linear
Datalog(suc) program that defines the problem directed st-Conn. To see that this program
Pst−Conn is read-once, let G be any input that is accepted (we do not even need G to be
critical and split-minimal). Then we find a directed path in EG connecting an element of
SG to an element of TG without repeated edges. We build a Pst−Conn-derivation for this
path in the obvious way.

Let EvenCliques be the class of undirected graphs which are cliques of even size. A bit of
work shows that EvenCliques can be defined with a 1-linDat(suc) program. In fact, we can
easily test much more complicated arithmetic properties than the property of being even (e.g.
being a power of k) with a 1-linDat(suc) program. We note that EvenCliques or “cliques
with any domain size property” cannot be defined by a linear Datalog program because
a (nontrivial) set of cliques is never closed under homomorphisms. Since a 1-linDat(suc)
program can be converted into an mnBP1(poly), the aforementioned problems can also be
defined with an mnBP1(poly).

4.2 Main Results
We simply state the results for 1-linDat(suc) and poly-size families of mnBP1s discussed in
the Introduction.

I Theorem 30. Let C be a homomorphism-closed class of successor τ -structures. If C can
be defined by a 1-linDat(suc) program of width (j, k), then every critical and split-minimal
element of C has a (j, k + j)-path-decomposition.

I Corollary 31. If co-CSP(B) can be defined by a 1-linDat(suc) program of width (j, k), then
co-CSP(B) can also be defined by a linear (j, k + j)-Datalog program.

I Theorem 32. Let C be a homomorphism-closed class of successor τ -structures. If C can be
defined by a family of mnBP1s of size O(nj), then every critical and split-minimal element
of C has a (j, r + j)-path-decomposition, where r is the maximum arity of the symbols in τ .

I Corollary 33. If co-CSP(B) can be defined by a family of mnBP1s of size O(nj), then
co-CSP(B) can also be defined by a linear (j, r+j)-Datalog program, where r is the maximum
arity of the relation symbols in the vocabulary of B.

László Egri 217

As discussed before, a wide class of CSPs–CSPs whose associated variety admits the unary,
affine or semilattice types–does not have bounded pathwidth duality [16]. It follows that all
these CSPs are not definable by any 1-linDat(suc) program, or with any mnBP1 of poly-size.
An example of such a CSP is the P-complete CSP Horn-3Sat.

References
1 F. Afrati and S. S. Cosmadakis. Expressiveness of restricted recursive queries. In Proceed-

ings of STOC, pages 113–126, 1989.
2 Eric Allender, Michael Bauland, Neil Immerman, Henning Schnoor, and Heribert Vollmer.

The complexity of satisfiability problems: Refining Schaefer’s theorem. J. Comput. Syst.
Sci., 75(4):245–254, 2009.

3 L. Barto and M. Kozik. Constraint satisfaction problems of bounded width. In Proceedings
of The 50th Annual Symposium on Foundations of Computer Science (FOCS), 2009.

4 A. Bulatov, A. Krokhin, and B. Larose. Dualities for constraint satisfaction problems. In
LNCS Surveys on Complexity of Constraints, volume 5250, pages 93–124. 2008.

5 C. Carvalho, L. Egri, M. Jackson, and T. Niven. On Maltsev digraphs. In Proceedings of
the 6th International Computer Science Symposium in Russia, 2011. To appear.

6 Víctor Dalmau. Constraint satisfaction problems in non-deterministic logarithmic space.
In Proceedings of the 29th International Colloquium on Automata, Languages and Program-
ming, ICALP ’02, pages 414–425. Springer-Verlag, 2002.

7 Víctor Dalmau and Andrei Krokhin. Majority constraints have bounded pathwidth duality.
Eur. J. Comb., 29(4):821–837, 2008.

8 Víctor Dalmau and Benoit Larose. Maltsev + Datalog → symmetric Datalog. In LICS,
pages 297–306, 2008.

9 László Egri, Andrei Krokhin, Benoit Larose, and Pascal Tesson. The complexity of the
list homomorphism problem for graphs. Theory of Computing Systems (Special Issue on
STACS 2010). To appear.

10 László Egri, Benoît Larose, and Pascal Tesson. Symmetric Datalog and constraint satisfac-
tion problems in logspace. In LICS, pages 193–202, 2007.

11 Tomás Feder. Classification of homomorphisms to oriented cycles and of k-partite satisfia-
bility. SIAM J. Discrete Math., 14(4):471–480, 2001.

12 Tomas Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through Datalog and group theory. SIAM Journal on
Computing, 28(1):57–104, 1999.

13 Erich Grädel. Capturing complexity classes by fragments of second-order logic. Theor.
Comput. Sci., 101(1):35–57, 1992.

14 D. Hobby and R.N. McKenzie. The Structure of Finite Algebras, volume 76 of Contemporary
Mathematics. American Mathematical Society, Providence, R.I., 1988.

15 Neil Immerman. Descriptive complexity. Graduate Texts in Computer Science. Springer,
1999.

16 Benoit Larose and Pascal Tesson. Universal algebra and hardness results for constraint
satisfaction problems. Theor. Comput. Sci., 410(18):1629–1647, 2009.

17 Benoit Larose and László Zádori. Bounded width problems and algebras. Algebra Univer-
salis, 56(3-4):439–466, 2007.

18 Leonid Libkin. Elements of finite model theory. Springer, 2004.
19 T.J. Schaefer. The complexity of satisfiability problems. In Proceedings of STOC, pages

216–226, 1978.
20 Ingo Wegener. Branching Programs and Binary Decision Diagrams. SIAM, 2000.

CSL’11

	Introduction
	Preliminaries
	Algebra
	Datalog
	Path-Decompositions and Derivations
	Canonical Programs
	Defining CSPs

	On CSPs in symmetric Datalog
	Definitions
	Two Dualities for Symmetric Datalog
	Symmetric Bounded Pathwidth Duality
	Piecewise Symmetric Bounded Pathwidth Duality

	Applications
	Datalog + Maltsev symmetric Datalog
	A class of oriented paths for which the CSP is in L, and a class for which the CSP is NL-complete

	On CSPs in NL
	Preliminaries and Definitions
	Main Results

