27 research outputs found

    Art of Modeling in Contact Mechanics

    No full text
    International audienceIn this chapter, we will first address general issues of the art and craft of modeling-contents, concepts, methodology. Then, we will focus on modeling in contact mechanics, which will give the opportunity to discuss these issues in connection with non-smooth problems. It will be shown that the non-smooth character of the contact laws raises difficulties and specificities at every step of the modeling process. A wide overview will be given on the art of mod-eling in contact mechanics under its various aspects: contact laws, their mechanical basics, various scales, underlying concepts, mathematical analysis, solvers, identification of the constitutive parameters and validation of the models. Every point will be illustrated by one or several examples. 1 Modeling: the bases It would be ambitious to try to give a general definition of the concept either of a model itself or of model processing. Modeling relates to the general process of production of scientific knowledge and also to the scientific method itself. It could be deductive (from the general to the particular, as privileged by Aristotle) or inductive (making sense of a corpus of raw data). Descartes (38) saw in the scientific method an approach to be followed step by step to get to a truth. Modeling can be effectively regarded as a scientific method that proceeds step by step, but its objective is more modest: to give sense of an observation or an experiment, and above all to predict behaviors within the context of specific assumptions. This concept of " proceeding step by step " is fundamental in modeling. In this first section, we will examine the notion of model in the general context of mechanical systems

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more

    Multiphysics simulations: challenges and opportunities.

    Full text link

    Annual Research Report 2020

    Get PDF

    Hodge Laplacians on simplicial meshes and graphs

    Get PDF
    We present in this dissertation some developments in the discretizations of exterior calculus for problems posed on simplicial discretization (meshes) of geometric manifolds and analogous problems on abstract simplicial complexes. We are primarily interested in discretizations of elliptic type partial differential equations, and our model problem is the Hodge Laplacian Poisson problem on differential k-forms on n dimensional manifolds. One of our major contributions in this work is the computational quantification of the solution using the weak mixed formulation of this problem on simplicial meshes using discrete exterior calculus (DEC), and its comparisons with the solution due to a different discretization framework, namely, finite element exterior calculus (FEEC). Consequently, our important computational result is that the solution of the Poisson problem on different manifolds in two- and three-dimensions due to DEC recovers convergence properties on many sequences of refined meshes similar to that of FEEC. We also discuss some potential attempts for showing this convergence theoretically. In particular, we demonstrate that a certain formulation of a variational crimes approach that can be used for showing convergence for a generalized FEEC may not be directly applicable to DEC convergence in its current formulation. In order to perform computations using DEC, a key development that we present is exhibiting sign rules that allow for the computation of the discrete Hodge star operators in DEC on Delaunay meshes in a piecewise manner. Another aspect of computationally solving the Poisson problem using the mixed formulation with either DEC or FEEC requires knowing the solution to the corresponding Laplace's problem, namely, the harmonics. We present a least squares method for computing a basis for the space of such discrete harmonics via their isomorphism to cohomology. We also provide some numerics to quantify the efficiency of this solution in comparison with previously known methods. Finally, we demonstrate an application to obtain the ranking of pairwise comparison data. We model this data as edge weights on graphs with 3-cliques included and perform its Hodge decomposition by solving two least squares problems. An outcome of this exploration is also providing some computational evidence that algebraic multigrid linear solvers for the resulting linear systems on Erdős-Rényi random graphs and on Barabási-Albert graphs do not perform very well in comparison with iterative Krylov solvers

    Seventh Copper Mountain Conference on Multigrid Methods

    Get PDF
    The Seventh Copper Mountain Conference on Multigrid Methods was held on 2-7 Apr. 1995 at Copper Mountain, Colorado. This book is a collection of many of the papers presented at the conference and so represents the conference proceedings. NASA Langley graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The multigrid discipline continues to expand and mature, as is evident from these proceedings. The vibrancy in this field is amply expressed in these important papers, and the collection shows its rapid trend to further diversity and depth

    Estimating Gear Teeth Stiffness

    Get PDF
    corecore