33 research outputs found

    On consideration of content preference and sharing willingness in D2D assisted offloading

    Get PDF
    Device-to-device (D2D) assisted offloading heavily depends on the participation of human users. The content preference and sharing willingness of human users are two crucial factors in the D2D assisted offloading. In this paper, with consideration of these two factors, the optimal content pushing strategy is investigated by formulating an optimization problem to maximize the offloading gain measured by the offloaded traffic. Users are placed into groups according to their content preferences, and share content with intergroup and intragroup users at different sharing probabilities. Although the optimization problem is nonconvex, the closed-form optimal solution for a special case is obtained, when the sharing probabilities for intergroup and intragroup users are the same. Furthermore, an alternative group optimization (AGO) algorithm is proposed to solve the general case of the optimization problem. Finally, simulation results are provided to demonstrate the offloading performance achieved by the optimal pushing strategy for the special case and AGO algorithm. An interesting conclusion drawn is that the group with the largest number of interested users is not necessarily given the highest pushing probability. It is more important to give high pushing probability to users with high sharing willingness

    An Economic Aspect of Device-to-Device Assisted Offloading in Cellular Networks

    Get PDF
    Traffic offloading via device-to-device (D2D) communications has been proposed to alleviate the traffic burden on base stations (BSs) and to improve the spectral and energy efficiency of cellular networks. The success of D2D communications relies on the willingness of users to share contents. In this paper, we study the economic aspect of traffic offloading via content sharing among multiple devices and propose an incentive framework for D2D assisted offloading. In the proposed incentive framework, the operator improves its overall profit, defined as the network economic efficiency (ECE), by encouraging users to act as D2D transmitters (D2D-Txs) which broadcast their popular contents to nearby users. We analytically characterize D2D assisted offloading in cellular networks for two operating modes: 1) underlay mode and 2) overlay mode. We model the optimization of network ECE as a two-stage Stackelberg game, considering the densities of cellular users and D2D-Tx’s, the operator’s incentives and the popularity of contents. The closedform expressions of network ECE for both underlay and overlay modes of D2D communications are obtained. Numerical results show that the achievable network ECE of the proposed incentive D2D assisted offloading network can be significantly improved with respect to the conventional cellular networks where the D2D communications are disabled

    Low-latency Data Uploading in D2D-enabled Cellular Networks

    Get PDF
    指導教員:姜 暁

    A review on green caching strategies for next generation communication networks

    Get PDF
    © 2020 IEEE. In recent years, the ever-increasing demand for networking resources and energy, fueled by the unprecedented upsurge in Internet traffic, has been a cause for concern for many service providers. Content caching, which serves user requests locally, is deemed to be an enabling technology in addressing the challenges offered by the phenomenal growth in Internet traffic. Conventionally, content caching is considered as a viable solution to alleviate the backhaul pressure. However, recently, many studies have reported energy cost reductions contributed by content caching in cache-equipped networks. The hypothesis is that caching shortens content delivery distance and eventually achieves significant reduction in transmission energy consumption. This has motivated us to conduct this study and in this article, a comprehensive survey of the state-of-the-art green caching techniques is provided. This review paper extensively discusses contributions of the existing studies on green caching. In addition, the study explores different cache-equipped network types, solution methods, and application scenarios. We categorically present that the optimal selection of the caching nodes, smart resource management, popular content selection, and renewable energy integration can substantially improve energy efficiency of the cache-equipped systems. In addition, based on the comprehensive analysis, we also highlight some potential research ideas relevant to green content caching

    Interference Management of Inband Underlay Device-toDevice Communication in 5G Cellular Networks

    Get PDF
    The explosive growth of data traffic demands, emanating from smart mobile devices and bandwidth-consuming applications on the cellular network poses the need to drastically modify the cellular network architecture. A challenge faced by the network operators is the inability of the finite spectral resources to support the growing data traffic. The Next Generation Network (NGN) is expected to meet defined requirements such as massively connecting billions of devices with heterogeneous applications and services through enhanced mobile broadband networks, which provides higher data rates with improved network reliability and availability, lower end-to-end latency and increased energy efficiency. Device-to-Device (D2D) communication is one of the several emerging technologies that has been proposed to support NGN in meeting these aforementioned requirements. D2D communication leverages the proximity of users to provide direct communication with or without traversing the base station. Hence, the integration of D2D communication into cellular networks provides potential gains in terms of throughput, energy efficiency, network capacity and spectrum efficiency. D2D communication underlaying a cellular network provides efficient utilisation of the scarce spectral resources, however, there is an introduction of interference emanating from the reuse of cellular channels by D2D pairs. Hence, this dissertation focuses on the technical challenge with regards to interference management in underlay D2D communication. In order to tackle this challenge to be able to exploit the potentials of D2D communication, there is the need to answer some important research questions concerning the problem. Thus, the study aims to find out how cellular channels can be efficiently allocated to D2D pairs for reuse as an underlay to cellular network, and how mode selection and power control approaches influence the degree of interference caused by D2D pairs to cellular users. Also, the research study continues to determine how the quality of D2D communication can be maintained with factors such as bad channel quality or increased distance. In addressing these research questions, resource management techniques of mode selection, power control, relay selection and channel allocation are applied to minimise the interference caused by D2D pairs when reusing cellular channels to guarantee the Quality of Service (QoS) of cellular users, while optimally improving the number of permitted D2D pairs to reuse channels. The concept of Open loop power control scheme is examined in D2D communication underlaying cellular network. The performance of the fractional open loop power control components on SINR is studied. The simulation results portrayed that the conventional open loop power control method provides increased compensation for the path loss with higher D2D transmit power when compared with the fractional open loop power control method. Furthermore, the problem of channel allocation to minimise interference is modelled in two system model scenarios, consisting of cellular users coexisting with D2D pairs with or without relay assistance. The channel allocation problem is solved as an assignment problem by using a proposed heuristic channel allocation, random channel allocation, Kuhn-Munkres (KM) and Gale-Shapley (GS) algorithms. A comparative performance evaluation for the algorithms are carried out in the two system model scenarios, and the results indicated that D2D communication with relay assistance outperformed the conventional D2D communication without relay assistance. This concludes that the introduction of relay-assisted D2D communication can improve the quality of a network while utilising the available spectral resources without additional infrastructure deployment costs. The research work can be extended to apply an effective relay selection approach for a user mobility scenario
    corecore