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Preface

These proceedings contain the papers presented at the 26th Nordic Seminar on
Computational Mechanics, held at the Center for Biomedical Computing hosted
by Simula Research Laboratory in Oslo, Norway, October 23-25 2013.

The Nordic Seminars on Computational Mechanics represent the major activity
of the Nordic Association for Computational Mechanics (NoACM). The NoACM
was founded in 1988 with the objective to stimulate and promote research and
practice in computational mechanics, to foster the interchange of ideas among
the various fields contributing to computational mechanics, and to provide fo-
rums and meetings for dissemination of knowledge in computational mechanics.
Younger researchers, in particular doctorate students, are especially encouraged
to take part at these seminars. The member countries of NoACM are the Nordic
countries (Denmark, Finland, Iceland, Norway and Sweden) and the Baltic coun-
tries (Estonia, Latvia and Lithuania). NoACM is a subchapter of the International
Association for Computational Mechanics (IACM) and the European Community
on Computational Methods in Applied Sciences (ECCOMAS).

This year’s seminar features plenary talks from Professor Erik Burman (Univer-
sity College London), Professor Elena Celledoni (Norwegian University of Sci-
ence and Technology NTNU), Associate Professor Jakob S. Jensen (Technical Uni-
versity of Denmark DTU), Dr. Juho Könnö (Wärtsilä), and Dr. Garth N. Wells
(Hibbit Reader in Solid Mechanics at the University of Cambridge). This year’s
seminar also includes two honorary sessions: a session in honor of Professor
Pål Bergan, and two sessions in honor of the 65th birthday of Professor Juhani
Pitkäranta and the 60th birthday of Professor Rolf Stenberg.

On behalf of the organizing committee, we express our great appreciation to all
contributors to the 26th Nordic Seminar on Computational Mechanics, including
plenary speakers, session organizers, the authors of these proceedings, speakers,
participants, and staff and students at Simula Research Laboratory.

Anders Logg, Kent-Andre Mardal and André Massing
Oslo, October 2013
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A stabilized Nitsche fictitious domain formulation for the
three-field Stokes problem

S. Claus1, E. Burman1 and A. Massing2

(1) Department of Mathematics, University College London, Gower Street, London WC1E
6BT, susanne.claus@ucl.ac.uk, e.burman@ucl.ac.uk
(2) Center for Biomedical Computing at Simula Research Laboratory, P.O. Box 134, 1325
Lysaker, massing@simula.no

Summary. We propose a Nitsche fictitious domain method for the three-field Stokes problem where
the dependent variables of velocity, pressure and extra-stress tensor are discretised with linear finite
elements. To stabilise the equal order approximation, we employ a continuous interior penalty (CIP)
method involving the normal gradient jumps of the velocity and pressure. On the unfitted boundary,
Dirichlet boundary conditions are weakly enforced using Nitsche’s method. Adding CIP-like ghost-
penalties in the vicinity of the boundary allows us to prove the inf-sup stability and optimal convergence
of our method and to bound the condition number independent of the location of the boundary with
respect to the computational mesh. Numerical examples corroborate the theoretical findings.

Key words: Three-field Stokes, continuous interior penalty, fictitious domain, ghost penalty, Nitsche’s

method

Introduction

The aim of our work is to develop a robust and efficient scheme for the simulation of viscoelas-
tic free surface flows in which the fluid surface undergoes large deformations. The free surface
flow of viscoelastic liquids plays a key role in a wide range of industrial applications such as
surface coating for molten plastics, filtration operations of engine oils or inkjet printing. In
all these applications, the surface of the liquid undergoes large deformations and drop detach-
ments may occur. The use of interface tracking techniques such as the arbitrary Lagrangian
Eulerian methods in which the mesh is fitted and moved with the interface involve frequent
re-meshing and sophisticated mesh moving algorithms that can be prohibitively expensive
for these challenging free surface flows. To circumvent this problem, we propose an unfitted
finite element method (e.g. [5], [6]) where the surface motion is tracked independently of the
mesh. Consequently, the fluid surface can intersect elements in the computational mesh in an
arbitrary manner. A major challenge for such an unfitted scheme is to achieve robustness and
optimal approximation properties independent of the interface location. In this contribution,
we develop a stabilised unfitted Nitsche method for a simple viscoelastic flow model problem
augmented with so-called ghost-penalties to ensure these properties.
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A continuous interior penalty method for three-field Stokes problem

The flow of a viscoelastic fluid is characterised by the conservation of mass, momentum and
a constitutive equation which relates the stress tensor to the rate of deformation. Here, we
assume the simplest constitutive relation of the stress tensor to the rate of deformation tensor
which is simply characterised by a constant viscosity η:

σσσ − 2ηϵϵϵ(u) = 0 in Ω. (1)

Together with the conservation of mass and momentum





−∇ · σσσ +∇p = f in Ω,

∇ · u = 0 in Ω,

u = g on Γ,

(2)

this system of equations forms the so-called three-field Stokes equations. Here, u is the
velocity, p is the pressure, σσσ is the extra-stress tensor, ϵϵϵ(u) = 1

2

�
∇u+∇uT

�
is the rate

of deformation tensor, f : Ω → Rd is the body force and g is a prescribed velocity on the
fluid surface Γ. In our scheme, we approximate the extra-stress tensor, the velocity and the
pressure in the finite element space of continuous, piecewise linears

Vh :=
�
vh ∈ C0(Ω) : vh|K ∈ P1(K) ∀K ∈ Th

�
, (3)

Vd
h :=

�
vh ∈ C0(Ω) : vh|K ∈ [P1(K)]d ∀K ∈ Th

�
, (4)

Vd×d
h :=

�
Sh ∈ C0(Ω) : Sh|K ∈ [P1(K)]d×d ∀K ∈ Th

�
, (5)

where {Th}0<h≤1 denotes a shape-regular family of triangulations of the domain Ω.
We employ the continuous interior penalty method ([3]) to avoid inf-sup related instabil-

ities. Denoting the set of interior faces in Th by F i
h, we can introduce the interior penalty

operators of the form

sk(x, y) =
�

F∈F i
h

hk
�

F

[[∇x]]n[[∇y]]n dS. (6)

These terms involve the normal gradient jumps [[∂nx]] across the set of interior faces F i
h

depicted in Figure 1b. To ensure the stability of our numerical scheme, two modified inf-sup
compatibility conditions need to be satisfied for the three-field Stokes problem: one arising
from the pressure-velocity coupling and one arising from the extra-stress-velocity coupling.
Consequently, we define two corresponding stabilisation operators

su(uh,vh) = 2ηγus1(uh,vh), (7)

sp(ph, qh) =
γp
2η

s3(ph, qh). (8)

Moreover, we employ Nitsche’s method to enforce the Dirichlet boundary condition (12) in a
weak manner. Introducing the notation

ah (σσσh.vh) = (σσσh, ϵϵϵ(vh))Ω − �σσσh · n, vh�∂Ω,
bh (ph.vh) = − (ph, ∇ · vh)Ω + �ph · n, vh�∂Ω,
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the complete formulation of the three-field Stokes problem reads: find Uh := (σσσh,uh, ph) ∈
Vd×d
h × Vd

h × Vh with Vh =
�
vh ∈ C0(Ω) : vh|K ∈ P1(K) ∀K ∈ Th

�
such that for all Vh :=

(τττh,vh, qh) ∈ Vd×d
h × Vd

h × Vh

Ah(Uh, Vh) + Sh(Uh, Vh) = L(Vh), (9)

where

Ah(Uh, Vh) :=ah (σσσh,vh)− ah (τττh,uh) + bh (ph,vh)− bh (qh,uh) +

�
1

2η
σσσh, τττh

�
, (10)

Sh(Uh, Vh) :=su(uh,vh) + sp(ph, qh) +
γbη

h
�uh, vh�∂Ω , (11)

Lh(Vh) :=(f ,vh) + �τττh · n, g�∂Ω − �qh · n, g�∂Ω +
γbη

h
�g, vh�∂Ω . (12)

For sufficiently large penalty parameters γu, γp and γb, the discretisation scheme (10)-(12)
satisfy an inf-sup condition ([2], [1]).

A stabilized Nitsche fictitious domain formulation for the three-field Stokes problem

In fictitious domain methods, the boundary surface Γ of a domain Ω is represented indepen-
dently of the underlying computational mesh T ∗, see Figure 1. In [7, 4] it has been shown,
that the use of the classical Nitsche method to weakly enforce Dirichlet boundary conditions
may result in a unstable numerical scheme in the fictitious domain setting. More specifically,
the convergence rate of the method and the conditioning of the resulting discrete system
are highly dependent of the boundary location with respect to the computational mesh. To
achieve optimal approximation properties and well-behaved condition numbers irrespective of
the boundary location, Nitsche-type methods can be augmented with so-called ghost penal-
ties [7]. A prominent example are face-based jump penalty operators similar to continuous
interior penalty. To this end, we can define suitable ghost penalty operators for the pres-
sure ph and velocity uh by requiring that the CIP face integrals in (7) and (8) are always
evaluated on the entire face, even if they are intersected by the boundary Γ. For the extra
stress tensor σσσh, we add a ghost-penalty of the form

sσ(σσσh,τττh) = γσ
�

F∈Fg
h

h3
�

F

[[∇σσσh]]n[[∇τττh]]n dS, (13)

acting only on faces F in the vicinity of the boundary, see Figure 1. The precise definition of
Fg
h is given by

Fg
h = {F ∈ F i

h : T+
F ∩ Γ �= ∅ ∨ T−

F ∩ Γ �= ∅}, (14)

where the two elements shared by an interior face are denoted by T+
F and T−

F .
In summary, the stabilised Nitsche fictitious domain formulation for the three-field Stokes

equation reads: find Uh ∈ Vd×d
h × Vd

h × Vh such that for all Vh ∈ Vd×d
h × Vd

h × Vh

Ah(Uh, Vh) + Sh(Uh, Vh) = Lh(Vh), (15)

where the stabilisation form Sh(Uh, Vh) is now defined by

Sh(Uh, Vh) := su(uh,vh) + sp(ph, qh)� �� �
Interior/ghost penalty

+ sσ(σσσh,τττh)� �� �
Ghost penalty

+
γbη

h
�uh, vh�∂Ω .

� �� �
Boundary penalty

(16)

3



ΩΩ

Γ

(a) (b) (c)

Figure 1: (a) Fluid domain Ω with interface Γ intersecting the background mesh, (b) set of
interior edges, F i, where the interior penalty terms are employed and (c) set of ghost penalty
edges, Fg, where the ghost penalty terms are employed.

Stability and a priori estimates

For the proposed scheme, we prove that a suitable inf-sup conditions is satisfied and that our
scheme has optimal convergence properties independent of the interface location. Introducing
the energy norm

�(σσσ,u, p)�2 =
1

2η
�σσσ�20,Ω + 2η �ϵϵϵ(u)�20,Ω +

1

2η
�p�20,Ω (17)

and its discrete counterpart

�(σσσh,uh, ph)�2
h =

1

2η
�σσσh�20,Ω + 2η �ϵϵϵ(uh)�20,Ω +

1

2η
�ph�20,Ω + Sh(Uh, Vh), (18)

we can prove the following theorems:

Theorem 1. For all (σσσh,uh, ph) ∈ Vd×d
h × Vd

h × Vh there holds

cs � (σσσh,uh, ph)�h ≤ sup
(τττh,vh,qh)∈Vd×d

h ×Vd
h×Vh

Ah[(σσσh,uh, ph), (τττh,vh, qh)] + Sh(Uh, Vh)

�(σσσh,vh, qh)�h
,

where the constant cs is independent of how the boundary cuts the mesh.

Theorem 2. Assuming that the solution U := (σσσ,u, p) ∈ H1(Ω)d×d ×H2(Ω)d ×H1(Ω), we
have the error estimates

�U − Uh� ≤ ch

�
η1/2�u�2,Ω +

1

η1/2
�p�1,Ω +

1

η1/2
�σσσ�1,Ω

�
,

The constant c is independent of how the boundary cuts the mesh.
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Figure 2: Convergence rates for reference solution on unit cube.

Numerical results

Numerically, we investigate the quality of our numerical solution for the analytical reference
solution

(u, v, w) = (cos(πy) cos(πz), cos(πx) cos(πz), cos(πx) cos(πy))

p = −π2 cos(πx) cos(πy)

on the unit cube. Here, we embed a unit cube in a dilated background mesh as shown in
Figure 2a. Figure 2b shows the convergence of the variables with mesh refinement in the L2

norm. For the velocity and the extra stress tensor, the sum of the error of the components
is evaluated. We obtain a convergence order of 2.25 for the velocity in the L2 norm which
is what we expect from our error analysis and a convergence order of 2.14 and 1.83 for the
stress and pressure which is slightly better than expected. However, this can be explained by
the smoothness of the solution. More numerical evidence for the stability and convergence
properties of the scheme independent of the interface location will be given in the presentation
and details of the scheme and the solutions can be found in [8], which is in preparation.
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Summary. We present a novel iterative implementation of the Brinkman penalisation method for the
enforcement of solid boundaries in a fluid domain. This is done by utilising the conventional split step
algorithm of vortex method where the velocity field is first calculated by kinematic relations after which
the vorticity equation is solved in its Lagrangian form by evolving vortex particles. Hence the penalisation
of the velocity field can be performed through the kinematic relations by simply correcting the velocity
in the penalised region. In the present work we show that an iterative implementation of the penalisation
method is generally needed in order to impose the correct no-slip boundary condition in the fluid/solid
interface.

Key words: Immersed boundary methods, Brinkman penalisation, vortex methods.

Introduction

The idea of Brinkman penalisation in fluid mechanics is to emulate a solid as a porous media
by locally penalising the governing flow equation. In the context of enforcing solid boundary
conditions in an incompressible flow, the Brinkman penalisation was first proposed by Angot et
al. [1] in the context of an immersed boundary method. Here the penalisation term was included
as an additional expression in the Navier-Stokes equation to absorb the momentum of the flow
within a specified penalisation region i.e. the solid body.

The vorticity formulation of the penalisation term was implemented in a split step algorithm
by Coquerelle and Cottet [2]. Here the penalisation term was excluded from the governing
equation and simply handled as a correction of the velocity field from which the the vorticity
can be recalculated. The split step algorithm has been implemented in the vortex-in-cell method
by Coquerelle and Cottet [2], Rossinelli et al. [3], Rasmussen et al. [4], and Gazzola et al. [5]
where it has been validated for the flow past different geometries, both fixed and moving. These
implementations clearly demonstrated that the penalisation method is capable of producing
results in good agreement with benchmark cases however at the cost of using a very small time
step.
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In the present work we will show that the necessity of the small time step is not related to
the accuracy of the penalisation method rather than the incapability of producing the correct
boundary conditions within a single time step. The penalisation of the velocity field does not
inherently posses the same global characteristic as the elliptic governing equations, as it simply
enforces a given local velocity condition within the penalised region without modifying the
surrounding flow. This will create divergence in the velocity field at the interface of the non-
penalised and penalised regions when the non-penalised flow has a non-zero velocity component
normal to the interface. Creating a velocity divergence is evidently incorrect as it violates
the criteria of mass conservation. Therefore the no-slip boundary condition must be enforced
exclusively by creating rotation in the velocity field i.e. vorticity.

In this work we follow the idea of the semi-implicit penalisation method of Rasmussen et
al. [4], where the vorticity of the flow is updated rather than recalculated from the penalised
velocity field. We propose an extended algorithm where the penalisation is performed in an
iterative fashion. This gradually eliminates the velocity divergence created by penalising the
velocity field to achieve a boundary condition that is entirely enforced by the surface vorticity.

The iterative penalisation method for incompressible viscous flow

In vortex methods, an incompressible flow field is described solely by evolving the distribution
of vorticity ω by the vorticity equation

Dω

Dt
= ν∇2ω, (1)

where the vorticity is defined from the velocity ω = ∇×u which is inversely coupled through the
Poisson equation ∇2u = −∇×ω. By ensuring that the velocity field u is sufficiently smooth it
may be represented as a linear superposition of several equally smooth velocity fields. Thus the
velocity field may be decomposed into three components u = uω̃+uγ+U∞ which represents the
velocity induced by the non-penalised vorticity field ω̃, the velocity induced by the penalisation
vorticity γ, and the free stream velocity. Thus the penalisation vorticity is generated such that
the resulting penalisation velocity uγ counteracts the non-penalised velocity field ũ = uω̃ +U∞
leaving only the given velocity of the solid v in the penalisation region. Hence, in the penalised
region where we wish to enforce u = v we now obtain

χv = χ(ũ+ uγ) → χuγ = χ(v − ũ) = χvo where χ =

{
1 x ∈ S,

0 x ∈ F.
(2)

Here χ is the characteristic function which defines the region of active penalisation where S
denotes the mesh cells occupied by the solid and F the mesh cells occupied by the fluid cf.
Fig. 1a.

From Eq. (2) it is seen that vo = v − ũ is the velocity that needs to be penalised in order
to enforce the given velocity v within the penalised region. Thus an effective penalisation is
obtained when χ(vo −uγ) = 0. In order to achieve this within a certain tolerance ϵ an iterative
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Figure 1. Schematic of the computational domain. (a) The solid is discretized onto the Cartesian grid by
penalising the mesh cells (S) that fall inside the solid surface (black curve). F denotes the fluid region.
The • mark the center of the mesh cells. (b) The iterative penalisation annihilates the residual velocity
(v0) through the creating of image vorticity γ. The iteration requires solution of the Poisson equation
and is performed on the minimal “penalisation domain” surrounding the solid.

penalisation algorithm is proposed which is summarised by:

1. Set the initial penalisation vorticity γ = 0 and penalisation velocity uγ = 0.

2. While
∫
χ(vo − uγ)dx > ϵ:

• Update the penalisation vorticity by: γ ← γ +∇× χ(vo − uγ).

• Solve the Poisson equation: ∇2uγ = −∇× γ.

3. ω = ω̃+γ and recalculate the velocity field on the full domain by solving: ∇2u = −∇×ω.

It is noticed that vo can be calculated outside the iterative loop whereas it suffices to solve
the Poisson equation in a small domain bounding the geometry cf. Fig. 1b. In this way the com-
putational work of the iterative penalisation is significantly reduced as it becomes independent
of the extend of the total vorticity field.

An illustrative example of a uniformly accelerated flow normal to a flat plate

The shortcomings of the conventional penalisation method and the improved result obtained
by using the iterative penalisation method is briefly illustrated in Fig. 2. Here, the obtained
flow fields are shown of a uniformly accelerated flow normal to a flat plate of finite thickness.
This case is particularly challenging in that the acceleration of the flow continuously creates an
additional flow momentum which is normal to the plate surface. It is seen that even at late times
the conventional penalisation method is unable to deflect the flow around the plate and the flow
is seen to penetrate the plate. The insufficient penalisation creates a distorted separation region
and a large difference is noticed in the flow field compared to the results obtained using the
iterative penalisation. The results obtained by the iterative penalisation method is found to be
in excellent agreement with similar flow simulations using boundary element based methods [6]
(not shown).
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(a) (b)

Figure 2. Comparison of the streamlines (a) and vorticity contours (b) obtained by conventional, non-
iterative penalisation (red), and iterative penalisation (blue) for an accelerated flow normal to a flat plate
of thickness-to-length ratio 1:50 at a non-dimensional time at2/L = 3.36. The acceleration formulated
Reynolds number aL3/ν2 = 1.68× 106, where a is the acceleration of the flow, ν the kinematic viscosity
and L the height of the plate. Vorticity contours are ±2i where i = {4, 5, 6, 7}.

Conclusion

In the work which we will present at the seminar we intent to illustrate by a number of benchmark
cases how using the conventional Brinkman penalisation method to introduce a solid interface
in a numerical flow simulation can result in an insufficient enforcement of solid boundaries.
Furthermore we show that by extending the conventional Brinkman penalisation method to an
iterative algorithm, the method is able to obtain results in good agreement with those obtained
by simulations using boundary element based methods. Here the calculated flow induced forces
are generally in excellent agreement with results found in the literature. Furthermore, the
resulting flow fields are significantly improved for the iterative algorithm compared to that
obtained by the conventional, non-iterative penalisation method.
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Summary. Computational fluid dynamic simulations are performed for the turbulent swirling flow
in a scale model of a low-speed two-stroke diesel engine with a moving piston. The purpose of the
work is to investigate the accuracy of different turbulence models including two-equation Reynolds-
Averaged Navier-Stokes models and large eddy simulations. The numerical model represent the full
three-dimensional geometry and the piston motion is modeled by compressing cells in the axial direction.
The CFD predictions are compared to experimental results and a reasonable agreement is found.

Key words: CFD, RANS, LES, swirl, turbulence, two-stroke, marine diesel

Introduction

Low-speed two-stroke (LSTS) diesel engines are used to power the worlds largest marine vessels,
such as tankers and container ships. When the piston approaches the bottom dead center (BDC)
of the cylinder, it uncovers a series of angled scavenge ports in the cylinder wall. Fresh air is
blown into the cylinder through the scavenge ports, thereby flushing the old combustion gas out
through the exhaust valve located in the cylinder head. This gas exchange process is known as
uniflow-scavenging. The angled ports induce a rotational motion to the incoming scavenge air,
thereby creating a swirling flow.

Accurate computational fluid dynamics (CFD) simulations of the in-cylinder swirling flow
is important for engine optimization and emission reduction. Recently, a database for CFD
validation was established based on an experimental investigation of the flow in a dynamic
scale model of a LSTS diesel engine [1]. The model has a moving piston but compression and
combustion are neglected.

The purpose of the present work is to evaluate the accuracy of different turbulence models

Figure 1. (a) Geometric of the main model, (b) details on the scavenge port geometry.
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Figure 3. Numerical sensitivity study showing radial velocity profiles. (left) Spatial convergence, (right)
cyclic convergence.

and to investigate the dynamics of the turbulent swirling flow. This is achieved by simulating
the flow in the model using CFD and comparing the obtained predictions with the experimental
results.

Methodology

The model geometry is shown in Figure 1 and described in detail in [1, 2]. The internal cylinder
diameter is D = 190mm and the Reynolds number of the flow is Re = VscD/ν = 50,000, where
ν is the kinematic viscosity and Vsc is the characteristic scavenge velocity. In the present work,
a port section is used with 30 equally spaced ports and a port angle of α = 20◦. The piston
motion is presented in Figure 2 together with the pressure measured at the model outlet (P4 in
Figure 1). The time is normalized with the total cycle time which is tcyc = 1.20 s.

The simulations are performed with the commercial CFD code STAR-CCM+ version 8.02.008.
A hybrid mesh is used with polyhedral cells in the main volume and prismatic cells on the wall.
The mesh used for the simulations, referred to as the ’fine’ mesh, has approximately 5.2 million
cells. A second order linear upwind scheme is used for the spatial derivatives and a second order
implicit scheme is used for the temporal derivatives. Both Reynolds-Averaged Navier-Stokes
turbulence models and large eddy simulations are investigated.

A sensitivity study is carried out in order to investigate the effect of the numerical parameters.
Figure 3 shows the radial velocity profiles of tangential velocity Vθ and axial velocity Vz for
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Figure 5. Comparison of radial velocity profiles. (top) tangential velocity Vθ, (bottom) axial velocity Vz.
(blue curves) Spalart-Allmaras, (red curves) K-ω SST, (black curves) experiments.

different mesh sizes and cycles after simulation start. It is seen that the results obtained on
the ’fine’ mesh can be considered mesh independent as no significant changes occur from the
’medium’ to ’fine’ mesh. Furthermore, it is seen that the flow becomes approximately periodic
already after the second cycle.

Results

A comparison between the predicted and experiential bulk velocity Wb is presented in Figure 4.
The numerical results are obtained with the Spalart-Allmaras turbulence model [4] and the
experimental results are measured with particle image velocimetry (PIV) and laser Doppler
anemometry (LDA). After the scavenge port closing, the CFD predicts large amplitude oscilla-
tions which do not exist in the experimental data. This is, however, a result of the experimental
phase-averaging and therefore not a ’true’ discrepancy. In general, it is concluded that the
predicted bulk velocity is in good agreement with the experiments.

Figure 5 shows a comparison of the radial velocity profiles at t/tcyc = 0.30 which is shortly
after the piston reaches BDC and corresponds to 25% port closure. Profiles are presented
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Figure 6. Visualization of flow structures during the scavenging period using iso-surfaces of the λ2-
criterion colored by the axial velocity.

for simulations using both the Spalart-Allmaras and the k-ω SST [3] turbulence model. The
predictions obtained with the two turbulence models are in general similar and in reasonable
agreement with the experimental data. The tangential velocity is underestimated near the
ports and the axial velocity deficit is overpredicted in the top of the cylinder. Both models do,
however, correctly predict the reversed axial flow at the centerline near the ports, which shows
the occurrence of a vortex breakdown.

The numerical results are also used to investigate the complex flow dynamics of the turbulent
swirling flow. In Figure 6 the unsteady flow structures are visualized using iso-surfaces of the
λ2-criterion colored by the axial velocity. In the start of the scavenging process, multiple vortex
rings are formed, and later in the process, a coherent vortex core is established. When the ports
are fully open, the vortex core has a pronounced helical shape.
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Summary. A new stabilized XFEM based fixed-grid approach for the transient incompressible Navier-
Stokes equations using cut elements is proposed. Boundary conditions on embedded boundaries are
imposed weakly using a Nitsche type approach. Ghost-penalty terms for velocity and pressure are added
for stability reasons and to improve the conditioning of the system matrix. The idea of ghost-penalties,
previously developed for Stokes problems, is extended to the incompressible Navier-Stokes equations
by the usage of face-oriented fluid stabilizations also in the interface zone. We obtain optimal error
convergence and a good system conditioning in the viscous and the convective dominated cases. Further,
the results are much more accurate and less sensitive to the location of the interface compared to methods
without additional face-oriented stabilizations in the interface zone. Numerical results of a convergence
analysis and results for fluid-structure interaction problems are shown.

Key words: Navier-Stokes equations, face-oriented stabilization, ghost-penalty, Nitsche’s method, ex-

tended finite element method, fictitious domain method, fluid-structure interaction

Introduction

XFEM based fixed-grid methods represent very promising approaches when dealing with mov-
ing boundaries or more complex fluid-structure interaction (FSI) applications involving large
deformations of the structure. Classical ALE-based FSI schemes are limited when the structure
undergoes too large displacements or even topological changes. In contrast, describing the en-
tire fluid domain by a fixed-grid Eulerian formulation using cut elements allows for large and
complex changes of the physical fluid domain without fluid mesh distortion and, eventually,
remeshing of the fluid domain.

Recently, hybrid fixed-grid fluid-structure interaction methods using an additional moving
boundary layer mesh around the structure have been developed. Despite their advantages with
respect to accuracy at the fluid-structure interface, a direct coupling of the structure described
in a Lagrangean frame of reference with the flow field formulated in a pure fixed-grid Eulerian
setting using cut elements is still more flexible regarding the motion of the structure. More-
over, such techniques allow for more advanced couplings of fluid-structure interaction problems
involving for example multiple contacting submersed bodies.

For the robustness and, hence the applicability of such fixed-grid FSI-approaches it is es-
sential to satisfy the highest demands on approximation quality, stability and accuracy of the
fixed-grid fluid formulation, particularly with regard to moving boundaries or interfaces in time.
And most if not all existing approaches show severe weaknesses in one or all of these aspects.

In this talk we propose a novel robust fixed-grid FSI approach based on a stabilized fictitious
domain fluid formulation for the 3D Navier-Stokes equations on moving fluid domains.
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Methodology

Stabilized fluid formulation including weak enforcement of boundary conditions

Our stabilized fictitious domain fluid formulation for the Navier-Stokes equations reads as
�
vh, ρu̇h

�
+
�
vh, ρuh ·∇uh

�
+
�
qh, divuh

�
−
�
div vh, ph

�
+
�
�(vh), 2µ�(uh)

�

+
�
vh, ph · n

�
Γ
−
�
vh, 2µ�(uh) · n

�
Γ
−
�
qh · n,uh − ū

�
Γ
−
�
2µ�(vh) · n,uh − ū

�
Γ

+
�

K∈Gh

�

V ∈Ωf
K

�
γu · vh, ρ(uh − ū)

�
ΓK∩V̄

+ Sh

�
(vh, qh), (uh, ph)

�
=
�
vh, ρb

�
+
�
vh, h̄

�
∂Ωf

N

(1)

where ū is the prescribed interface velocity and Sh is a symmetric stabilization operator

Sh

�
(vh, qh), (uh, ph)

�
= jGP (v

h,uh) + jp(q
h, ph) + jstream(vh,uh) + jdiv(v

h,uh). (2)

The different terms of Sh are discussed below. For the penalty term in line three of (1), the
stabilization parameter is given as

γu = max (γν , γconv, 1.0) = max (αν
ν

hK
, |uh · nf |, 1.0). (3)

Weak imposition of boundary conditions and viscous ghost penalties

Since the mesh is not fitted to the domain, boundary and coupling conditions are imposed
weakly using a stabilized Nitsche-type approach [3]. In case of arbitrary cut fluid elements
stability and the control of non-physical degrees of freedom outside the physical fluid domain
are crucial. To retain accuracy in imposing boundary conditions a recently developed viscous
Ghost Penalty stabilization operator jGP (v

h,uh) is used, see [3]. This operator, evaluated along
faces in the interface zone, balances missing coercivity on cut elements when using a uniform
scaling γν = αν

ν
hK

for the penalty term in the symmetric Nitsche method independent of the
interface location.

In order to account for instabilites at the interface Γ due to the nonlinear convective term in
case of inflow boundaries, we add the second part in γu with γconv = |uh ·nf | and an additional
penalty factor for a uniform enforcement of the boundary condition (uh − ū), see results.

Face-oriented fluid stabilizations for viscous and convection dominated flows

In order to account for the inf-sup-instability when using equal order ansatz function for velocity
and pressure, we apply a symmetric pressure-stabilizing term from [4]

jp(q
h, ph) =

�

f∈F

�

F⊇f
F∈FT

αph
2
F ·
�
1 +

ν

hF

�−1

ρ−1 ·
��
Grad qh

����
Grad ph

��
ds. (4)

In contrast to [3], we account for viscous and convection dominated flows like in [4].
Convective instabilities are stabilized using a velocity-gradient-jump based operator from [4]

jstream(vh,uh) =
�

f∈F

�

F⊇f
F∈FT

αstreamh2Fρ · |uh · nF |
��
Gradvh

��
:
��
Graduh

��
ds. (5)

In a similar way as for the viscous ghost penalty operator jGP (v
h,uh), we evaluate the

proposed pressure and streamline stabilization operators in a classical way as interior penalties
along all inner edges, but also as ghost penalties in the interface zone which is done by inter-
grating these terms along the cut faces entirely. Evaluating these terms along the cut faces gives
control over the pressure and velocity ghost degrees of freedom in the viscous and the convection
dominated regime. Moreover, these terms improve the system conditioning in all flow regimes.
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Numerical Results

Optimal convergence properties for viscous and convection dominated flows

A 2D-Kim-Moin flow shows optimal error convergence for domain and interface errors. For
viscous dominated flows with ν = 0.1, a clear improvement of the viscous and pressure fluxes is
obtained. As can be seen in Figure 1a and 1b, due to the viscous ghost penalty operator and
the pressure ghost penalties the sensitivity of the interface errors with respect to the interface
position is clearly reduced, whereas optimal convergence is retained for the discrete interface
and bulk norms. For convection dominated flows with ν = 0.0001, the importance of the
different contributions in the penalty term for γu, especially for the enforcement of the boundary
condition, is highlighted in Figure 1c. A more detailed discussion of the results is given in [1].
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Figure 1: Kim-Moin-flow: spatial error convergence versus element length h, viscous and pressure
flux error with ν = 0.1 and boundary condition error with ν = 0.0001 at time T = 0.1 s with
Δt = 0.01 s, our method (dashed black line with square markers).

Stability and control over ghost values

In Figure 2, the effect of the different u and p fluid stabilizations in the interface zone is depicted.
A comparison of the proposed method with methods using residual-based fluid stabilizations
without ghost-penalty terms in the interface zone shows the lack of stability and the loss of
control over the ghost values.

Figure 2: Flow around a cylinder: u and p values around a cylinder. From left to right: u with
and without ghost-penalty stabilizations, p with and without ghost-penalty stabilizations.

Moving interfaces and fixed-grid partitioned fluid-structure interaction

In Figure 3, the large movement of a rigid cylinder in a channel at a Reynold’s number of
RE = 300 is shown. This example shows the capability of a semi-Lagrangean time-integration
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scheme [2] and the robustness of the proposed fluid-formulation over time for problems involving
moving domains.

Figure 3: Moving interfaces: moving cylinder at RE = 300, velocity, pressure and interface
forces at different t.

In Figure 4, the results of a partitioned fluid-structure interaction simulation for the flow over
a bending flexible wall are shown.

Figure 4: Fluid-structure interaction: flow over a bending flexible wall.

Conclusion

The proposed fictitious domain method for 3D incompressible Navier-Stokes equations using
cut elements is stable and shows optimal convergence results in bulk and at the interface for
all considered discrete norms. The system conditioning is improved due to the different ghost-
penalty stabilizations for viscous and convection dominated flows. Results obtained with a
partitioned fluid-structure interaction approach using the stabilized fixed-grid fluid formulation
shows the applicability of our method to complex large deformation fluid-structure interaction
problems.
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Summary. The influence of shear-layer jet interaction on the flow structure generation with multiple jets
in supersonic crossflow is investigated by Large Eddy Simulations (LES). A duct geometry is investigated,
where the supersonic crossflow evolves in a rather sharp transition between the straight convergent and
divergent section and therefore shocks establish. The jet origin location in the divergent section of the duct
relative to the narrowest cross-section is significant for the shock pattern structure and the interaction
point between the established separation bubble and the jets. The interaction of the separation bubble
and the jets plays an important role for the flow structure generation by the jets.

Key words: multiple jets in crossflow, performance optimization, shock-pattern, compressible flow

Introduction

Jet in crossflow occurs in many engineering applications and thus, the phenomenon has been
investigated by many researchers. Predominantly, a single jet in crossflow was considered and
the generation of coherent flow structures, the stability of the jet, the heat transport with the
jet, and mixing process were investigated. Also, the shock pattern formation and the mixing
with jet in supersonic crossflow has been analyzed [1]. The occurrence of certain flow structures
is described most commonly by the ratio R of the jet momentum to the crossflow momentum
quantifying the operation regime of the jet in crossflow,

R2 =

�
ρjU

2
j

ρcfU
2
cf

�
, (1)

where ρ is the density of the fluid and U the velocity. The subscript j refers to the jet quantities,
where the subscript cf refers to the crossflow quantities.

However, only a small number of investigators address the effect to the flow structures with
two or more jets in crossflow, as e.g. [2]. In this work, the flow structure generation with multiple
jets in supersonic crossflow is investigated, where the jets are closely placed such that a slight
interaction between the jets is possible. LES simulations have been performed to analyze the
impact of shifting the jet location in the divergent section of a convergent-divergent duct.

Case setup and numerical simulation approach

Figure 1 shows the considered geometry, which consists of a cylindrical duct with a convergent-
divergent section and guides the flow into a stationary environment at ambient conditions. At
the duct inlet, the flow is pressurized to a total pressure of four times the ambient pressure and
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the incoming stream has been heated up to a total temperature T0 of 367 K. The convergent-
divergent section can be characterized by the duct exit diameter De of 57.5 mm and the area
ratio of 1.23.

In the divergent duct section, twelve cylindrical pipes with the diameter Dj of 2.67 mm are
disposed equidistantly on the circumference, which are 60◦ inclined towards the flow direction.
The total temperature applied at the pipe inlets is the ambient temperature. The exit of the
jet pipes are placed at −0.857De (Case 1 ) and −0.768De (Case 2 ) duct exit diameters (De)
upstream from the duct exit. The flow momentum in the pipe has been varied as investigation
parameter.

Convergent-Divergent Duct

Crossflow inlet T0, p0,noz
12 Jets T∞, p0,mic

parameter symbol value unit
duct exit diameter De 57.5 mm
injectors diameter Dj 2.67 mm
area ratio Ae/A

� 1.23 (-)
duct design Mach-number Me 1.56 (-)
duct pressure ratio p0,noz/p∞ 4 (-)
duct inlet temperature T0 367 K
ambient pressure p∞ 101,325 Pa
ambient temperature T∞ 288.15 K

Figure 1. The geometry of the C-D duct with the disposed pipes is shown and the characteristic param-
eters are listed.

The three-dimensional Navier-Stokes equations together with the conservation equations for
continuity and energy are simulated using a finite-volume based solver. The flowing media is
air and therefore the ideal gas law has been chosen as the equation of state, where the ratio
of the specific heats is 1.4. The temperature dependence of viscosity was modeled using the
Sutherland’s formula.

For time integration, a low-storage four-stage Runge-Kutta scheme has been applied with
a constant time-step of 1 · 10−8 s. A second order central difference scheme was used for
discretization of the convective terms and a Jameson-type artificial dissipation was added to
prevent from spurious numerical oscillations near sharp gradients in the flow, such as e.g. shocks.

Adiabatic no-slip boundary conditions have been employed at the walls. Characteristic
boundary conditions at the inlets and the outlets have been implemented. Block-structured
grids with 44 million hexahedral cells have been used for this investigation. Mesh refinement
towards the walls has been applied to resolve the wall-boundary as accurate as possible. Despite
the large Reynolds-number flow, a substantial range of the turbulent energy decay is captured by
the numerical grid. Only a small proportion of the dissipative flow scales has not been resolved.
These flow scales can be modeled by a sub-grid scale model. Thus, Large Eddy Simulation is
performed.

Results

At the narrowest cross-section of the duct an expansion fan manifests, which leads to the de-
velopment of a separation bubble right downstream of the expansion fan, see also Fig. 2. The
shape formation of the separation bubble shape is highly influenced by the position of the pipes
guiding the jets into the crossflow. Figure 2 illustrates a rather short separation bubble for Case
1, where the induced shear-layer impinges the exhausting jet. With the downstream shift of the
jet exit the separation bubble is elongated until it interacts with the jet pipes or the jets coming
from the pipes. High vorticity is induced with the expansion fan and with the formation of the
separation bubble at the narrowest cross-section. As visible in Fig. 3(a), the vortical structures
shading from the separation bubble interact closely with Case 1, while for the Case 2 (Fig. 3(b))
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(a) Case 1 (b) Case 2 (c)

Figure 2. The contours of the Mach-number are shown in a mid-plane view for an R2 of 1.18, with
the jets at the upstream location (a) and with jets at the downstream location (b). At rightmost (c),
overlapping numerical Schlieren of the two cases is shown, where the red contours correspond to Case 1
and the black contours to Case 2.

the strength of the vortical structures decays and rather longitudinal structures are generated
before interaction with the jet. It can also be seen that with Case 2 spatial high vortical struc-
tures are shade downstream and cause shock root movement in the immediate region to the
jet.

For all simulated cases of R2, a shock root establishes of the separation bubble and the
resulting oblique shock arises. For R2 < 1.5, the oblique shocks merge in the center of the duct,
in form of a regular or irregular (Mach) shock reflection, as shown in Fig. 2(a-b). The Mach-
disk provokes a slip-line, which is appeared far downstream in the flow field. With increasing
R2, the initial oblique shock R2 = 0 originating from the separation bubble begins to steepen.
Figure 2(a-b) illustrates that after a certain achieved steepness of the upstream shock pattern,
the shock reflection is not reflected back from the nozzle walls or the jets and thus, this shock
pattern is not apparent in the downstream shock train.

Generally, the occurring shock train exhibits similarities for equal R2 at the two jet locations,
as visible in Fig. 2(c). However, the shock-patters is slightly shifted with the jet location and
Case 1 is more sensitive and faster in responding to changes of R2. Furthermore, the strength
of the shocks is distinguished. The upstream located shock is significantly stronger when the jet
location is placed downstream and the downstream located shock pattern becomes weaker.

For Case 1, the upstream shock merges either in a regular reflection or a Mach reflection

(a) Case 1 (b) Case 2

Figure 3. Looking from inside of the nozzle towards the nozzle exit: the vortical structures are visualized
by the λ2 criteria for an R2 of 1.18 and colored by the stream-wise velocity for the cases of the jets placed
close to the nearest cross-section of the duct (a) and further downstream (b).
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provoking a rather small Mach-disk. Contrary, with Case 2, a rather wide Mach-disk from the
upstream shock pattern could be observed for all simulated cases and an apparent slip line is
visible. As visible in Fig. 2(b), the generated slip line causes a decrease in the shock-strength
for the downstream shock pattern by reflecting the incident shocks partially. Moreover, a rather
diffuse wave pattern is visible and no clear shocks are discernible.

The increased shock strength of the upstream shock with Case 2 increases the losses in the
duct. However, the diffusivity of the second downstream shock pattern is likely to be indicated
in the further shock train, since the following downstream shocks are as well diffuse and do not
form a clear shock diamond pattern.

Conclusions

The effect of displacing the jet location in the divergent section of a supersonic convergent-
divergent duct has been investigated by simulating the governing equations for compressible
flow. The ratio of jet momentum to crossflow momentum has been varied to explore the influence
ability of the evolving shock-pattern in the divergent duct. The obtained flow-fields for the two
jet locations have been compared to each other.

It has been shown that delaying the jet locations further downstream has a significant impact
onto the shape of the separation bubble. The location of the jet pipes for Case 1 was placed
such that the strong shear-layer induced at the sharp transition between the C-D duct sections
interacts closely with the jets. Case 2 permits the shading of the generated vortices in the shear-
layer before the interactions. This influences the dynamics and the generated flow frequencies
in the flow.

The original shock pattern at R2 = 0 starts steepening with increasing R2, while a second
downstream located shock pattern occurs. For high values of R2 > 1.5, the steepened shock
reduces to a bow shock in front of the jet and the downstream located shock pattern preserves.
The shock train generated with Case 1 reacts more sensitive to changes of R2 and the upstream
shock exhibits only a very narrow Mach-disk or a regular reflection.

With jets emerging at Case 2, the shock train is also shifted downstream and the upstream
shock is stronger than for Case 1. Furthermore, the shock pattern provoked with Case 1 causes
in all investigated cases a Mach-disk, which induces a slip-line. Due to the stronger shock the
slip line is stronger and causes in several cases partial shock reflections, such that the second
downstream shock-pattern is very diffuse or does not clearly arise. Thus, the clear shock train
does not develop with Case 2 at certain R2.
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Summary. In the present discussion we focus on the prediction of transitions in the boundary layer
under a solitary wave. In particular we compare results obtained by model equations of linear stability to
results obtained by direct numerical simulation. These are then related to results published in literature.
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Introduction

The boundary layer flow under a solitary wave has received considerable attention since Liu et
al. [6] published approximate formulae for this problem in 2007. In the following the transition
of this flow has been investigated by multiple methods. Vittori and Blondeaux investigated
the transitions to turbulence numerically by direct numerical simulation in 2008 [9, 10] and by
RANS simulation in 2011 [3]. Later on, a linear stability analysis of this flow was published in
2012 [2]. An experimental investigation on the transitions in this flow was performed in 2010
by Sumer et al. [7]. A common denominator of the above investigations is the determination of
a critical Reynolds number beyond which the flow undergoes transition. This Reynolds number
has been determined by Vittori and Blondeaux to be 5×105 [9, 10], whereas Sumer et al. found
2 × 105 for their experiments. A value in between these figures has been found for the RANS
simulations [3].
In the present discussion we solve the non-linear boundary layer equations numerically and
performe a linear stability analysis by means of the Orr-Sommerfeld equation and the parabolic
stability equation [1]. A direct numerical simulation using the spectral element Navier-Stokes
solver NEK5000 [5] was used to verify the present findings. The major result is that the concept
of a critical Reynolds number does not apply to this type of flow, instead the flow is always
unstable in the sense of linear stability [4]. The stability properties of the flow are characterized
by the growth rate of the perturbations, which can be measured by the amplification of the
perturbations.

Description of the problem

The inviscid free stream flow of a solitary wave can accurately be computed by the method of
Tanaka [8]. We use a Chebyshev colocation method to solve the boundary layer equations which
gives us the base flow used for a linear stability analysis. An example of the boundary layer flow
under a solitary wave is given in figure 1. Since the flow is steady in the frame of reference of
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Figure 1. Top: Elevation of a solitary wave. Bottom: Profiles of the horizontal velocity in the boundary
layer under a solitary wave.

the moving solitary wave, a classical stability analysis by means of the Orr-Sommerfeld equation
and the parabolic stability equation [1] can be performed.

Results

Using the model equations we computed stability domains for this type of flow, cf. figure 2. The
size of the unstable regions depends on the amplitude ϵ of the solitary wave and the viscosity
which can be characterized by a dimensionless parameter δ corresponding to the inverse of
the Reynolds number, cf. definition in [9]. The bigger the amplitude ϵ of the wave and the
smaller δ, the bigger the unstable region. Once a Tollmien-Schlichting wave reaches the neutral
curve it starts to grow and may destabilize the flow. The growth of the Tollmien-Schlichting
wave can be characterized by its amplification. In figure 3, we plotted the amplification of
the critical Tollmien-Schlichting waves for δ = 8 × 10−4. As can be observed from this figure,
the amplification is bigger for increasing ϵ. The question when instabilities are observable is
thus linked to the initial amplitude of the perturbation. If the initial amplitude is too small a
perturbation might not grow sufficiently to have a visible effect on the flow.
Direct numerical simulation of the growth of these Tollmien-Schlichting waves reproduced these
amplifications remarkebly well.

Conclusions

If the initial perturbation as in the references above is uncontrolled, the flow might appear
unstable at different Reynolds numbers. Strict control of the initial perturbation is necessary
for repeatability of the problem for both numerical simulations and experiments.
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Figure 2. Stability domain for the boundary layer flow under a solitary wave for different amplitudes ϵ
and δ = 8× 10−4.
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Figure 3. Amplification of the critical Tollmien-Schlichting wave for different amplitudes ϵ and δ =
8× 10−4.
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Vibration reduction in soil by addition of surface masses

Vedad Alic1 and Kent Persson1

(1)Division of Structural Mechanics, Lund University, Box 118, 221 00 Lund, Sweden,
vedad.alic@construction.lth.se

Summary. The possibilites of vibration mitigation by placing masses in between an external source
(road) and a very sensitive high tech facility are investigated. FE models of the soil are developed and
guyan reduction is employed to all degrees of freedom below the surface in order to increase efficiency.
Steady-state analyses are performed in the frequency range 5-30Hz. Results from the two-dimensional
studies showed that masses can be used as a method of mitigating vibrations, although they have to be
very heavy. Three-dimensional simulations showed that by varying the organization of the masses great
vibration reduction as well as amplification was obtained, however, by using discrete masses improvements
were always obtained.

Key words: vibration reduction, surface masses, guyan reduction, soil dynamics

Introduction

MAX-lab (Mictrotron Accelerator for X-rays) is a national laboratory in Lund, which is operated
jointly by the Swedish Research Council (VR) and Lund University. Currently the project
consists of three storage rings, MAX I-III, and a fourth being built, MAX-IV. [1]

MAX-IV will be a new facility, consisting of an electron pre-accelerator, a 250 meter long
linac, and two storage rings with 96 and 528 meters circumference. The larger storage ring
will be able of a 3-GeV energy level with low emittance for the production of soft and hard
x-rays as well as an expansion into the free electron laser field. The facility will be located
northeast of Lund, at the outskirt of a new area, Lund North-East roughly 100 meters south-
east of the highway E-22. The instruments that are operating on nano-level scale at MAX-IV
are extremely sensitive to vibrations (vertical displacements limit of 26nm RMS during one
second for frequencies above 5Hz and below 100Hz). With the facility located closely to the
highway and on top of very soft soil measures have been taken to ensure good operation of the
facility. The measures include stabilization of the soil underneath the facility (stiffening), and
the shaping of the ground around the facility in a way that will reduce vibrations.
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(a) (b) (c)

Figure 1. Research idea: (a) roads close to facility (b) vibrations from roads (c) reduced by masses?
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This research investigates another method for vibration reduction: placing out heavy masses
on the soil surface between the external sources and the facility, see Figure 1(c). The method
could be seen as a cost effective and maintenance free solution. As such, it is of interest to
find out if it is a possible method of vibration mitigation, and which configurations are most
effective. The masses could be parts of buildings, or if smaller, they could be artificial concrete
blocks or natural stones. If care is taken with the design they would not only serve as vibration
reducers but could also enhance the aesthetic qualities of the site.

Resonant mass scatterers

Most energy from traffic vibrations is normally in the frequency range of 5-50Hz. The principle
of operation for resonant mass scatterers (heavy masses on the ground) is based on the fact
that any topographic irregularities on the surface cause scattering of incident Rayleigh waves.
For masses on the ground the scattering is particularly strong around the natural frequencies of
the masses resting on the ground, and as such they have been considered as a viable method of
vibration mitigation both theoretically [2], and numerically [3] [4]. Petyt and Jones [4] consider
an evaluation point 25 meters from the load, in between which they place different sets of heavy
masses and come to the conclusion that in general a heavy mass close to the load works best for
their situation. Krylov [2] shows (for a 2D model) analytically that only 10% of the incoming
wave energy is transmitted past a lumped mass around its resonant frequency, the rest of it is
either reflected back or propagated as body waves trough the half-space medium. The solution
should be taken as a very rough estimate as it does not take into account the mass moment
of inertia, and models a mass - elastic half-space medium interaction, while for the ground at
MAX-IV several sub-surface layers need to be accounted for.

Numerical model and mass topology

The work has been carried out using finite element analysis in two (axisymmetric), and three
dimensions. Steady state models in the frequency range 5-30Hz have been established with main
evaluation points along a line 100 meters from the load application point, with masses placed
in between (green area in Figure 2).

Soil as a material is generally treated as highly non-linear and inhomogeneous, however,
with the present low magnitude loading and large wavelengths in comparison to grain size the
soil is modelled as a homogeneous linear visco-elastic material, as is the bedrock. Table 1 lists
the material properties of the upper and lower soil layers and of the bedrock layer. Loss factor
includes all attenuation effects (e.g. varying topology of the soil and bedrock).

The finite element software ABAQUS was used for the axisymmetric simulations, while
for the 3D simulations stiffness, mass, and damping matrices were exported from ABAQUS

Table 1. Soil and bedrock viscoelastic properties by loss factor.

- Upper clay Lower clay Bedrock
Depth [m] 2 12 -
E [MPa] 215 1136 8800
ν 0.48 0.48 0.40
ρ [Kg/m3] 2125 2125 2600
loss factor [%] 14 14 4
cS [m/s] 185 425 1100
cP [m/s] 943 2167 2694
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into MATLAB in order to perform model reductions. The axisymmetric model consisted of
135000 degrees of freedom, of which most belonged to axisymmetryic elements with quadratic
approximation and reduced integration, and a lesser part that belonged to infinite elements
that were applied to the boundaries in order to avoid reflections. The 3D model used brick
elements with quadratic approximation and reduced integration, and infinite elements along
the boundary. In order for the 3D model to give accurate results for a steady state analysis
in the frequency range of 5-30Hz, a rather fine mesh was used which resulted in 2 620 860
complex-number degrees of freedom.
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Figure 2. 3D model with the parts that were kept in the reduced model marked in green.

Most of the degrees of freedom in the model, see Figure 2, were below surface level and of
little interest. In order to reduce computational costs Guyan reduction together with domain
decomposition was applied and all degrees of freedom which are not part of the green areas
in Figure 2 were removed by static condensation. The reduction method is exact at ω (apart
from the approximation in the original dynamic matrices). Performing the reduction for each
frequency studied allows for a reduced system with no loss of accuracy. The reduced system is
no longer sparse and a large reduction in degrees of freedom is necessary in order for the method
to be efficient. The 3D model was reduced to 11 646 degrees of freedom. The reduced 3D model
allowed for simulations with a great number of configurations of masses (see Figure 3, where
each pixel represents a mass with the size 2x2x2 m3, and the gray-scale represents the density
of each mass).

(a) walls (b) lines (c) perpendicular lines (d) dots

(e) checkered (f) diagonals (g) free form (h) free form

Figure 3. Examples of patterns used in 3D simulations, applied on top of the green area in Figure 2.
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Figure 4. Vertical displacement amplitude of (left) soil model with mass ρ = 8271kg/m3 and (right)
model with no mass, for a prescribed harmonic load with excitation frequency 14Hz and unit amplitude.

Results and conclusions

Two-dimensional results indicate that masses on the ground can be used as a means to mitigate
ground vibration, but in order for them to be effective they need to be very heavy. However,
due to the nature of being effective around the mass-soil systems resonance frequency they can
instead lead to larger vibrations in the soil, if they are excited at frequencies close to their
resonant frequencies. Figure 4 shows an increase in vertical displacement amplitudes caused by
scattering of incoming waves due to the mass on top of the surface.

With insight from the 2D simulations the 3D simulations attempt to find spatial organizations
for masses between vibration source and the facility. Different organizations of masses were
assembled on top of the reduced ground model and steady state analysis was performed in the
frequency range between 5-29Hz. Three-dimensional results show that locating masses in a
careful manner can be effective for vibration mitigation, and by combining masses of different
densities reduction in a wider frequency range can be reached. Some conclusions from the
research were:

• Masses applied continuously over the whole area can lead to amplification due to lensing
(Figure 3 (g), (h)) or acting as wave guides (Figure 3 (f)), however, all discrete masses
show reductions in vibrations.

• Small masses applied with large spacing are ineffective (Figure 3 (d)).
• Density variation for the different masses is more important than their position.
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Summary. This paper presents an investigation of different model order reduction methods applied
to models of lightweight building structures, intended to be used in substructure models for vibration
analysis of multi-storey buildings. A wide range of methods are implemented and tested for a wooden
floor structure by performing both eigenvalue analyses and steady-state analyses.
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Introduction

In 1994, a century-old ban on the construction of wooden buildings more than two storeys
in height in Sweden was lifted, leading to the reintroduction of such buildings. Compared to
conventional concrete buildings, it is more difficult to build lightweight structures of wood in
such a way that noise and disturbing vibrations in the different storeys and rooms are avoided.
Vibrations can be caused by, for example, footsteps, airborne sound, vibrating machines and
external sources such as railway and road traffic.

To produce buildings of high performance regarding the hindrance of disturbing vibrations
and structure-borne sound, it is desirable to have tools for predicting the effects of structural
modifications prior to construction. The objective of this project is to develop numerical pre-
diction tools making use of finite element (FE) models that are valid for general load-cases.
Accurately assessing the dynamic behaviour of lightweight structures when rather high vibra-
tion frequencies are involved requires use of FE models representing the geometry in considerable
detail, resulting in large models, the number of degrees of freedom (dofs) of which easily exceeds
the limits of computer capacity. The question arises then of how such models can be reduced in
size while at the same time being able to represent the dynamic characteristics of the buildings
in question with sufficient accuracy. The method of dividing a large model into components and
creating a global model through coupling models of reduced size of each component is referred
to as substructuring. In the present study, low-frequency vibrations in multi-storey lightweight
buildings are modelled by adopting a substructuring approach.

There are many methods for model order reduction available in the literature, some being
implemented in commercial FE software, which enables the methods to be applied to large-scale
problems directly. In the analyses presented in this paper, the efficiency of different model order
reduction methods, when applied to models of lightweight building structures, were investigated
by exporting a model of a wooden floor structure from the FE software Abaqus to the numerical
computing environment Matlab, where model order reduction was employed by implementing a
wide range of methods. The studies are restricted to frequencies below 200 Hz.
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Model order reduction

The dofs in a reduced model can be divided into two categories: physical dofs and generalised
coordinates. The physical ones are dofs of the full system that are retained in the reduction
process, whereas the generalised coordinates are included to improve the accuracy of the reduced
models and has no physical interpretation. The reduction methods can be categorised according
to the type of dofs generated in the reduction process, where condensation methods involve only
physical dofs, generalised coordinate methods are based solely on generalised coordinates, and
hybrid reduction methods employ a combination of dofs of both types. The most frequently
employed methods within each category are listed below.

• Condensation methods

– Guyan reduction [1]

– Dynamic reduction [2]

– Improved reduction system (IRS) [3, 4]

– System equivalent expansion reduction process (SEREP) [5]

• Generalised coordinate methods

– Modal truncation [6]

– Component mode synthesis (CMS): Craig–Chang [6, 7]

– Krylov subspace methods [8, 9]

– Balanced truncation [8, 10]

• Hybrid methods

– Component mode synthesis (CMS): Craig–Bampton [6, 11]

When employing substructure modelling, where the reduction is performed for each of the
substructures, it is beneficial to retain the physical dofs at the interfaces since this greatly
simplifies the coupling of substructures. The generalised coordinate methods are therefore ex-
cluded from the analyses. The Krylov subspace method is, however, employed in a modified
version, which is similar to CMS by Craig and Bampton and referred to as KCMS. CMS involves
the eigenmodes of the model, while KCMS exchanges the eigenmodes for vectors calculated by
Krylov subspace iterations. Moreover, modified versions of CMS and KCMS, referred to as
improved CMS (ICMS) and improved KCMS (IKCMS) [12], are included in the analyses.

Numerical example

A wide range of reduction methods were compared for a numerical example consisting of a
model of a wooden floor structure, the FE mesh being shown in Figure 1. The 2445×4090×242
mm3 large floor structure consisted primarily of five load-bearing wooden beams, supporting a
particle board surface. At the two shorter sides of the floor, beams where placed perpendicular
to the load-bearing beams, creating a box-like structure. The mesh of the full model contained
30,807 dofs, while the reduced models contained between 576-626 dofs. The reduced models of
the floor structure were investigated in terms of eigenfrequencies and eigenmodes in a free-free
state and transmitted vibrations in a steady-state analysis. The reduced models were, in the
steady-state analysis, coupled to two wall panels, one on each short side of the floor. A load
was applied at one of the panels, the vibration amplitudes being evaluated at the other panel
in terms of RMS-values of the displacement amplitudes in all mesh nodes of the panel for each
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Figure 1. The mesh of the floor structure in the numerical example.
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Figure 2. Normalised error in eigenfrequencies obtained for the model order reduction methods applied
to the numerical example.

frequency. The normalised errors in eigenfrequencies are shown in Figure 2 and the errors of the
RMS-values are shown in Figure 3. The errors in the steady-state analysis has been averaged
by sweeping a 20 Hz wide window over the frequency range.

The results show a large difference in accuracy between the different model order reduction
methods. Selecting the most appropriate method in a certain situation requires knowledge
concerning both the properties of the different methods and specific details of the problem
in question. In the numerical example, CMS and KCMS provide reliable results regarding
both eigenfrequencies and vibration transmission in the steady-state analysis, CMS being the
most frequently employed reduction method among civil and mechanical engineers. KCMS is
less common, but offers a comparable accuracy while it is less costly to construct the reduced
models, since it does not require an eigenvalue analysis of the full model, as is the case for
CMS. An important observation when studying the results in Figure 2 and Figure 3 is that
there is no direct correlation between the accuracy in eigenfrequencies and in the steady-state
analysis when comparing the different reduction methods. This shows the importance of applying
realistic boundary conditions and loads when comparing the reduced models, as is the case in
the steady-state analysis, and not only comparing free-free eigenmodes.
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model order reduction methods to the numerical example.
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Summary. Polymeric particles with controlled microstructure play an important role as constituents in
many composite materials for a number of emerging applications. The mechanical properties of composite
polymer particles have been investigated by classical molecular dynamic simulation with a combination of
united-atom force fields. The effect of particle size, chain architecture and temperature on the mechanical
response of polymer particles has been explored and compared with experimental results to guide the
design and control of particles.
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Introduction

Ugelstad monodisperse polymer particles have been widely used in chemical industries and
biotechnology. Recently there is a growing interest in polymer particles with potential applica-
tion in new electronic packaging technologies, such as Anisotropic Conductive Adhesives (ACA)
in Flat Panel Displays. The particles are conductive through deposition of nano-scale metal coat-
ing on the particle surface. The metallized particles usually consist of a micron sized polymer
core for improving contact compliance, a nanoscale nickel inner layer for bonding to polymer core
and obtaining electrical conductivity, and a nanoscale gold outer layer for protecting inner layer
from oxidation and improving the reliability of electrical performance. The use of metallized
polymer particles in ACA technology possesses many advantages in terms of being lead-free,
reducing package size and achieving high-density interconnections. The electrical characteristics
as well as the reliability of the interconnection are mainly determined by the mechanical perfor-
mance of the conductive polymer particles. Therefore, the mechanical performance of particles
is of crucial importance to a reliable connection. This motivates us to study the mechanical
properties of composite polymer particles and explore the structure-properties relationship to
better design polymer particles for specific applications.

Methods

Molecular dynamic simulation

A combination of united-atom force fields was used for the molecular dynamic (MD) models of
polyethylene nanoparticles in which carbon contained unit groups CH, CH2 and CH3 groups
were considered to be single spherical beads interacting with each other, resulting in great saving
in terms of the total number of atoms in the simulated systems. The total potential energy can
be expressed as:

Etotal = Enb + Ebond = Enb + Eb + Eθ + Eφ, (1)

36



where the total potential energy (Etotal) includes two components: non-bonded (Enb) and bonded
(Ebond) interaction terms. MD models of polyethylene nanoparticles were constructed with dif-
ferent sizes and different molecular architecture for bulk MD models. The prepared polyethylene
particles were compressed by rigid plates placed at the top and bottom of particles, similar as
nanoindentation-based flat punch test in experiment. During compression the real time force
and displacement on particles were monitored and the contact force-displacement curves were
obtained. To compare the particle behaviour, the stress-strain relationship was calculated as
follows:

σN =
P

πR2
(2)

ϵN =
D

R
(3)

where P was the applied force, D was the half displacement during compression and R was the
radius of undeformed particle.

Experiment

The mechanical test of single micron-sized polystyrene particles was performed by using a
nanoindentation-based flat punch methodology. A diamond flat punch of 100µm in diame-
ter was specially designed to compress individual particles. The results were compared with
MD simulation.

Results

Molecular dynamic simulation has been utilized to understand the mechanical properties of
polymeric particles. In agreement with experimental results, a strong size effect has been ob-
served which states that the smaller particle sizes the stronger it behaves. It is attributed to
the increase in surface to total energy ratio in smaller particles. The increasing crosslinking
density significantly strengthens mechanical properties of particles. Based on the results, the
polymeric particles can be tailor-made to realize the required mechanical properties in different
applications.
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Summary. This extended abstract presents a new parameterization for performing discrete material
and thickness optimization of laminated composite structures. The parameterization is based on the work
by [4], where we present a reformulation of the original parameterization. The reformulation eliminates
the need for having explicit constraint for ensuring that intermediate void does not appear in between
layers of the laminate. This is achieved by utilizing a filtering technique known as a casting constraint
from traditional topology optimization with isotropic materials.

Key words: Laminated Composite Structures, Discrete Material Optimization, Topology Optimization,

Casting Filter

Introduction

In a recent paper [4], the authors presented a gradient based optimization methodology for de-
termining an appropriate material and thickness variation for laminated composite structures.
The methodology utilizes the so-called Discrete Material Optimization (DMO) [3, 2] method for
determining an optimum material from a list of candidates. The thickness variation is achieved
by adding a topology variable to each layer, in order to effectively terminate individual plies.
Furthermore, in order to increase manufacturability the authors also developed a series of com-
mon design rules also known as manufacturing constraints. One of the presented manufacturing
constraints prevents intermediate void from appearing in between layers; ensuring that the lam-
inate can be manufactured using vacuum infusing techniques. The focus of this work is to
effectively remove the need for this type of constraint by utilizing casting constraints or filters
applied in standard topology optimization of isotropic materials [1]. Effectively, all the layerwise
density variables are replaced by a continuous through-the-thickness design variable; removing
the need for having constraints preventing intermediate void.

The remaining paper is organized as follows; first the problem formulation is presented;
secondly, the numerical examples are presented together with results. Finally, the overall con-
clusions are presented.

Problem formulation

In the original parameterization by [4] the material selection is performed on the basis of a
discrete set of candidates. These candidates may represent orthotropic lamina with different
orientations, Non Crimp Fabrics (NCF)’s, or isotropic materials such as foam or wood. The
material selection is performed using DMO, where each material candidate is represented by a
design variable or density; specifying how much of each candidate that is present for the given
design domain. The thickness variation is achieved by introducing a so-called topology variable.
Effectively, the topology variable scales the material properties between full and no presence.
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Consequently, the constitutive properties for a given layer, l, in a given element, e, are governed
by

Eel = E0 +
ρ̃i

1 + p(1− ρ̃i)

nc�

c=1

xjc
1 + p(1− xjc)

(Ec −E0) ; ρ̃i, xjc ∈ [0, 1] ∀(i, j, c), (1a)

nc�

c=1

xjc = 1; ∀ j. (1b)

In (1a), Ec is the constitutive properties of candidate c, and xjc is the associated design variable
covering the j ’th candidate design domain. Because both the candidate and topology design
variables are treated as continuous variables, penalization of intermediate valued design variables
is needed in order to drive them to their respective bounds. In (1a) the RAMP (Rational
Approximation of Material Properties) scheme by [5] is applied.

Preventing intermediate void

With the formulation in (1), nothing prevents the optimizer from converging to structures with
void in between layers of the laminate. In [4], the authors presented a set of linear inequality
constraints for the topology variables to overcome this phenomenon.

ρ̃e(l+1) ≤ f (ρ̃el, T ) ; ∀e, l = 1, 2, . . . , nl − 1. (2)

Here, f is a function prescribing the upper bound for the topology variables in all nl layers. This
bound is a function of the topology variable in the layer below, and the threshold parameter
T . Because of the function dependency of the topology variables in (2), the bounds on the
individual topology variables have to be updated for each design iteration. In this work, we
pursue to eliminate the need for such constraints by replacing the layerwise topology variables
with a single continuous through-the-thickness design variable.

Casting filters

In [1], the authors presented a filtering technique for achieving castable designs using standard
topology optimization with isotropic materials. The casting filter ensures that void does not ap-
pear inside the optimized topology, without the need for explicit constraints, making it possible
to cast the final design. This principle is directly applicable for the problem of preventing inter-
mediate void in between layers of laminated composite structures. For laminated composites,
the basic idea is illustrated in figure 1.
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Figure 1. Four layered laminate, with four columns representing individual design domains. Left, design
domain with the filtered layerwise densities ρ̃i. Right, design domain with the continuous through-the-
thickness design variables ρj

In figure 1, ρ̃i is the filtered density associated with each layer, and ρj is the design variable
for the j’th design domain. Essentially, what we want to determine is whether the value of a
given ρ̃i should be 0 or 1, based upon the value of the corresponding ρj . In order to do so, the
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filter is defined using a normalized through-the-thickness coordinate system s(l) where l is the
given layer number associated with each ρ̃i.

s(l) =
l − 1

nl
+

1

2nl
, l ∈ [1, nl]. (3)

The normalized coordinate system thus defines the boundary or interface where the value of ρ̃i
changes. In (3), the boundary is located at the center of each layer; provided that all nl layers
have the same thickness. Now, for a given value of s(l), the value of a given ρ̃i can be determined
using a Heaviside function (4).

ρ̃i = Hs (ρj , s(l)) , (4a)

Hs (ρj , s(l)) =

�
0 , ρj ≤ s(l),
1 , ρj > s(l).

(4b)

However, the formulation in (4) is not differentiable, hence the authors in [1] suggested a smooth
approximation of the Heaviside function based on the work by [6].

ρ̃i = Hs (ρj , s(l),β) , (5a)

Hs (ρj , s(l),β) =





1− ρj
�
e−β(1−s(l)/pj) − (1− s(l)/ρj) e

−β
�

, ρj ≤ s(l),

1− (1− ρj)
�
1− e−β(s(l)−ρj)/(1−ρj)

+(s(l)− ρj) e
−β/ (1− ρj)

�
− ρj , ρj > s(l),

(5b)

In (5), β is a parameter controlling the steepness of the Heaviside approximation. The sensitivity
of a given function f , with respect to the design variables, ρj , is determined by use of the chain
rule:

∂f

∂ρj
=

∂f

∂ρ̃i

∂ρ̃i
∂ρj

. (6)

Numerical examples and results

The thickness filter formulation makes it possible to optimize the total thickness of a multilayered
structure with a single design variable for each design domain. Hence, it is only natural to
compare the filter formulation against a single layered plate where for each design domain the
actual thicknesses of the plate are used as the design variables. Consequently, two examples are
presented in the following. Both examples center around a 1m×1m steel plate with a maximum
thickness of 20mm. The plate is modeled with clamped boundary conditions and is subjected
to a uniform pressure of 1kPa. The finite element discretization consists of 8x8 nine node shell
elements. For example 1, the plate has been modeled with eight layers per shell element each
with a uniform thickness of 2.5mm. For example 2, the plate has been modeled with single
layered shell elements, having a maximum thickness of 20mm.

For both examples a minimum thickness has been set to 2.5mm. This ensures that no
elements are completely replaced by void. The objective for both examples is to minimize the
total mass, subjected to a constraint on the maximum vertical displacement of 0.01mm for the
center node.

Figures 2 and 3 show the optimized thickness distribution for Example 1 and Example 2,
respectively.
As can be seen on the figures, the examples have converged to nearly identical thickness distri-
butions. In Table 1, the final objective and constraint values are shown. For both examples, the
constraint is active and the final mass is within 2% of one another.
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Figure 2. Example 1. Thickness distribution of an
eight layered plate optimized with continuous thick-
ness design variables ρj
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Figure 3. Example 2. Thickness distribution of a
single layered plate optimized with the plate thick-
nesses continuous design variables

Example 1 Example 2

Final mass 88.0kg 89.5kg

Constraint value 0.01mm 0.01mm

Table 1. Results for Example 1 and Example 2

Conclusion

A new parameterization for performing simultaneous material and thickness variation optimiza-
tion of laminated composite structures has been presented. The parameterization utilized a cast-
ing filter technique originally developed for topology optimization of isotropic structures. The
filter makes it possible to avoid explicit constraints for preventing intermediate void in between
layers of the laminated structure. Based on the presented preliminary results, the thickness filter
formulation behaves as intended. Further details and results for laminated composite structures
will be presented at the NSCM26 conference.
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Summary. To reduce lateral vibrations of rotating machines excited by unbalance forces the damping
devices are placed between the rotor and its frame. The advanced technological solution is represented
by application of magnetorheological squeeze film dampers. Values of some geometric, technological or
operational parameters of rotor systems can be indefinite or slightly variable during the operation. Then
they should be treated as uncertain and some probabilistic approach should be used for the investigations.
The Monte Carlo method seems to be promising for this purpose.
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Introduction

Application of magnetorheological damping devices placed between the rotor and its casing
makes it possible to control lateral vibrations of rotating machines produced by unbalance forces.
The aim is to reach the optimum compromise between reducing the rotor oscillations amplitude
and minimizing magnitude of the force transmitted to the rotor frame.

Values of some geometric, technological or operational parameters of rotor systems can be
indefinite or slightly variable during the operation. Then the approaches based on stochastic
principles should be used for the investigations. The worst scenario method [1], the theory of
fuzzy sets and interval mathematics [2], [3], [4], [5], the probability methods [6] and variational
procedures belong to them. Unlike the fuzzy set approach that overestimates the influence of
uncertainties on behaviour of mechanical systems, the probability method of the Monte Carlo
type seems to be more suitable. The results are obtained by means of repeated simulations for
randomly generated values of uncertain parameters. The system reliability ψ is defined

ψ = 1− Ndis

Nsat +Ndis
(1)

where Nsat, Ndis are the numbers of simulations when all required conditions put on the machine
operation are satisfied, are not satisfied.

Specification of the investigated rotor system and the problem

The investigated rotating machine (figure 1) consists of a rigid rotor formed by a shaft and one
disc and of a rigid frame. Two magnetorheological squeeze film dampers are used to mount
the shaft with the bearing housings flexibly coupled with the rotor casing. The rotor turns
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at constant angular speed and is loaded by its weight and by the disc unbalance. The squirrel
springs are prestressed to be eliminated their deflection (relative to the bearing housings) caused
by the rotor weight. The whole system can be considered as symmetric relative to the disc middle
plane.

Figure 1. The investigated rotor system. Figure 2. Magnetorheological damper.

The magnetorheological damper (figure 2) is formed by two rings between which there is
a layer of magnetorheological fluid. The outer ring is fixed to the damper’s body. The inner ring
is coupled with the shaft by a rolling element bearing and with the stationary part by a squirrel
spring. The lateral vibration of the rotor squeezes the lubricating layer which produces the
damping effect. The damper is equipped with an electric coil generating magnetic flux passing
through the lubricating oil. As resistance against the flow of the magnetorheological liquid
depends on magnetic induction, the change of the current can be used to control the damping
force.

The task was to evaluate magnitude of the current keeping amplitude of the disc vibration
in the radial direction lower than the allowed value (0.22 mm) at the specified angular speed
(200 rad/s) during the rotor steady state operating regime. The force transmitted to the rotor
frame should be as low as possible. In the analysis the rotor unbalance and speed of its rotation
are uncertain parameters.

In the computational model the rotor, its casing and the bearing housings are considered
as absolutely rigid, the squirrel springs and the coupling between the bearing housings and the
frame as elastic and linear. Acting of the layer of the magnetorheological oil on the inner and
outer rings is represented in the model system by hydraulic forces. The magnetorheological
lubricant is modelled by Bingham material. In cavitated areas the pressure is assumed to be
equal to those in the ambient space.

To take into account the uncertain character of the specified parameters the approach utiliz-
ing the Monte Carlo method has been adopted. The probabilistic distribution of both uncertain
parameters was estimated as uniform. Then the equations of motion of the rotor system read

mrÿr + bpẏr + 2kdyr − 2kdyb = mretω
2cos(ωt+ ψr) + 2Fmry + 2Fpsy, (2)

mrz̈r + bpżr + 2kdzr − 2kdzb = mretω
2sin(ωt+ ψr) + 2Fmrz + 2Fpsz −mrg, (3)

mbÿb + bbẏb − kdyr + (kd + kb)yb = −Fmry − Fpsy, (4)

mbz̈b + bbżb − kdzr + (kd + kb)zb = −Fmrz − Fpsz −mbg. (5)

mr, mb are masses of the rotor and the bearing housing, bp is the coefficient of the rotor external
damping, kd is the squirrel spring stiffnesses, kb, bb are the stiffness and damping coefficient of
the bearing housing support, et is eccentricity of the rotor centre of gravity, g is the gravity
acceleration, t is the time, yr, zr, yb, zb are displacements of the rotor and bearing housings
centres in the horizontal and vertical directions, ω is angular speed of the rotor rotation, ψr is
the phase shift, Fmry, Fmrz, Fpsy, Fpsz are the y and z components of the magnetorheological
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damping and prestress forces and (.), (..) denote the first and second derivatives with respect
to time.

The hydraulic forces are calculated by integration of the pressure distribution in the film
of the magnetorheological oil around the circumference and along the length of the damping
element taking into account the cavitation. The pressure in noncavitated regions is governed by
solution of the Reynolds equation adapted for Bingham material. The details on its derivation
and solution are discussed in [7].

Results of the simulations

In figures 3 and 4 there are depicted the frequency response characteristic referred to the rotor
disc centre and dependence of the maximum force transmitted to the rotor frame in the vertical
direction for several magnitudes of the applied current. The results show that the high current
for velocities lower than approximately the first resonance frequency reduces both amplitude
of the rotor vibration and magnitude of the transmitted force. But in the area of higher rotor
angular speeds the rising current changes the vibration amplitude only little but considerably
rises the transmitted force. As the investigated operating speed is higher than the critical one,
the proposed current should be as low as possible but high enough to reduce the vibration
amplitude below the allowed value.

Figure 3. Response characteristic. Figure 4. Vertical force versus speed of rotation.

Figure 5. Dispersion of the disc amplitude. Figure 6. Vertical force-disc displacement dispersion.
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Amplitude of the rotor vibration and magnitude of the vertical force transmitted to the
rotor frame is evaluated by means of the Monte Carlo method. The results were obtained by
performing 10 000 simulations, each for two magnitudes (1.0 A, 1.2 A) of the electric current.
Figure 5 shows that in both cases the condition for the allowed value of the oscillation amplitude
is not satisfied. Nevertheless, the reliability is comparatively high, 99.0 % and 99.9 % for the
currents of 1.0 A and 1.2 A respectively. Increase of the current leads to rising the force
transmitted to the rotor frame in the vertical direction by about 1.3 % as evident from figure 6.

Conclusions

The probabilistic Monte Carlo method makes it possible to investigate dynamical behaviour of
mechanical systems taking into account the effect of uncertainty of some geometric, design or
operational parameters. The results are obtained in the form of intervals of numerical values.
It follows from the theory, confirmed by experience, that to obtain the reliable results a large
number of computational simulations must be performed which makes this method considerably
time consuming.

This work was supported by the research projects MSM 6198910027, CZ.1.05/1.1.00/02.0070.
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Summary. A newly developed framework is presented for structural design and analysis of long slender
beam-like structures, e.g., wind turbine blades. The framework is based on the BEam Cross section
Analysis Software – BECAS – a finite element based cross section analysis tool. BECAS is used for the
generation of beam finite element models which correctly account for effects stemming from material
anisotropy and inhomogeneity in cross sections of arbitrary geometry. These type of modelling approach
allows for an accurate yet computationally inexpensive representation of a general class of three dimen-
sional beam-like structures. Preliminary results are presented where the devised framework is used for
stiffness and strength analysis of wind turbine blades, material and structural topology optimization of
wind turbine blade cross sections, and evaluation of strain energy release rate in fractured beams. The
results show a good agreement with solutions from three-dimensional solid finite element models but
require only a fraction of the computation time.

Key words: beam finite elements, wind turbine blades, cross section analysis tools, laminated composite

structures

Introduction

The design and certification of wind turbines requires the analysis of a large number of load
cases. Each of these load cases corresponds to relatively long time series analysis of the loads
and response of the wind turbine. These analyses are typically conducted using specialized wind
turbine aero-servo-elastic codes. In here the most important components of the wind turbine
are typically modelled using beam finite elements. These type of modelling approach offers a
convenient trade off between accuracy and computational efficiency.

The generation of beam finite element matrices entails the determination of the cross section
stiffness and mass properties. For isotropic beams with simple geometries (e.g., tower and shaft)
the determination of these properties is usually trivial. However, the development of accurate
beam models to represent the blades is not so simple. The blades have complex geometries and
are made of combinations of different composite materials with different degrees of anisotropy.
Simplified approaches have been used in the past to estimate the blade cross section properties.
However, these tools do not meet the desired level of accuracy for future blade designs.

The wind turbine blade design and engineering community, in an effort to improve the
accuracy of its aeroelastic models, has in recent years looked into new methods for developing
high-fidelity beam models to represent the blades. The open source BEam Cross section Analysis
Software – BECAS – described here is a result of this effort (see BECAS [1]). BECAS is able
to accurately account for effects stemming from material anisotropy and inhomogeneity in cross
sections of arbitrary geometry. As a result, it is now possible for blade designers to tailor these
properties to improve the aeroelastic performance of the blade.

In the next sections, we will describe the basic BECAS workflow and present different appli-
cation examples which illustrate the potential of such a tool. We conclude with an outlook into
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future extensions and challenges.

The BECAS workflow

A schematic description of a typical BECAS workflow for structural blade analysis and design
is described in Figure 1. BECAS is first used in a pre-processing phase to generate the beam
finite elements representing the blade in the aeroelastic analysis code. A series of pre-defined
cross sections along the blade are analysed. The analysis is based on a finite element mesh of
the cross section. The material properties are defined at each element and may present any level
of anisotropy. The resulting beam finite elements are used to represent the blades in the wind
turbine assembly inside the aeroelastic analysis tool. Finally, based on the cross section forces
and moments resulting from the aeroelastic simulations it is possible to recover the detailed
three-dimensional stress components or analyse the strain energy release rate, as will be shown
in the next sections.

WT blade Loads

t

Blade 
section

Cross section

Beam FE

WT FE model

Cross section

Stress

BECAS BECASAeroelastic analysis Post-processingPre-processing

Figure 1. Schematic description of the BECAS workflow for structural analysis and design of wind turbine
(WT) blades.

The framework described previously was recently employed in the stiffness and strength
design of the DTU 10 MW Reference Wind Turbine (DTU10MW-RWT) (Bak et al. [2]). The
geometry and material distribution were automatically generated based on a shell finite element
model of the blade. The resulting cross section stiffness and mass properties were employed in
the generation of the beam finite element representing the blades in the wind turbine aeroelastic
analysis tool HAWC2 (Larsen and Hansen [3]). The strength of the laminates in the blade were
analysed based on the resulting aeroelastic loads. The procedure was repeated until the final
structural configuration of the blade was obtained.

Applications

The following sections give a brief account of the main developments within the BECAS frame-
work. These are mostly preliminary results intended to illustrate the potential of such a tool.

Stiffness and strength analysis

The first step in the development consisted of the validation of the cross section stiffness and
mass properties. Results show that the deformation and eigenfrequencies given by beam finite
element models generated using BECAS match closely the results from detailed shell finite
element models. Moreover, the three-dimensional stress components on a detailed wind turbine
cross section have been analysed. The results from Figure 2 show that the three-dimensional
stress components estimated by BECAS match well with that obtained from three-dimensional
finite element models.
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(a) (b) (c)

Figure 2. Analysis of strength in a wind turbine cross section using BECAS. (a) Wind turbine cross
section and region of detail. (b) Finite element mesh, and material distribution and orientation at detail.
(c) Element strains ϵ11 in material coordinate system as obtained by BECAS and a three-dimensional
solid finite element model in ABAQUS.

Multi-material topology optimization

An optimal design framework was developed by Blasques and Stolpe [4] combining BECAS
and multi-material topology optimization techniques. The optimal design problem concerns
the distribution of a limited amount of different materials within a design domain represented
by the cross section finite element mesh. A change in the material distribution in the cross

(a) Fiber orientation

(b) Fiber plane orientation
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Figure 3. Optimal material distribution and laminate properties for the load carrying structure of a wing
profile cross section subject to 15 static load cases of aerodynamic nature. Solution to the minimum
compliance problem with a weight constraint. It is assumed that the outer aerodynamic shell is non-
structural and exists around the perimeter of the cross section shape outside the design domain. (a) Fiber
orientation. (b) Fiber plane orientation. (c) List of 9 candidate materials (laminated composite material
in 8 different directions and void) and legend to figures (a-b) for interpretation of the three-dimensional
orientation of the fibers.

section results in a consequent change of its stiffness and mass properties and in turn, of the
structural response of the beam. The approach was applied, among other, to the optimization
of the material properties and structural topology of an idealized wind turbine blade. The
resulting topology presented in Figure 3 agrees well with results reported in the literature using
computationally significantly more expensive three-dimensional solid finite element models.

Evaluation of strain energy release rate

The most recent work has focused on the analysis of strain energy release rate (SERR) in
fractured beams. The Virtual Crack Closure Technique (Krueger [5]) has been implemented in
BECAS. The validation work includes the analysis of SERR for cracks along the beam length
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in mono- and bi-material interfaces. The resulting SERR values show a good agreement when
compared with three-dimensional solid finite element models (cf. Figure 4).
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Figure 4. Selected results comparing the VCCT results from BECAS and three-dimensional finite element
models in ABAQUS for cantilever beams subjected to tip loads. The origo of the length coordinate is
at the clamped end of the beam. Strain energy release rates G1, G2, and G3 are associated with mode
1, 2 and 3 crack opening, respectively. (a-b) Bi-material cross section with crack in the center subjected
to transverse force in the x direction. (a) Cross section warping deformation and finite element mesh.
(b) Variation of the strain energy release rate GII along the beam length. (c-d) Bi-material cross section
with crack at the material interface subjected to tension force in z direction. (c) Cross section warping
deformation and finite element mesh. (d) Dundurs parameters as estimated based on measurements for
different mesh sizes using BECAS (right) and a solid finite element model in ABAQUS (left).

Current developments and future challenges

Ongoing developments concern mostly the extension of the previously presented results. The
strength analysis module is being further extended to address material based fatigue damage
estimations and reliability analysis. The main challenge in this module is the incorporation
of effects stemming from geometrical non-linearities, e.g., panel buckling for thin-walled cross
sections. The topology optimization framework is currently being extended to include aeroelastic
stability constraints. The aim in this case is to fully exploit the fact that the analysis of the
global response of the beam is relatively inexpensive to consider novel computationally intensive
and complex multi-physics constraints. Finally, the aim with the fracture analysis module is
to perform multi-scale modelling using loads stemming from aeroelastic analysis simulations to
study the development of debond and delamination damage.
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Summary. The article describes a robust and effective implementation of the interior point optimization
algorithm. The adopted method includes a precalculation step, which reduces the number of variables
by fulfilling the equilibrium equations a priori. This work presents an improved implementation of the
precalculation step, which utilizes the principals of the well-known frontal method. The succeeding
optimization algorithm is also significantly optimized, by applying a parallel implementation, which
eliminates the exponential growth in computational time relative to the element numbers.

Key words: FEM limit analysis, element renumbering, frontal method, interior point optimization, par-
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Introduction

The optimization method described in the article is an efficient implementation of the method
by C. Frier and L. Damkilde [1]. The optimization method in the succeeding is based on the
well-known limit state lower bound problem, formulated as:

Maximize: α (1)

Subjected to: Hσ = αr + r0 equilibrium equations,

f i(σ) + s = 0 i = 1, 2, · · · , p yield criterions,

where H is the flexibility matrix describing the continuity and equilibrium conditions, r and
r0 are vectors describing the external scalable load applied and the constant load, e.g. body
weight. α is the scalar load parameter and σ is a vector with the generalized stress variables
mi

x, m
i
y and mi

xy for each control point i. And finally s is a vector with the slack variables for
each yield function.

By fulfilling the equilibrium equations a priori, the number of variables in the succeeding
optimization is significantly reduced, which of course reduces computational time, cf. [1]. Fur-
ther, the optimization routine seems to get significantly more robust, as the gradients is less
sensitive to changes in the search direction. Due to the limit state formulation the number of
equilibrium equations is smaller than the number of variables, thus the set of equations describes
an under determined system of equations. The variables in such a system can be divided into
two parts, which for structural analysis can be considered as static determined variables and free
variables. By realizing this, it is possible to fulfill all equilibrium equations a priori and reduce
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the optimization problem, cf. [1]. By introducing the reduction of variables, the optimization
problem in (1) reduces to:

Maximize: bTβ (2)

Subjected to: f i(β) + s = 0 i = 1, 2, · · · , p yield criterions,

where b is the weighting of the free stress variables and the scalar load parameter, β is a
vector with the free stress variables σf and the load parameter α.

Nonlinear interior point optimization

The optimization problem in equation (1) has been solved by several different optimization algo-
rithms. Focus in recent years has mainly been on the Second-Order Cone Programming (SOCP),
implemented by e.g. [2], and the Nonlinear Interior Point Programming (NIPP) method imple-
mented by e.g. [1]. The benefit of the NIPP solver is the robust search for optimality, which is
non-dependent of the number of elements. This is not the case for the SOCP solver, which has
convergence problems in material optimization for only 540 elements, cf. [2]. The main draw-
back of the NIPP solver is the relatively slow computational time. Thus a parallel formulation
has been implemented in the succeeding.

The optimization problem in (2) can be formulated as a Lagrangian function, due to its
primal-dual properties, cf. [1]. To increase the robustness of the search for optimality a barrier
function is added to the Lagrangian function:

L(βd, s,λ) = −bTβ − µk

p�

i=1

log(si) + (f (β) + s)Tλ. (3)

Here, λ denotes the cost-variables or in structural terms the strain-velocities, and µ denotes
a scalar barrier parameter, for iteration k . The optimal solution to this function is found by the
Karush-Kuhn-Tucker (KKT) condition and Newton’s method. [1] presents a detailed reduction
of the gradient variables, which is included in this implementation. By the reduction method
the step direction can be determined by:

TΔβ = −r1 (4)

r1 = ∇fβ
T (β)F−1µk − b (5)

T =

p�

i=1

µk,i

�
∇βf

T
i (β) · f −2

i (β) ·∇βf i(β)−∇2
ββf i(β) · f T

i (β)
�

(6)

Where F is f (β) on diagonal form. By starting the iteration from an initial feasible point
with a stress field equal to 0 and a load multiplier α equal to 0, the solution of the first iterations
can be determined as:

βk = βk−1 + θηΔβ. (7)

Here, η is the maximum allowable step length, which secures that the yield criterion is not
violated and θ is a correction factor which reduces the step length and makes the search more
robust.
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Equilibrium equations solved a priori with a frontal approach

To achieve an effective assembly and reduction of variables of the flexibility matrix H , this
article implements an effective mesh renumbering scheme and a frontal approach to assemble H
and determine the static and free variables.

An effective numbering of the elements is a prerequisite to get an efficient frontal assembly
process. The scheme used for optimization of the element numbers is done in two steps. Step 1;
a standard MATLAB Sparse Reverse Cuthill-McKee renumbering optimizes the node numbers
and step 2; elements are renumbered by the method described by Sloan [3]. This gives a sparse
connectivity pattern of the graph describing the mesh.

In traditional FEM the frontal approach has been used for decades to assemble and solve
the system of equations Kd=r . The system of equations is assembled by looping over elements
and simultaneously eliminating equations and variables which are ready to leave the front. By
this method, the front width of the assembly matrix is always kept as narrow as possible, which
reduces both computational time and storage capacity. As the flexibility matrix H of the
optimization problem is rectangular, the frontal method is adapted to handle a system with
more variables than equations. The frontal approach implemented in this work is split in three
steps:

1. Determine maximum front size
2. Assemble elements and perform forward substitution in a frontal scheme [H s H f ]
3. Perform backward substitution to determine the relation between static and free variables

H �
f=H s\H f

H s H f H �
f

Figure 1. (Left) Sparsity pattern of the flexibility matrix H after assembly and forward substitution.
(Right) Sparsity pattern of H �

f . (1688 elements)

The total stress field in the structure is then determined as a function of the free variables:

σ = Bβ + r�0 (8)

Here B denotes a matrix [H �
f ; I ], and r �

0 is a vector manipulated according to the forward
and backward substitution process. As seen from Figure 1, the number of variables β in the
optimization problem is significantly reduced compared to the original problem formulation in
(1).

Optimization process utilizing parallel computing

An evaluation of a sequential implementation of the optimization algorithm above shows that
98% of the computational time of each iteration is consumed by two operations, which includes
summing up T and r1 in equation (6) and (5). The computational time to build T and r1

for each iteration, in a sequential order, is dependent on the number of flops per iterations.
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N · Cp · f ·
�
(r + 1)n2 + (r2 + 2r + 6)n

�
· t0 (9)

Here N is the number of elements, Cp is the number of control points per element, f is the
number of constraint functions, n is the number of free variables, r is the number of variables in
each yield function and t0 is a hardware constant describing computational time per operation.
Tests shows that equation (9) gives a realistic estimate of the computational time per iteration,
cf. Figure 2.

Figure 2. Actual computational time and estimated computational time per iterations in a sequential
order.

As seen, the computational time per iteration grows with the element number to the power of
3. The summing process for building T and r1 is ideal for parallelization as each contribution to
T and r1 are independent. Thus, the expression in (9) is reduced significantly by parallelizing
on two levels. In this context data transfer and overhead time is not considered.

N

p2
· Cp · f ·

�
(r + 1)

�
n

p1

�2

+ (r2 + 2r + 6)
n

p1

�
· t0, (10)

where p1 times p2 are the number of parallel processes. In this work a parallel scheme which
utilizes the properties of equation (10) is implemented, such that the flops is done simultaneously,
and consequently the computational time is significantly reduced.

Conclusion

By utilizing the properties of the frontal method and parallel computing, this work has shown
that the optimization method by Frier and Damkilde [1] can be significantly optimized with
regards to computational time. The implementation seems to be very efficient in both load and
material optimization and give robust solutions with more fine meshes (N>1000), which seems
to be a challenge when using e.g. the SOCP method [2].
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Summary. This article addresses the support parameter identification of vibrating beams with elastic
boundary conditions. The problem is frequently encountered in modeling and structural health mon-
itoring. Two solutions are proposed: the first solution is based on the fixed number of first natural
frequencies and artificial neural networks; the second one - on the Haar wavelet transform of the mode
shapes and neural networks. The results are compared to each other. The significance of the proposed
numerical approaches (in comparison to the existing ones) to the inverse problem lies in its relatively fast
and precise model-independent parameter predictions.
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Introduction

The free vibration of the elastically constrained beam has been a subject of practical engineering
interest for several decades [1, 2, 3]. The frequencies of the vibrations depend on the stiffness
parameters of the elastic supports. These parameters change significantly during severe ex-
ploitation of the structure and environmental conditions; as a result, the stiffness characteristics
can considerably influence the performance of the structures. Therefore, the online monitoring
and precise identification of the stiffness parameters are important issues, which have not been
widely studied yet.

The calculation of the stiffness parameters from the governing equation of the vibrating
beams on elastic supports or with elastic boundary conditions is an inverse problem and cannot
be done analytically. Therefore, alternative methods have to be developed. The aim of the
present paper is to study the free vibrations of the beams with non-classical elastic boundary
conditions and propose a numerical solutions to the problem.

One option is to use an artificial neural network (ANN). It is a simulation of the biological
neural network responsible for the learning by examples. The computational model consists of
the hidden-layer neurons connected between the input and output neurons. The connections
between the neurons are modeled by the weights which are to be determined during the training
phase. In the present paper, the hyperbolic tangent sigmoid transfer function is used as an
activator to increase the modeling flexibility [4].

Since the accuracy of the predictions depends on the training algorithm and the training
data, two approaches are proposed. The first one is based on the fixed number of the first
natural frequencies and ANN. In order to decrease the amount of the preparatory data and the
calculation time, the Haar wavelet transform was applied to the vibrating mode shapes in the
second solution.

The Haar wavelet is the simplest discrete orthogonal wavelet which is discontinuous and
resembles a step function. It has been chosen in the present paper due to its ability to perform
discrete wavelet transform and efficient preprocessing of the data [5].
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Figure 1. The beam with translational and rotational spring supports.

The present paper is divided into four Sections. The second Section gives an overview of
the physical model. Section three introduces the approaches. The numerical examples on the
parameter identification using the ANN and Haar wavelets are presented in Section four.

Free vibrations of beams with elastic constraints

A uniform beam with elastic boundaries and an arbitrary number of intermediate elastic supports
is shown in Figure 1. It is assumed that the number of the intermediate supports is n− 1 and
the supports are located at the origins of n − 1 local axial coordinates xi, i = 2, . . . , n which
are introduced for the i-th beam element of length li. The left end of the beam is origin to the
coordinate x1. The restraints are provided by either a translational or rotational spring, or both
(see Figure 1), which are characterized by the spring constants Kt or Kr, respectively. Each
beam element is considered as Euler-Bernoulli beam. The governing differential equation of the
i-th beam element (i = 1, . . . , n) can be written as:

EI
∂4wi

∂x4i
− ρA

∂2wi

∂t2
= 0, (1)

where wi is the transverse displacement of the i-th beam element, E is the Young’s modulus, I is
the moment of inertia of the cross-section, ρ is the mass per unit volume, A is the cross-sectional
area and t is the time.

The boundary conditions of the beam at the left and right ends are the following:

Kr0
∂w1(0,t)

∂x1
= EI

∂w2
1(0,t)

∂x2
1

, Kt0w1(0, t) = −EI
∂w3

1(0,t)

∂x3
1

,

Krn
∂wn(ln,t)

∂xn
= −EI ∂w2

n(ln,t)
∂x2

n
, Ktnwn(ln, t) = EI ∂w3

n(ln,t)
∂x3

n
,

(2)

where Kr0 ,Kt0 and Krn ,Ktn stand for the rotational and translational spring constants at the
left and right ends, respectively.

The equations for the intermediate supports can be written as:

wi(li, t) = wi+1(0, t), Kri
∂wi(li,t)

∂xi
= −EI(

∂w2
i (li,t)

∂x2
i

− ∂w2
i+1(0,t)

∂x2
i+1

),

∂wi(li,t)
∂xi

= ∂wi+1(0,t)
∂xi+1

, Ktiwi(li, t) = EI(
∂w3

i (li,t)

∂x3
i

− ∂w3
i+1(0,t)

∂x3
i+1

).
(3)

In (3), the intermediate rotational restraints are characterized by the spring constants Kri ,
i = 1, . . . , n− 1 and the translational restraints by the spring constants Kti , i = 1, . . . , n− 1.

Modeling of the system

In the present research paper on the elastic parameter identification, the focus is placed on
two approaches based on the natural frequencies, ANN and Haar wavelets. The first complex
approach includes the following steps:

• calculation of the first five frequencies
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Table 1. Prediction of the stiffness coefficient of the translational spring placed at the left end of the
cantilever.

Exact Stiffness Stiffness
stiffness predicted predicted

based on based on
frequencies Haar coefficients

57 55.3327 54.8327
145 143.6753 150.2754
225 228.5777 231.8532
297 293.7516 297.0932
337 337.2109 339.1035
393 396.1568 396.1999
441 440.2295 438.4284
481 477.1500 477.2706
505 500.8022 497.5804
553 551.6345 549.9034
617 620.7470 620.1079
729 726.6735 731.1058
777 772.6530 773.4868
801 797.6877 797.6564
913 919.0898 917.7227

χ2 0.0239 0.0512

• composition of a 110-pattern training set and a 15-unknown-pattern test set
• creation and training of the feed-forward ANN with one hidden layer

The second method is updated to the following steps:
• construction of the first mode shape
• the mode transformation into 16 Haar coefficients
• composition of a 110-pattern training set and a 15-unknown-pattern test set
• creation and training of the feed-forward ANN with one hidden layer

In order to compare the performances of the methods, the chi-square test is performed: the
smaller χ2 is, the more accurate is the prediction. For predicting the stiffness coefficients, the
ANNs were created in the MATLAB environment using the Neural Network Toolbox and Intel
Pentium III Xeon processor with 2,4 GHz and 3,46 GB of RAM.

Numerical examples

First, the suggested approaches for the elastic parameter identification were applied to the
cantilever with a translation spring on the right. The results can be seen in Table 1.

Secondly, the proposed methods were examined on the cantilever with rotational and trans-
lational spring support at the distance of 0.2 units from the left end. The NN predicted the
stiffness coefficient of the rotational spring; the translational spring coefficient was fixed to 10.
The results are presented in Table 2.

Concluding remarks

In the present paper, the free vibrations of the beams with non-classical boundary conditions
were studied using two different approaches: the first method was based on the natural frequen-
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Table 2. Prediction of the stiffness coefficient of the rotational spring placed in the intermediate of the
cantilever.

Exact Stiffness Stiffness
stiffness predicted predicted

based on based on
frequencies Haar coefficients

57 54.3689 55.4120
145 145.6795 145.4038
225 224.2490 223.9381
297 299.1908 298.8477
337 337.1403 339.5338
393 390.1646 392.3984
441 439.0274 438.3825
481 482.3506 477.1660
505 508.1855 502.8082
553 556.2718 553.8683
617 616.9037 619.0140
729 724.1373 725.1305
777 774.2796 775.0439
801 800.4138 800.9546
913 917.9655 918.5208

χ2 0.0190 0.0136

cies and NN; the second one transferred the mode shape into 16 Haar coefficients that were
used for the same NN training. The accuracy of the predictions were quite precise and relatively
similar to each other (the χ2 error was near 2 and 5 per cent, respectively); however, the method
based on Haar coefficients required five times less data and time.
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Summary. This paper describes the implementation and verification of a state-of-the-art user pro-
grammed cohesive zone element in the commercial finite element package ANSYS Mechanical. The user
programmed element is benchmarked against the Ansys Mechanical cohesive element, INTER205. Con-
vergence rates are better than INTER205 by 15% to 100% and extra possibilities regarding data output
have been added. A standard practice to overcome convergence difficulties when using a coarse mesh
with cohesive zone elements is to lower the onset traction. A study is presented which demonstrates that
this practice may lead to underestimated load carrying capability.

Key words: cohesive zone modelling, composite structures, user programmed, ANSYS Mechanical, finite

element, fracture mechanics.

Introduction

The work presented in this paper is a part of the master thesis project [1]. The master thesis
treats the formulation of a cohesive zone finite element and analyses of wrinkle defects using
cohesive zone elements. The master thesis was carried out in collaboration with Siemens Wind
Power A/S. Siemens Wind Power A/S manufactures wind turbine blades made of glass-epoxy-
balsa laminates and the entire blade is cast in a single process using vacuum assisted resin
transfer moulding. In the infusion process of large glass-epoxy-balsa composite structures, such
as wind turbine blades, several types of manufacturing defects can arise [3]. Among these man-
ufacturing artifacts are wrinkle defects. Wrinkle defects are out-of-plane fiber misaligments,
which might initiate delaminations leading to structural collapse of the blade during operation.
The occurrence of wrinkle defects presents a great expense in the production of the blades since
they are, in most cases, repaired due to lack of reliable methods of estimating the reduction in
load carrying capability [3]. In order to characterise whether a given wrinkle defect is detrimen-
tal for the structural integrity of the blade, it is necessary to be able to predict the onset of
delamination and its development. The cohesive zone modelling (CZM) approach provide such
capabilities and was therefore chosen for the analysis of wrinkle defects.

CZM is an indirect way of applying classical fracture mechanics, where the critical energy
release rate is represented by the work of tractions acting on the crack faces. The research field
within the implementation of CZM into the framework of the finite element method has several
contributions. The element presented here is based on the work of [4] and [5].

A user programmed element was chosen for the analysis of wrinkle defects since all options
affecting results and convergence rates would be accessible to the user. This is not the case for
commercially implemented cohesive finite elements. Among these options can be mentioned:
order of integration, mode interaction criterion, computation of tangent stiffness matrix and
internal force vector as well as non-standard result output such as element damage and average
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Figure 1: a) single element model undergoing rigid body translation and rotation as well as
relative displacements. b) surface plot of tractions in the relative opening space.

mode mixity. Furthermore, a user programmed element provides a framework in which further
research can be conducted. It was chosen to implement the user programmed feature (UPF) in
the ANSYS Mechanical finite element package for several reasons. ANSYS Mechanical provides
a thorough documentation for implementing user programmable features along with extensive
possibilities of accessing the wanted data from the element routine. ANSYS Mechanical also
provides tools for plotting results of UPFs and it is possible to create and modify models through
the Ansys Parametric Design Language (APDL). APDL is well suited for parametric studies,
which come in handy when wrinkle defects of various sizes and compositions are to be analysed.
The work carried out regarding analysis of the strength of wrinkle defects is presented in [2].

Element formulation and verification

The developed UPF is a bilinear eight-noded isoparametric element with zero thickness. The
element uses a bilinear traction-displacement law and is capable of simulating mixed mode crack
development in 3D. The Benzeggagh-Kenane (BK) criterion [9] is used to determine equivalent
properties for a given mode mixity as done in [4]. The damage evolution law is based on a single
scalar damage parameter and the quadrature rule is 1. order Newton-Cotes. The computation
of the tangent stiffness matrix is simplified by neglecting contributions from changing mode
mixity and changing geometry from substep to substep. This simplification is made due to
computational efficiency and because it is assumed that the mode mixity and geometry will
change slowly. Using the UPF the global problem is turned into a nonlinear problem due to
the nonlinear constitutive law and nonlinear geometric relations of the crack interfaces. Under
displacement control the problem can be solved using the standard Newton-Raphson solver and
under load control an equilibrium path tracing algorithm such as e.g. the Arc-Length method
has to be used since snapthroughs and snapbacks may occur in simulations.

The element was verified using a two step procedure. In step one the element kinematics
along with the material model was verified on a single element model shown to the right in
Figure 1a. Different rigid body rotations and translations were applied to the element in order
to check if convergent solutions were obtained, and thereby verify that the element kinematics
was implemented correctly. For the different configurations tested, a surface plot of the traction
norm in the opening space spanned by the relative displacement in the x- and y-direction of
the element coordinate system was made. The surface plot of the traction norm in the relative
displacement space can be seen in Figure 1b. The implementation of the material law was then
validated by comparing the obtained results with a material law programmed in MATLAB.

In step two the element was validated by simulating the physical test specimens; double can-
tilever beam (DCB), end notch flexure (ENF) and mixed mode bending (MMB) and comparing
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Figure 2: a) Load-displacement curves for MMB tests with different mode mixities. b) Surface
plot of load at which unstable crack growth occurs for varying crack lengths and onset tractions.

θ = 1/4 θ = 1 θ = 4
Method Load [N] Iterations Load [N] Iterations Load [N] Iterations

ANS 478.5 457 264.3 390 92.2 276
UPF 467.5 387 253.1 189 90.0 128
LEFM 513.5 - 277.5 - 97.3 -
Experimental 518.7 - 275.4 - 108.1 -

Table 1: Number of iterations used and load at which unstable crack propagation occurs for
different mode mixities.

with the INTER205 element (ANS) in ANSYS, Linear Elastic Fracture Mechanics (LEFM) and
with experiments from [6]. The FE models are meshed with 1600 elements in the length direction
of the specimens in order to obtain convergent solutions for the required onset traction of 80MPa
to 100MPa. The results obtained from the MMB tests are shown in Figure 2a. The mode mixity
for each test is given as θ = GI

GII
. The UPF element gives the same results as the ANS on most

parts of the curves and shows faster convergence (see Table 1). The reason for the difference in
results between UPF and ANS is believed to be the different mode interaction criteria used. It
is also seen that LEFM predicts a stiffer response and higher load for unstable crack growth. A
model using CZ elements becomes more compliant than LEFM predicts because the interfaces
in the cohesive zone are allowed to separate some distance defined by the constitive law before
crack propagation starts.

Influence of the onset traction on the predicted load carrying capability

Using CZ elements in an FE model can potentially make the model difficult to solve due to
convergence difficulties. Substantial research have been carried out in order to overcome such
difficulties. Among studies on this subject can be mentioned [4], [5], [7] and [8]. Suggestions
for improving the chance of convergence are e.g. modifying the tangent stiffness, lowering the
penalty stiffness, increasing order of integration, lowering the onset traction and to use a very
fine mesh in the damage process zone.

The DCB, ENF and MMB simulations were meshed with a mesh so fine that it would be
impractical to use in the simulations of wrinkle defects. From [7] it is known that one way
to use a coarser mesh without sacrifising convergence is to lower the onset tractions. This is
because it enlarges the cohesive zone resulting in more elements present in this region. In order
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to overcome convergence difficulties when simulating wrinkle defects in [2] the onset tractions
were lowered until convergence for a reasonable amount of elements was observed. In order to
clarify which influence lowering the onset traction has on the predicted load carrying capability,
a parametric study was conducted on the DCB specimen. The parameters varied were initial
crack length and the onset traction. The results from the study are shown in the surface plot
in Figure 2b. It is clear that for long cracks the choice of onset traction has an insignificant
influence on the predicted load for the onset of unstable crack growth. This means that for long
cracks, the energy release rate is the governing parameter. It is also observed that the predicted
load for a short crack is highly dependent on the choice of onset traction. This is because the
length of the cohesive zone is large compared to the crack length and the added compliance
from the cohesive zone becomes significant. The study shows that if information regarding
crack propagation is sought, lowering the onset traction is an acceptable way of reducing the
demand for the required number of elements. However, crack initiation is highly dependent of
the onset traction, since crack initiation can be seen as the limit case of decreasing the crack
length. This has the implication, that the onset traction can not be lowered arbitrarily in order
to obtain convergence if crack initiation is to be examined since, if the onset traction is lowered,
non-physical behaviour of the model may be experienced.
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Summary. Leap Motion is a 3D gesture-control device that was launched in July 2013. The device can
track movement of fingers and hands down to 1/100 mm, it also comes with a software development kit
that makes it easy to implement into existing software. This paper describes how the Leap Motion can
be implemented into an existing 3D application.

Key words: 3D user interfaces, leap motion, gestures, mechanics software

Introduction

Leap Motion is a 3D gesture-control device with high finger tracking accuracy. Creating 3D
user interfaces with mouse and keyboard as input devices have always been challenging both
for developers and users. Using 3D gestures using a device like Leap Motion could improve the
usability for 3D based user interfaces.

Structural Mechanics in Lund have a long experience in creating user interfaces that support
conceptual design by using direct-manipulation. A good example of this is Sketch-a-Frame [1],
a 2D FE application for the iPad, where the user can quickly model a geometry using the
multi-touch interface of the iPad. As changes are made to the model the result is visualised in
real-time, enhancing the users understanding of the structure.

The goal of this work is to bring the same feeling of direct manipulation as in Sketch-a-Frame
to three dimensions, using the Leap Motion device.

ObjectiveFrame

ObjectiveFrame is a 3D beam analysis application, that can visualise the response of a structure
to a user-defined load in real-time [2]. The application is developed as an educational tool
for design-, architecture- and structural mechanics students. The mouse is used as an input
device which has limited input interaction in a 3D environment. It is written in C++ with the
cross-platform GUI toolkit FLTK [4].
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Figure 1. The Leap Motion device in use.

Leap motion

The Leap Motion device (see Figure 1) is placed on the desktop and it then tracks all movement
of hands, fingers and tools such as a pen [3]. The interaction area is 0.6m above the device, by
0.6m on each side and by 0.6m in depth on each side (see Figure 3). It can track movements at
an accuracy of 1/100 mm. The device consists of two cameras and three infrared LEDs, making
the device very slim.

The Leap Motion software development toolkit (SDK) has support for most common pro-
gramming languages. With the SDK implemented position, velocity and direction for fingertips,
hands and tools can be used, making the device easy to implement into existing applications.

Figure 2. The fingertips direction vectors.
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Figure 3. The Leap Motion interaction area.

Implementation in ObjectiveFrame

The Leap Motion SDK is linked to the existing ObjectiveFrame code using CMake [5], the 3D
vectors and positions are retrieved are scaled to the ObjectiveFrame coordinate system. When
the controller detects two fingers 3D cone objects are visualised with position and direction set
to give the user a visual representation of the fingers in the ObjectiveFrame space (see Figure
4). The two fingers can select which node to interact with using a pinch gesture. When a node
is selected it can either be moved or its force vector can be altered using the fingers position.
Combined with real-time calculations it gives the user a feeling of direct manipulation, enhancing
the users understanding of the structural behaviour of the model.

The Leap Motion is also used to change the users viewpoint. If one hand and five fingers are
detected the viewpoint will change with the hands velocity and angel. Moving the hand to the
left or right rotates the view, moving the hand forward or backward for zoom and tilting the
hand changes the vertical angel of the viewpoint. Two hands can be used for panning.

The result is an application where the user can move around in a 3D environment, and
interact with the model using only hand gestures.
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Figure 4. The application with fingers interacting.
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Summary. In the present study we investigate the applicability of splitting schemes to integrate the
equations of motion of a marine vessel model. High order splitting schemes were applied to the numerical
solution of a rigid body model subject to torque. The performance of the algorithm has been compared
with a classical Runge-Kutta method. The obtained results suggest that the method can compete with
traditional solvers for this specific problem.
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Introduction

In the past years we have seen a significant increase in the use of energetic resources, and
the search for oil and gas deposits has become increasingly challenging. Locations of the new
deposits are often found to be in deep waters which makes oil extraction a more demanding
task. One concrete example is the pipe-laying process from marine vessels, where the damaging
of the pipes can result in big operational costs.

This marine operation requires high precision in positioning the vessel. The speed and
capability of prediction of the dynamical properties of the vessel is crucial in such problems.
Vessel location becomes especially important in high waves where errors in numerical simulations
could cause critical deformations of the pipes. Those issues are indicating that predicting marine
vessel dynamics is a challenging and relevant engineering task.

In the present study we investigate splitting methods applied to a marine vessel model which
is taken as an example. For simplicity of modelling, the control inputs of the vessel have been
turned off. We start with the formulation of the mathematical model for the marine vessel
followed by the description of the numerical scheme. The results are summarised in Figure 1
and future prospects are discussed.

Mathematical formulation

The theoretical background we use in the present work was introduced and developed in [9], [7].
Briefly, the marine vessel has six degrees of freedom (6DOF) and obeys the general equation of
motion:

M ν̇ + C(ν)ν +D(ν)ν + g(η) = τ , (1)

where M is the inertia matrix of the system, ν = [vTωT ]T ∈ R6 is generalized velocity ma-
trix consisting of linear velocity v and angular velocity ω, C(ν) is the matrix of Coriolis and
centripetal forces, D(ν) is the matrix of damping forces, η = [pTθT ]T ∈ R6 is vector of gen-
eralized coordinates expressed in terms of the position vector p and the vector of Euler angles
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θ = [φ, θ,ψ]T , g(η) is the generalized vector of gravitational and buoyancy forces and moments,
and τ the vector of control forces and environmental disturbances such as wind, waves and
currents.

In order to apply the splitting method we now rewrite ( 1) obtaining the following system
of four differential equations of motion:

ṁ = m× T−1m+A1m+ τ 1,

q̇ =
1

2
qΩ,

v̇ = −�ωv +
1

mv
(A2v + τ 2),

ṗ = Σ(q)v,





6DOF equations of motion (2)

where m = (m1,m2,m3)
T is the angular momentum, T = diag (T1, T2, T3) is the tensor of

inertia, A1 and A2 are the matrices of external forces applied to added mass and rigid body
respectively, τ 1 and τ 2 are the vectors of input control forces applied to the added mass and rigid
body respectively, q is a unit quaternion describing the rotation of the body, Ω = (0, T−1m) is a
quaternion in the Lie algebra s3 and T−1m = ω is the angular velocity, �ω is the transformation
of the vector ω = (ω1,ω2,ω3) ∈ R3 to the corresponding skew-symmetric matrix, mv is the mass
of the vessel, p is the position in a spatial frame, Σ(q) is the Euler Rodriguez map transforming
quaternions into rotation matrices.

We use a quaternion formulation to express the rotation between the laboratory and the
vessel-fixed spacial frames. The quaternion formulation avoids kinematic singularities featured
for Euler angles and is globally defined, but should be used with care in problems of rigid body
attitude control [5].

Numerical integration

The numerical integrator for the equations of motion ( 2) is performed using splitting schemes
as it was developed and successfully applied in several studies ([6], [8], [2]). We have employed
Störmer/Verlet and higher order splittings.

The vector field of the vessel model is the sum of two exactly solvable parts, whose flows
can be adequately composed by the splitting scheme to achieve high order. The splitting results
in two subsystems of ordinary differential equations. The first subsystem is a free rigid body
motion1 and can be integrated exactly. An explicit solution can be obtained by using Jacobi
elliptic functions and has been implemented to machine accuracy following the techniques pre-
sented in [2], [3], [4]. The remaining part is a system of linear differential equations which could
be solved by the standard variation of constants formula. To obtain high order, we adopt opti-
mised splitting techniques devised by Blanes et al. [1] and the result is a very efficient method.
The splitting scheme is symmetric.

The control forces during the integration have been turned off for simplicity of the calcula-
tions; i.e., the vectors τ 1 and τ 2 have been set to zero.

Results and discussion

All the computations have been performed on a time interval t = 10s. The number of integration
steps have been set ranging from 21 up to 29 and equally spaced in logarithmic scale. The
solution for comparison have been calculated employing 104 integration steps. Splitting schemes
of the second, fourth and sixth order have been tested in the current work. The coefficients
of splitting schemes are well tabulated in the literature ([1]). The evaluation of CPU time

1It includes in fact also the equations for linear velocity which is however constant in this integration.
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used for the calculations have been performed directly in MATLAB R� by measuring the time
interval between the initiation of the algorithm and completion of the calculation. The main
output variables of the algorithm are values of momentum, quaternion, velocity and position.
All calculation performed on a single core of four-core laptop Lenovo THINKPAD T520 with
2.3GHz and 4GB RAM.

The performance of the algorithm is well represented by the plot of the relative error against
the CPU time (Figure. 1a). The result for the Runge-Kutta method is plotted in the same
coordinates. Those plots exhibit a power law dependence. The slope of the curve is larger for
higher orders of the splitting. The curves intersect at relative errors about 10−2; i.e., to achieve
precision more than 1% the higher order splitting scheme is more time-efficient. The degeneration
of the trend is achieved when the accuracy exceeds about 10−12. This limit is possibly a software-
induced effect due to the double-precision computer calculations. The ordinary limit for double-
precision arithmetics is about 10−16 but larger error accumulates due to the large number of
iterations.

The additional gain in computational resources is achieved due to exponential dependence of
the error ϵ on the integration time step h so that ϵ = ahn, where n is order of the splitting and
a is a constant depending on the final solution. Such a dependence is shown in Figure. 1b. On
the other hand the amount of calculations is proportional to the number of integration steps.
Therefore the dependence of the accuracy of calculations on the CPU time is exponential as it
is visible from Figure 1a.

Conclusion

In the current work, we applied splitting schemes to resolve the dynamics of a marine vessel.
We compared the CPU time required to accomplish the calculations with the relative error of
calculations. The results suggest that higher order splitting schemes achieve the aimed precision
faster compared to classical Runge-Kutta schemes. The use of splitting schemes became more
popular in scientific simulation in the past decade and this study confirms there is a potential
for the use of such schemes also in engineering problems.
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Figure 1. Dependence of the relative error on the CPU time (a) and on the step size (b). Results for
the second (�), the fourth (�) and the sixth order (�) splitting schemes as well as for the Runge-Kutta
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Summary. The cross-section properties of a beam is characterized by a six by six stiffness matrix,
relating the six generalized strains to the conjugate section forces. The problem is formulated as a single-
layer finite element model of a slice of the beam, on which the six deformation modes are imposed via
Lagrange multipliers. The Lagrange multipliers represent the constraining forces, and thus combine to
form the cross-section stiffness matrix. The theory is illustrated by a simple isotropic cross-section.

Key words: cross-section analysis, coupled beam deformation, anisotropic beam

Introduction

With recent advances in manufacturing capabilities, beams with more complex geometries and
materials with general anisotropy are being used in wind turbine blades. While the global re-
sponse of the blades can be represented by a beam model, the accuracy depends on the use of
appropriate description of the cross-section properties, including coupling from e.g. pretwist and
material anisotropy. Several theories have been developed to calculate the cross-section proper-
ties of beams. Many are based on simplifications which limits their use to simple geometries or
isotropic materials [1]. Two methodologies have been found to provide the correct stiffness ma-
trix for most engineering structures which are based on advanced kinematic analysis of beams,
namely the theories developed by Giavotto et al. [2] and Hodges and Yu [3], respectively.

This papers presents a method to calculate the cross-section stiffness matrix of the defor-
mation modes of classic beam theory. The method is based on the analysis of a thin slice of
the beam, on which the six modes of deformation corresponding to the equilibrium modes are
imposed by use of Lagrange multipliers. Each deformation mode corresponds to activating one
kinematic degree-of-freedom, while setting the remaining five to zero. Thus, each kinematic load
case generates six Lagrange multipliers, representing the section forces needed to impose that
particular kinematic mode. Together the six sets of Lagrange multipliers, each with six compo-
nents, form the cross-section stiffness matrix. The analysis is carried out by a three-dimensional
finite element model of a thin slice of the beam. This format enables correct representation of
effects like transverse contraction and coupling due to anisotropy.

The slice approach

The properties of a cross-section of a beam can be assessed by considering a thin slice of the beam
as shown in Fig. 1. The slice is given a unit thickness for numerical simplification. The slice is
characterised by six equilibrium states, namely extension, two homogeneous shear components,
torsion, and two homogeneous bending components. The stiffness matrix linking the equilibrium
states and their conjugate six deformation modes can be determined by imposing a displacement
of the end cross-section planes of the slice and calculating the required forces. The degrees of
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Figure 1. Unit slice of a beam with front and back face

freedom of the slice are defined in terms of the displacements at the front (+) and back (−) face

of the slice as u± =
�
uT
1 ,u

T
2 , · · ·uT

n

�T
±, where n is the number of nodes and ui defines the 3D

displacements at the node i.

The six deformation load cases

The properties of the slice are analysed using the finite element method. Within linear elasticity
the stiffness equations of the slice take the following block matrix format

�
K++ K+−
K−+ K−−

� �
u+

u−

�
=

�
f+
f−

�
, (1)

The deformation modes are defined in terms of differences in displacement at the two sides of
the slice and it is therefore convenient to rewrite the stiffness equations in terms of increments
and mean values

Δu = u+ − u−, 2ū = u+ + u−. (2)

Substitution into (1) gives

�
(K++ −K+− −K−+ +K−−) (K++ +K+− −K−+ −K−−)

(K++ −K+− +K−+ −K−−) (K++ +K+− +K−+ +K−−)

��
Δu

2ū

�
= 2

�
f+ − f−
f+ + f−

�
. (3)

In order to define the deformation of the slice explicitly in terms of the deformation modes,
the displacement vector is further transformed as to include the six generalized strains γ =
[εx εy εz κx κy κz]

T . The components εx, εy and εz represent the axial strain and both gener-
alized shear strains respectively. Similarly, the components κx, κy and κz represent the rate of
twist and both bending curvatures respectively. If one uses elements with Hermitian interpola-
tion of the transverse displacements in the axial direction and nodal degrees of freedom defined
as ui = [u, v, w, u�, v�]Ti , the transformation is done by defining the difference in displacement,
Δu, as

Δu = Φuγ , (4)

where uγ =
�
γT ,Δu�1,Δv�1, · · · ,Δu�n,Δv�n

�T
. The transformation matrix Φ takes the form

Φ =




Γ1 Θ1...
. . .

Γn Θn


 . (5)

The matrix Γi defining the displacement increments and the matrix Θi storing the rotation
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increments are defined as

Γi =




1 0 0 0 zi −yi
0 1 0 −zi 0 0
0 0 1 yi 0 0
0 0 0 0 0 0
0 0 0 0 0 0



, Θi =




0 0
0 0
0 0
1 0
0 1



, (6)

where xi, yi, zi are the global Cartesian coordinates of node i.
Elimination of Δu in (3) by (4) gives

�
ΦTK11Φ ΦTK12

K21Φ K22

� �
uγ

2ū

�
= 2

�
ΦT (f+ − f−)
(f+ + f−)

�
, (7)

where Kij are the block components of the stiffness matrix in (3).
In order to impose the six deformation modes independently, the values of γ are defined via

constraints in the form of

[Cγ Cf ]

�
uγ

2ū

�

j

= qj . (8)

The vector qj is used to activate one kinematic degree-of-freedom, while setting the remaining

five to zero, e.g. for the extension case q1 = [1, 0, 0, 0, 0, 0]T . The constraints are added to
the system of linear equations using the method of Lagrange multipliers were each constraint
is enforced by solving for the associated Lagrange multiplier which acts as the force needed to
impose the constraint [4]. As such, if no external forces are applied to the slice, the Lagrange
multipliers associated with the generalized strains come out as the generalized forces. Incorpo-
rating the constraints and Lagrange multipliers, λ, to be solved and setting the external forces
to zero the system of equations takes the form




ΦTK11Φ ΦTK12 CT
γ

K21Φ K22 CT
f

Cγ Cf 0





uγ

2ū
λ



j

=




0
0
qj


 . (9)

Using this formulation, the cross-section stiffness matrix can be populated by imposing one
displacement mode at a time and solving for the generalized section forces.

It is to be noted that in the case of both shear modes and torsion mode, additional constraints
need to be added to enforce that the work is orthogonal to the work done in extension, and both
bending cases. Since the internal work equals the external work done by the forces on the nodes,
the orthogonality conditions can be expressed as

fT±αu±β = 0, (10)

where the indices define the displacement modes based on the order set in γ, i.e. α = 1, 5, 6
and β = 2, 3, 4.

Simple example

This section presents the analysis of a square cross-section using an implementation of the
methodology described in the previous section. Eight-node elements are used with Hermitian
shape functions in the thickness direction. The square has a width of b = 2 with a Young’s
modulus of E = 1 and Poisson’s ratio of ν = 0.3. The reference axis being at the center, only
diagonal terms in the stiffness matrix are non-zero. Furthermore, the diagonal terms come out as
EA, GAy, GAz, GJ , EIy, and EIz, which are the extensional stiffness, shear stiffness about both
in-plane axes, the torsional stiffness and bending stiffness about both in-plane axes, respectively.
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Table 1. Normalized cross-section stiffness properties for a square

Mesh size
1x1 4x4 9x9 19x19 Analytical

A/b2 1.000 1.000 1.000 1.000 1.000
Ay/b

2 = Az/b
2 1.000 0.8788 0.8424 0.8353 0.8333

J/b4 0.1667 0.1479 0.1421 0.1409 0.1408
Iy/b

4 = Iz/b
4 0.09619 0.08416 0.08350 0.08338 0.08333

Results obtained using different mesh size and using analytical solutions for isotropic cross-
sections are listed in Table 1, illustrating convergence for all parameters towards the analytical
solution.

The associated 3D deformation of the six modes are represented graphically in Fig. 2. It
can seen that the cubic displacement associated with shear is captured. Furthermore, in the
two bending cases, the quadratic curvature in the thickness direction is modelled with the use
of a single element via the Hermitian interpolation. Contraction from Poisson’s ratio can also
be observed.
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Figure 2. Elastic beam deformation modes for a square cross-section
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Summary. This work is concerned with the numerical study of unsymmetrical buckling of clamped
inhomogeneousc plates under uniform pressure. The effect of material heterogeneity on the buckling load
is examined. The refined 2D shell theory is employed to obtain the governing equations for buckling of
a clamped circular shell. The unsymmetric part of the solution is sought in terms of multiples of the
harmonics of the angular coordinate. A numerical method is employed to obtain the lowest load value,
which leads to the appearance of waves in the circumferential direction. It is shown that if the elasticity
modulus decreases away from the center of a plate, the critical pressure for unsymmetric buckling is
sufficiently lower than for a plate with constant mechanical properties.

Key words: axisymmetric equilibrum states, circular plates, buckling

Introduction

Unsymmetric equilibrium states of circular plates appear in a number of either pure engineering
(metal or polymer sheets) or biomechanical (human tissue, living cells) applications.

For the first time, unsymmetrical buckling of thin homogeneous circular isotropic plate sub-
jected to surface load was analyzed by Panov and Feodosev in 1948 [6]. Later, Cheo and Reiss
examined the same problem [3]. The critical buckling load and the corresponding wave number
obtained in [3] and [6] differs significantly from each other. Cheo and Reiss suspected that Panov
and Feodos’ev had found unstable unsymmetric state, and underlined the approximation func-
tion with two unknown parameters was ”too inaccurate to adequately describe the wrinkling of
the plate”.

This paper is concerned with buckling of a circular plate with varying mechanical character-
istics. Such a plate can be used as the simplest model of Lamina Cribrosa (LC) in the human
eye. Buckling of the LC in a nonaxisymmetric state in the neighborhood of the edge could cause
edamas and folds at the periphery of the LC and loss of sight.
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Problem formulation

In dimensionless variables the Ambartsumyan’s theory of anisotropic plates for transversely
isotropic plates is:

φ� + φ/r + ψ̇/r − L(w,F )− p = 0,

g1L1(w) + g�1L+
1 (w)− L1φ(φ)− L1ψ(ψ) = −φ,

g1L2(w) + g�1L2(w)− L2φ(φ)− L2ψ(ψ) = −ψ, (1)

g2L3(F ) + g�2L−
3 (F ) + g��2L−

1 (F )
λ2

2
L(w,w) = 0,

( )� =
∂( )

∂r
, ˙( ) =

∂( )

∂θ
.

Here w(r, θ), F (r, θ), φ(r, θ), ψ(r, θ) are the non-dimensional out-of-plane deflection, the Airy
stress function and the force functions, respectively, Δ is the Laplacian in polar coordinate, Li,
Li, Ljφ, Ljψ, i = 1 . . . 3, j = 1, 2 are linear opetators and

L(x, y) = x��
�
y�

r
+

ÿ

r2

�
+ y��

�
x�

r
+

ẍ

r2

�
− 2

�
ẋ

r

��� ẏ
r

��

Dimensionless quantities are related with those with dimensions by the expressions

r =
r∗

R
, w =

βw∗

h
, p =

β3R4

Eav
r h4

p∗, F =
β2F ∗

Eav
r h3

, {φ,ψ} =
R3β3

12Eav
r h

{φ∗,ψ∗}, β2 = 12(1− ν2r ). (2)

In (2), R and h (h/R � 1) are the radius and thickness of the plate and Er and νr are Young’s
modulus and Poisson’s ratio, respectively. We assume radial inhomogeneity of the plate, i.e. the
in-plane elastic modulus continuously varies from point to point in the radial direction. Eav

r is
an average value of the elastic modulus in the radial direction

Eav
r =

1

πR2

2π�

0

R�

0

Er(r)rdrdθ, Er(r) = E0
rf(r) (3)

and g1(r) = E0
rf(r)/E

av
r , g2(r) = 1/g1(r).

We suppose that the edge of the plate is clamped but moving freely in the plate’s plane.
This results in the following set of conditions at r = 1

w = 0, w� = 5µrφ/2,
F �

r
+

F̈

r2
= −

�
Ḟ

r

��

= 0. (4)

In addition, all sought-for functions must fulfil the boundedness condition at the center of
the plate.

Following [3], we search for solutions of equations (1) in the form




φ(r, θ)
w(r, θ)
F (r, θ)



 =





φs(r)
ws(r)
Fs(r)



+ ε





φn(r)
wn(r)
Fn(r)



 cosnθ, ψ(r, θ) = ψn(r) sinnθ, (5)

where φs(r), ws(r), Fs(r) describe prebuckling axisymmetric state, ε is a small parameter, n is
a mode number and φn(r),ψn(r),wn(r),Fn(r) are the non-symmetrical components.

After linearization about an axisymmetric state, the unsymmetric part of the solution is
sought in terms of multiples of the harmonics in the angular coordinate. The eigenvalue pa-
rameter p appears nonlinearly in the resulting eigenvalue problem. We use the shooting method
to solve nonlinear axisymmetric problem together with boundary conditions. To determine the
value of p, for which have nontrivial solution, the finite difference method is employed [3]. We
regard the smallest of these eigenvalues as the buckling load. The step of the difference grid is
chosen so that by reducing the step by 2 the value of the critical load varied less than 1%.
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Table 1. Normalized buckling load (pcr/p0) and corresponding wave numbers for the heterogenous plate.

q = 0 q = −1 q = −3 q = −5

pcr/p0 1 0.76 0.4 0.19

Mode number, n 14 14 15 17

Results and Discussion

In order to study the effect of the varying rate of inhomogeneity on the critical load and buckling
mode, we solved the corresponding problem for two different laws of material inhomogeneity:
E = Ē0e

q1r and E = �E0(1+ q2r). The buckling load for unsymmetrical buckling was calculated
numerically over a large range of parameters Ē0, �E0, q1,2, but for constant average value of the in-
plane elastic modulus (3). The results are summarized in table 1 and figure 1. The parameter
value q = 0 corresponds to uniform plate with constant Young’s modulus. The buckling load
of axisymmetric equilibrium states of isotropic homogeneous circular plates is denoted as p0
(p0 = 64522).
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0.8

0.9

1

1.1

p/p0

q

 

 

E = E
(1)
0 eqr

E = E
(2)
0 (1 + qr)

Figure 1. Normalized buckling load of heterogeneous plate. p0 denotes the buckling pressure for uniform
plate

In case q < 0, the buckling mode shows more and more waves in the circumferential directions
as the rate of inhomogeneity |q| increases, see table 1).

For the consecutive wave number we noted closely adjacent values of the critical load, e.g.
for the uniform plate the critical loads differ between each other by less than 1% (pcr = 64522
for n = 14 and pcr = 64929 for n = 13). The heterogeneous plate (with the rate function
f(r) = e−4r) wrinkles at pcr = 18355, and the buckling mode has 16 waves, while for 15 waves
the critical load is 18416. Thus, the considered plate is sensitive to initial imperfections of form
or to initial stresses.

For numerical examples plate properties are taken from literature as material properties
of the Lamina Cribrosa (LC) of the human eye [4]: the in-plane modulus and Poisson’s ratio
are assumed to be Eav

r =0.3MPa, ν = 0.45, h/R = 0.1. Taking the inhomogeneity parameter
q = −5 we find that the non-axisymmetric buckling occurs under pressure about 60 mm Hg.
From a mechanical point of view, folds at the periphery of LC could be annotated by the
buckling of the axisymmetric state of the LC in the nonaxisymmetric state.

The problem for an annular plate was also treated. We considered a roller support for the
inner edge of the plate, i.e. the edge that can slide along the figure axes without changing the
slope, see figure 2
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Figure 2. Normalized buckling load vs. degree of non-uniformity for circular (solid line) and annular
plates (dashed and dot-dashed lines). r∗ – the inner-to-outer radius ratio; f(r) = e−qr.

Conclusions

The critical pressure for unsymmetric buckling is significantly lower than for a plate with con-
stant elastic moduli, if the elastic moduli decrease away from the center of a plate. Number of
waves in the circumferential direction increases with the degree of nonuniformity. The folders
in the narrow zone at the periphery of the Lamina Cribrosa (LC) of the human eye could be
explained by the bucking of the axisymmetric state of LC in the nonaxisymmetric state.
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Summary. In present work, we attempt to unify the modeling of different sub-processes under the
umbrella of two-phase porous media theory. Two sub processes are considered: (1) the wetting and
compaction of individual plies and (2) the overall preform deformation and macroscopic Darcian flow.
The idea is to identify a set of relevant constituents, i.e. particles, voids and liquids, and assign them
to pertinent media. As to the continuum formulation a few researchers, e.g. Larsson et al. [1], Pillai
et al. [2], Li and Tucker [3], have proposed formulations to predict the consolidation as a function of
coupled flow and deformation-based two-phase porous media theory, cf. also [4] for a review of recent
developments related to large deformation consolidation modeling.

The result is a set of overlapping continuous media, each having its own density-, velocity- and
stress field on the macroscopic scale. In addition, we introduce internal variables to describe irreversible
micro-processes in the system, such as microscopic infiltration and preform deformation. In this work we
extend the previous developments, coupling the preform deformation on different scales to the process of
micro infiltration, with respect to the modeling of the microcompaction as well as the Darcian interaction
on the macro scale. A coupled displacement-pressure, geometrically non-linear, finite element model is
presented. The approach is applied to a representative numerical example where we used parameter
values out of the literature and estimates from our own micrographs.

Key words: Poromechanics, Finite Element Analysis, Multiscale modeling
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Summary. Considering severe plastic deformation experiments as a motivation, plastic behaviour of
crystalline solids is treated as a flow of highly viscous material. We present thermodynamic derivation of
the model of rate dependent crystal plasticity including evolution of Cauchy stress. Numerical simulations
for 2-turn equal channel angular extrusion are reported. Our approach is purely Eulerian.

Key words: crystal plasticity, Eulerian plasticity, equal channel angular extrusion

Introduction

Within the last 20 years it was recognized that severe plastic deformation of certain material
allows to achieve exceptionally high strength accompanied by relatively good ductility. Several
metal forming processes achieving severe plastic deformation are now available. We chose ECAE
(equal channel angular extrusion) because it is highly suitable for experimental and theoretical
studies. Very high strains can be achieved without interruption, one can look at various amount
of strains in one specimen.

In presented approach plastic behaviour of crystalline solid is treated as a highly viscous
material flow through an adjustable crystal lattice [5]. Looking at severe plastic deformations
experiments [1] it seems that crystalline materials at yield behave as a spacial kind of anisotropic,
highly viscous fluid.

Model

We present thermodynamic description of the model of rate dependent crystal plasticity includ-
ing evolution of Cauchy stress. Unlike the standard purely phenomenological approaches [2, 3]
we employ ideas of Rajagopal [6] and derive our model on the basis of Gibbs potential.

The system we aim to solve consists of mass conservation (1), balance of angular momentum
(2), evolution of Cauchy stress (3) and evolution of slip directions (4),

ρ,t+div(ρv) = 0, (1)

ρv̇ + divT = 0, (2)

Ṫ +T div v +WT −TW = ρC(D −D∗), (3)

ṡ i =

�
grad v −

�

i

νis i ⊗m i

�
s i (4)

80



where plastic part of deformation is given by

D∗ =
�

i

ν(i)sym(s i ⊗m i),D = sym(grad v),W = skew(grad v).

We fulfil the system with definition of slip rates ν(i) = ν0sign(τ
(i))
��� τ (i)
τ
(i)
c

���
α
and hardening law

τ̇c
(i) =

�
j Hij |ν(j)|. The dots stand for material time derivatives.

Moreover we extend our approach to rate independent model by implicit constitutive relation
between slip rate (ν) and resolved shear stress (τ).

Numerical treatment

Inspired by numerical methods of fluid dynamics FEM Eulerian representation is formulated
and applied in a solution of a flow adjustment boundary value problem of equal channel angular
extrusion.

Time is discretized by one step finite difference. In space we used P2 for velocity and P1 for
density and slip directions (both continuous) and P1-discontinuous for Cauchy stress. Taking
advantage of Eulerian formulation our computational domain is 2-turn channel [7]. Boundary
conditions on impenetrable, frictionless boundary are imposed by Nitsche’s method [9]. To solve
the system we employ nonlinear Newton solver with analytic Jacobian.

We present a results of computations (see Figure 1). We can observe that plastic slip occurs
only in the vicinity of slip planes (where the channel turns) and in the same region slip sys-
tems rotate due to elastic deformation. Density is almost constant although it changes in the
neighbour of curved part of the boundary.

Figure 1. Computed variables: velocity magnitude (top-left), accumulated slip (top-right), density
(bottom-left), slip system rotation (bottom-right)
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Computations are done in two dimensions and we restrict ourself to the plane-strain case.
Due to this fact we consider only three slip systems. In Figure 2 we observe the behaviour of
slip systems in the channel. Activation of particular slip system depends on its position relative
to slip plane.

Figure 2. Behaviour of slip systems in the 2-turn channel.

Implementation is done in FEniCS [8]. We compare our results to [4] and [7]. Our novelty
are Eulerian formulation, numerical approach and consideration of compressible elasticity.
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Summary. This paper discusses the model-based homogenization of viscous flow in a porous medium
leading to Darcy-type of seepage on the macroscale. Particular focus is placed on the efficiency of
weakly periodic boundary conditions on the Representative Volume Element (RVE) where the underlying
microstructure is resolved.
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Introduction

The classical setting of model-based homogenization is considered in this presentation. For the
standard quasistatic stress problem based on subscale elasticity, the Hill-Mandel (or macroho-
mogeneity) condition can be expressed as the ”equivalence of virtual work of the fine-scale and
the macroscale”. How to generalize this condition to a more general class of nonlinear and/or
time-dependent coupled field problems involving selective homogenization of the pertinent fields
(and balance equations) is not obvious; however, a possibility is offered by the paradigm of
Variationally Consistent Homogenization in the spirit of the Variational Multiscale Method,
originally proposed by Hughes [1] in a quite different context. The corresponding macrohomo-
geneity condition is then associated with a Galerkin property of the homogenized problem. As
a result, symmetry of macroscale tangent operators is preserved.

Seepage in a rigid porous medium

An important and indeed very classical engineering problem is that of seepage through a rigid
or (more generally) deformable porous material, e.g. granular material. In this presentation
we adopt (selective) homogenization of incompressible Stokes’ flow in the rigid porous medium
to obtain Darcy-type of seepage, typically in the FE2-setting [4]. Only the continuity equation
is homogenized, whereas the momentum balance remains completely local, cf. Sandström and
Larsson [3]. We adopt (as the point of departure) the concept of weakly periodic fluctuations
to formulate boundary conditions on the RVE, cf. Larsson et al. [2], for which the pertinent
Hill-Mandel condition is satisfied. Moreover, we discuss how to establish a ”macroscale energy
density” that serves as the potential for the macroscale (homogenized) drainage velocity.

The explicit expression of the saddle-point problem defining the effective response is given
as

inf
v∈V�

sup
pS∈PS

�
β∈B�

inf
γ∈G�

Π(∇pM,v, pS,β, γ) (1)
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where v is the velocity field, pS is the pressure and β and γ are Lagrange multipliers pertinent
to the conditions on periodicity on v and pS. Furthermore, we note the explicit dependence on
the macroscale pressure gradient ∇pM. We also note that, by choosing the solution spaces in a
suitable way, we are able to produce upper and lower energy bounds. Considering the problem
on the pore domain of the RVE, we express the potential as

Π(∇pM,v, pS,β, γ) =�

ΩF
�

Φ(∇v)dV −
�

ΩF
�

pS(∇ · v)dV +

�

ΩF
�

∇pM · vdV −
�

ΓF+
�

�v� · β + �pS�γdS (2)

where Φ is the potential pertaining to the viscous material.

Numerical examples

The efficiency of weakly periodic boundary conditions are assessed for an RVE in 3D represent-
ing a microstructure with simplified topology. We consider the porespace located in between
particles in a BCC arrangement of sphere slightly overlaping. In this particular example, the
Lagrange multipliers are discretized as polynomials. Snapshots of the solutions are shown in
Figure 1 for different orders of polynomials.

(a) 0th order (b) 2nd order (c) 6th order

Figure 1. Solutions showing the velocity for different orders of polynomial approximations of the Lagrange
multipliers
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Summary. In this paper the problem of the buckling of the transversal-isotropic segment of spherical
shell with the different thicknesses under the influence of the load with a flat base is studied. The
spherical segment has a rigid support on the edge and previously has been loaded by internal pressure.
The solution of this problem is based on the theory of the shell of moderate thickness by Paly-Spiro.
This theory takes into account the influence of the cross section shear and change of the shell thickness.
For modelling such large deformations the method of consequent loading is used. In this method, due to
the use of linear physical relations, it is possible to trace the non-linear problem at each separate stage
to the solution of a linear system. The comparison of the results which were obtained with the use of the
method of linearization of non-linear equilibrium equations and the method of minimization of elastic
potential of the shell has been done. The problems of stress-strain state of soft and close to soft shells
that are under the influence of a load with a flat base are important for analyzing the data related to
measuring a very important in ophthalmology characteristic of intraocular pressure.

Key words: nonlinear shell theory, stability, load with a flat base

The problem statement

Let us consider the problem of state-strain state and the loss of stability of the transversally
isotropic segment of a spherical shell under the influence of the load with a flat base, see figure
1. The spherical segment has a rigid support on the edge and previously has been loaded by the
internal pressure.

Figure 1. The dual structure of continuum mechanics.

The deformation and loss of stability are considered to be axisymmetric therefore we can
take into account only the half of the arc created by the vertical cross section. On the pole point
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and the edge the boundary conditions of the symmetry and rigid support were introduced. Thus
all the values depend only on one spherical coordinate, α ∈ [a0,π/2], where a0 – characterizes
the angle of segment opening.

The elastic moduli of the considered shell differ by an order, therefore the theory of anisotropic
shells of moderate thicknesses by Paly-Spiro [1] is used. This theory takes into account the in-
fluence of cross section shear and the deformation into the direction of the normal to the middle
surface and is based on the following hypotheses:

1) a rectilinear element normal to the middle surface of a shell remains rectilinear after the
deformation;

2) the cosine of the angle of inclination of the shell of these fibers to the middle surface of
the deformed shell equals to the averaged angle of the cross displacement.

The mathematical formulation of the accepted hypotheses resolves to the following equations:

u1 = u+ φ · z, u3 = w + F (α, z),

φ = γ1 + φ0, φ0 = − 1

A1

∂w

∂α
+ k1u,

(1)

where u1 and u3 – tangential and normal displacements of the shell, u and w – displacements
of the middle surface, ϕ – turning angle of the normal in plane (α, z); ϕ0 – turning angle of
the normal to the medial surface; γ1 – shear angle. The function F(α, z) characterizes length
change of the normal to the medial surface.

The methods of solution

The deformations which appear under the influence of the load with a flat base are large and
we need the geometrical non-linear shell theory to describe them. However, the construction of
the solution of the non-linear theory equations presents a significant difficulty [2, 3]. Therefore
the solution of this problem is based on the method of consequent loading.

In this method pressure P is presented as the sum of monotonous consequent loadings:

P = ΔP1 +ΔP2 + ...+ΔPn (ΔP > 0, n >> 1). (2)

Thus the geometrically non-linear problem is reduced to a consequent solution of linear
problems for a previously loaded shell of revolution. The original stress strain state of the shell
was defined by the results of the previous loadings

�N
i=1ΔPi.

At each stage only the part of all the loading ΔPi is applied to the shell so that the deforma-
tions should stay small. We take into account the fact that at previous stage of the loading each
point of the original surface changed its own position and thickness. It needs recalculating Lame
coefficients A1, A2, curvatures k1, k2, the new law of distribution of function of thicknesses h.
Besides, the values of the stress strain state of the shell obtained at the previous stages of the
loading are included in the resulting equation. The adding loads ΔP1, ΔP2, ΔP3 must be small
in comparison with that values which the upper critical load corresponds to.

In this work the method of consequent loading is presented in two ways. The first of them is
the method of linearization of non-linear equilibrium equations [1] and the second - the method
of minimization of elastic potential of the shell [4]. These ways of the problem solution give us
the different approaches to the estimation of the critical load.

In the first method the system of differential equations of the equilibrium of shell is solved at
the each separate stage of the loading. The right part of the system except the next addition of
the load ΔPi takes into account the forces and deformations from the previous step of loading.
We presume that the critical load corresponds to the case when ΔPi=0 the system ceases to be
an identical. Non-trivial solutions appear due to the influence of the internal forces.

In the second approach the solution is obtained by minimization of elasticity potential of
the shell with use of the Ritz numerical method. The displacements are represented as the
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functional series which satisfy the boundary conditions. Having the partial derivatives of the
elasticity potential for the each member of the series of the displacement functions, we obtain the
system of non-linear differential equations. To solve the obtained system of non-linear algebraic
equations, the continuation method by the loading parameter ΔPi is used. In the result all
solution is reduced to the system of linear algebraic equations for the members of the series of
the displacement functions. The loss of stability takes place when the resulting matrix of this
system becomes degenerate. In this case the post–critical state is obtained by the change of the
parameter.

The comparison of the results which were obtained with the use of these methods is done. For
both methods we defined the dependence of the load contact area on the influence of the internal
pressure, thickness and the curvature radius of the spherical shell segment. The distributions of
the stress strain state for different values of the load are constructed. The possible appearance
of exfoliation in the area of the contact with the flat base is studied. This problem may have a
biomechanical application.

Numerical simulation

Let us introduce the comparison of the results which were obtained with the use of considered
methods for the problem of deformation of the cornea of the eye. In the Maklakov method of
tonometry a human eye is deformed by flat base load of the bar. The diameter of the contact zone
with cornea is measured and the measured diameter length is used in estimating the intraocular
pressure (IOP). When the intraocular pressure is not very high and the thickness of an eye shell
(cornea) is small (for example, after refractive surgery) the cornea may buckle and detach from
tonometer. It leads to errors in estimates of intraocular pressure[5].

The cornea average curvature radius R=8 mm, its foundation radius is constant and equal
Ros=5.25 mm, thickness h changes linearly from ha=1 mm at the edge of segment to hb=0.5
mm at the pole point. For elastic modulus, cross–section shear, and poisson’s ratios these values
was taken [6, 7] : E1 =E2 =7 · 104 Pa, E3 =7 · 102 Pa, G=7 · 103 Pa, ν21 =ν31 =ν12 =ν32 =0.4,
ν13 =ν23 =0.01.

We consider that these geometrical parameters correspond to the case when the cornea is
under the influence of IOP of 22 mm.Hg. (1 mm.Hg.= 133.3 Pa). Therefore firstly we consider
the shell of a smaller height. It is loaded by negative IOP. The geometry of obtained form is
considered to be initial. The forces which act in it are equated to zero and it is loaded by the
similar but positive load. The new shell is higher than a previous one but it is taken into account
the influence of internal pressure.

For modelling the influence of the bar we introduce the function which takes into account
that the load acts only in straightened area on the top. In the case of appearance of displacement
which leads to exfoliation of the shell from the bar the negative load starts acting. This negative
load takes off the part of the overall load from the exfoliated surface [8].

Conclusions

Let us consider deformations and the distribution of normal stress in the contact area corre-
sponding to them. It should be noted that the general views of the distribution of normal stress
of reviewed methods is almost similar.

a) Under the influence of the small load 0.75 gm the main stress is concentrated in the
vicinity of the pole and decreases exponentially towards the edges.

b) In the case of load increase up to 3.5 gm the normal stress redistributes and the unloaded
area in the vicinity of the pole appears.

c) For the given value of load of 10 gm, we can see a slightly loaded ring area. The main
surface stresses act only at the edge of the loaded area and at the pole point.
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Table 1. The comparison of the radiuses of contact area .

Thickness at the pole point hb (mm) 0.5 0.465 0.43 0.395 0.36

The method of minimization Rout 3.00 3.04 3.08 3.12 3.17
The method of linearization Rout 2.97 3.00 3.05 3.10 3.15

d) When the loading is being continued (15 gm), the distribution of the load obtains a more
complex shape.

e) In the case of solving this problem with the use of the method of lineralization the shell
may lose the stability as this method takes into account the force ΔT1 evidently. Also the system
corresponding to it has the higher order. The force ΔT1 reaches significantly large values in the
vicinity of the pole point. This can make the shell fall down inside – lose the stability.

The table 1 presents the values of radiuses, of the contact area of the shell with a bar of 10
gm. Rout for different values of the thickness in the vicinity of the pole hb mm. curvature radiuses
which are equal to R=8.5-hb mm. These calculations may help to model the consequences of
keratometric operations, because in the course of these operations a layer of tissue is cut off the
top the cornea. As one can see, the reduction of the value of thickness hb at the pole leads to
the increase of the contact area Rout. It may contribute to error in measurement IOP. Radiuses
received by method of linearization are less then radius received by method of minimization of
elastic potential, which can be explained by direct accounting of effort function ΔT1 in the first
method. When the linearization method is used, unloaded or slightly loaded areas appear earlier
(at a lower level of pressure), then in the case when the minimization method is used.
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Summary. Numerical simulations using non-linear finite element analysis have been performed to study
ship grounding. The results are compared with experimental tests which were performed in USA in 1995
and good agreement is achieved. This illustrates that non-linear FE analysis can be used to estimate
damage extent in a grounding scenario.
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Introduction

Every year ships run aground around the world. The potential for damage is huge, both in
economic and ecological terms. With the ability to simulate ship groundings with finite element
software and assess the strength of a ship against such incidents there is a huge potential to be
gained. Similar studies for collision scenarios by using non-linear finite element analysis have
been performed by Notaro et. al [1, 2].

A detailed picture of a ship’s performance in a grounding situation can be used in the design
of the ship. The results do, however, depend on correct material parameters and the use of a
correct coefficient of friction in addition to a very detailed description of the geometry. There
is not much data to be found from real events so to verify that the model is indeed giving
reasonable results, a series of analyses has been run against results obtained from scale tests
performed in the USA in 1995 [3].

Background

A series of model scale test was performed at the Naval Surface Warfare Center in the US in
1995. Four different steel configurations of double bottom structures were built in 1:5 scale and
used to evaluate the performance when impacted into a concrete cone used to simulate a rock
on the seabed. The models were mounted to a rail cart and released down a slight incline in
order to build up velocity and hit the rock at a speed of 14 knots. In a double hull configuration
there is generally not a danger for a cargo spill if the inner hull is not breached, so the double
bottom models were mounted at a pitch angle of approx. 3.2◦ in the test rig to ensure a gradual
vertical increase in the damage depth and eventually a rupture of the inner hull. The output
from the experiments, which have been used to compare the finite element results against, were
force-displacement and energy-displacement curves.

FE model and analysis procedure

A detailed model of one of the double bottom scale models was created in Abaqus/Explicit v6.11
[4]. Of the four models tested the one chosen for modelling in Abaqus was the configuration
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(a) (b)

Figure 1. (a) A barge impacting into a rock and (b) the detail level and mesh for the barge where
stiffeners, girders and bulkheads are included.

most resembling the double bottom of a traditional tanker as shown in Fig. 1. The model
consisted of two cargo holds divided by a stiffened bulkhead. On either end of the hold there
were also stiffened bulkheads. The double bottom consisted of a longitudinal girder in the centre
and seven transverse frames under each hold. The rock was modelled as a rigid body with a
cone shape. First-order reduced-integration shell elements were used with a fine mesh size of
around 10x10mm in a fine area where the rock would impact and 50x50mm in the rest of the
model. The reason for such a fine mesh, which is in the order of three times the thickness, was
to accurately capture the failure mechanisms such as rupture, folding and crushing of plates and
stiffeners.

The material used in the model was an ASTM A569 isotropic steel with a Young’s modulus
of E = 206000MPa, Poisson’s ratio of ν = 0.3 and density of ρ = 7.9×103kg/m3. Plasticity was
included with a yield stress of σy = 283MPa. In order to model the rupture of the steel as the
rock passed through the model a tensile failure criterion was added to the material definition,
which after tensile strain of 0.278 will simulate necking behaviour in the material and linearly
degrade an element’s stiffness down to zero over a damage displacement, defined here as 3.2mm
additional displacement after necking occurs. When the element’s stiffness has reached zero it
was visually removed from the analysis.

The coefficient of friction is difficult to measure from a grounding experiment due to other
energy dissipating mechanisms such as tearing and folding of the structure. Typical values of
steel against rock ranging from 0.4 to 0.7 were used here, and the choice of this coefficient can
have a large impact on the dissipation of energy.

The analyses were run with Abaqus/Explicit with an initial velocity of 14 knots applied to
the model. Along with the mass of the structure an additional mass was added to the model to
account for the weight of the testing rig used in the scale model tests. Using an initial kinetic
energy (as opposed to the constant velocity) approach meant that the kinetic energy would be
dissipated by the impact and that the model would come to a halt when the dissipated energy
equalled the initial kinetic energy. The upper two longitudinal edges in the structure were fixed
in order to keep them rigid during the analysis.

Results and discussion

The results from the analyses are shown here in Fig. 2. Both energy and force curves are plotted
against the displacement of a reference point placed in the rear of the model. The kinetic energy
will drop as the energy dissipation increases. From the force curve, several smaller spikes and
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Figure 2. (a) Reaction force and (b) absorbed energy versus grounding distance.

(a) (b)

Figure 3. (a) Damage extent of the barge and (b) close-up view of the damages.

the two large spikes are observed, corresponding to the structure resisting deformations as the
rock passed through the several smaller transverse frames and the two cargo hold bulkheads at
the centre and the aft. There is also an overall increasing trend in the registered force which is
due to the pitch angle.

The absorbed energy can be found by integrating the reaction force over the grounding
distance and thus it can be seen to also have a slightly higher absorption rate (energyabsorption
pr. meter) around the two bulkheads than in the cargo holditself.

The total dissipated energy can be broken down into several components such as friction,
plastic deformation, elastic strain and energy gone into tearing elements apart. In the analyses
that were run it is seen that most of the energy is dissipated by plastic deformation and friction
while the other aforementioned energies that make up the rest are relatively small. The ratio
between the energy going into friction and plastic deformation varies depending on the coefficient
of friction, as was mentioned above.

The damages are shown in Fig. 3 and it can be seen that the deformations are very large.
This illustrates that non-linear finite element computations can be used to estimate the damage
extent with reasonable accuracy. From what can be read from the pictures of the experimental
test [3], the damages are very similar to what was found in the present finite element analysis.
In Fig. 4, close-up views of the deformations in the longitudinal girder and in the area close to
the transverse bulkhead are shown.
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(a) (b)

Figure 4. Close-up view of (a) the deformation in the longitudinal girder, which is a typical skewed
folding pattern from shear deformations and (b) the deformations at the transverse bulkhead.

Conclusion

Finite element analysis for a grounding scenario has been performed and computed results
are compared and verified with experimental test data from a steel 1:5 scale model. Results
show that the simulation can accurately predict the damage extent and yield the same energy
dissipation rate.
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Summary. In this paper the usefulness of finite element analysis (FEA) as a tool for predicting the cold
forming pipe-flange connection process of Quickflange AS is investigated. The Quickflange technology
is based on plastic cold expansion/deformation of the pipe into a modified standard flange by use of
a cold forming tool. The technology represents a highly feasible alternative to welding that has been
the technology of choice for connection of subsea flanges for decades. Experimental work is presented
for both model parameter identification and model verification. Comparing with test results the FEA
model is in good accordance in terms of applied hydraulic pressure for the process and at the same time
computational time consumption is acceptable. Further work, will focus on the ability of the model to
predict the key performance parameters of the cold flanged connection.

Key words: flange, cold forming, Finite Element Method

Introduction

It is expected that the use of flange to pipe connection technology utilizing cold deformation of
the pipe for subsea applications will make installation, inspection and maintenance of subsea
pipelines safer and more cost effective than with current state-of-the art flanging technology, i.e.,
welding. The Quickflange technology is based on plastic cold expansion/deformation of the pipe
into a modified standard flange by use of a cold forming tool. In order to to fully exploit this
technology there is a need for a better fundamental knowledge about, and understanding of, the
elasticity and plastic deformation of the metals and alloys used in the pipe and flange. Especially,
the ability to model plasticity as well as spring back effects is crucial in order to predict the
important parameters of the cold flanging process. The use of finite element analysis has been
widely used to describe processes similar to the one investigated in this paper. FE-analysis
allows for the assessment of spring back effects in different types of forming processes due to
its ability to reflect parameters such as stress, strain and temperature in deforming bodies [1].
There are numerous examples of finite element modeling of sheet metal bending where the spring
back effect is most pronounced. Such publications are often focused on minimizing the spring
back effect in order to predict numerically rather than empirically. Some recent publications
on this subject are [2], [3] and [4]. In processes involving forming of pipes, Zheng et al [5]
has used finite element analysis (FEA) to predict the inner coating of pipes by means of cold
forming obtaining good correlation with experimental data. Other manufacturing processes
that has received attention in recent years is the FE-modeling of the sequential plate punching
when manufacturing large welded pipes, [6], and the rolling of pipe, [7], pipe bending, [8], or pipe
extrusion, [9]. A common goal for these research activities is the desire to use FEA to predict and
optimize processes. Also, experimental verification is normally introduced to validate numerical
results. It seems that the commercial software packages Abaqus and LS Dyna are used almost
exclusively. In this work Finite Element Method is used to model the process using Abaqus.
By combining FEA, parameter identification and experimental work, this paper investigates
whether the cold flanging technology of Quickflange AS can be satisfactorily predicted by means
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of Finite Element Method. The main emphasis has been on the hydraulic pressure load during
the process.

Considered process

The technology is based on plastic cold expansion/deformation of the pipe into a modified
standard flange by use of a hydraulic flanging tool, see figure 1.

Figure 1. The main components employed in the process connecting pipe to flange.

The pipe is positioned inside a modified flange with grooves. Inside the pipe, a segmented
expansion tool is held fixed in axial direction by means of retainers. The expansion tool consists
of a number of segments that together form a cylinder with an inner conical shape. During
cold flanging, the segments separate in tangential direction and, simultaneously, dilate in radial
direction by means of a cone that slides inside the expansion tool. The radial dilation forces the
pipe to cold deform into the groves of the flange. The cone is driven by a hydraulically actuated
double acting piston that is also used to pull the cone back and allow the expansion tool to
retract. Therefore, the main components of the cold forming tool are the retainers, the conical
expansion tool (segments), the cone and the hydraulically actuated piston.

Modeling, simulation and experimental test

In general, an ASME WN CL900 6” Schedule 80 flange connections with API 5L X52 pipe
quality is subjected to simulation and testing.

A dynamic non-linear 90◦ finite element model of the flange, pipe and segments is built up
utilizing symmetry about the xy- and xz-plane as presented in figure 2. The explicit solver in
Abaqus is applied for the analysis. This solver has proven to perform well for metal forming
simulations with complex contact conditions. C3D8R linear brick elements with reduced inte-
gration are applied for all parts in the simulation. Enhanced hourglass control is applied for all
elements. The mesh is refined in all contact areas between bodies with sharp edges as in the
contact area between the pipe and flange groove. Elements applied for the segments are modeled
as rigid connected to a reference point at the back of each segment. Boundary conditions are
applied to the flange and pipe at the symmetry planes restricting the nodes to translate normal
to symmetry plane. A cylindrical coordinate system is applied for the segment reference points
restricting each reference point to translate/rotate at all degrees of freedom except in radial di-
rection. Each segment is set to move 5.35 mm in radial direction using a smooth ramp function
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going from zero to 5.35 mm and back to 4.28mm. This is sufficient to move the segments away
from the pipe after deformation of the pipe.

Figure 2. Finite element model presenting mesh.

A step period of 0.03s is applied for the analysis. In order to avoid excessive reduction of
stable time increment due to large element deformations in the simulation, semi-automatic mass
scaling is applied for all elements in the step. Elements adjacent to the flange grooves will be
subjected to large deformations. Mass scaling is applied for all elements every 10 increment
throughout the entire step experiencing stable time increment below 7.68 ∗ 10−8s. This value is
found by experience to give acceptable simulation time with small kinetic energy level for the
deforming material. A friction coefficient of 0.3 in all directions is applied between all surfaces
in contact. A general contact algorithm in Abaqus is applied.

Results

The simulation was solved on a laptop with Intel i7 quad core 2.3GHz CPU with 20 GB RAM.
The model is built up by 583363 C3D8R elements and the simulation time was 2h and 40 min.
The simulation time is considered sufficiently short to facilitate sensitivity analysis and design
optimization of flange geometry which was considered important in model development. Based
on discussions within the company a maximum simulation time of 3h had been set up as target.

Figure 3 present pump pressure versus cone axial displacement for one of the six tests. Both
tested values and simulated values are included. All simulations show that artificial strain energy
is approximately 1% of internal energy for the model, hence hourglassing of the elements is not
considered to be a problem. The kinetic energy for all simulations is less than 1% of the internal
energy of the model. Therefore the applied mass scaling scheme is considered to be acceptable.

Figure 3. Pump pressure versus cone axial displacement for one of the six tests.
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Conclusion

In this work FEA is examined as a possible tool for model based prediction of the cold flanging
technology of Quickflange AS. Experimental work has been utilized for both model parameter
identification and model verification. Comparing with test results the FEA model is in good
accordance in terms of applied hydraulic pressure for the process within reasonable computa-
tional time consumption. The accuracy ensures that the process requirements regarding the
hydraulic power supply can be assessed within ±10% which is highly satisfactory. The analysis
time is less than 3 hours on a high-end laptop which makes it feasible for the model to be used
in everyday work. Sensitivity analyses also revealed that the friction between Segments/pipe
and pipe/flange has limited or no impact on the required hydraulic load pressure which strongly
improves usefulness of the model as a predictive tool. Further work, will focus on the ability of
the model to predict the key performance parameters of the cold flanged connection.

References

[1] S. Kobayashi, S. Oh, and T. Altan. Metal Forming and the Finite Element Method. Oxford
University Press, New York, 1989, ISBN 0195044029.

[2] Anggono, A.D. Combined method of spring-forward and spring-back for die compensation
acceleration. 4th International Conference on Modeling, Simulation and Applied Optimiza-
tion (ICMSAO), Kuala Lumpur, Malaysia, 2011, p. 1-6, 10.1109/ICMSAO.2011.5775496.

[3] H.-S. Park and T. V. Anh. Finite Element Analysis of roll forming process of aluminum au-
tomotive component. International Forum on Strategic Technology (IFOST), Ulsan, Korea,
2010, p. 5-9, 10.1109/IFOST.2010.5667921.

[4] D. Lei, et al. Research on Numerical Simulation for Automotive Panel Forming and Spring-
back Based on Dynaform. Third International Conference on Measuring Technology and
Mechatronics Automation (ICMTMA’11), Shanghai, China, 2011, Volume 3, 2011, p. 55-
58, 10.1109/ICMTMA.2011.585.

[5] Z. Dezhi et al. Forming Force Calculation and Experimental Study on Hydro-Forming Pro-
cess of Lined Steel Pipe. Third International Conference on Measuring Technology and
Mechatronics Automation (ICMTMA’11), Shanghai, China, 2011, Volume 2, p. 246-250,
10.1109/ICMTMA.2011.349.

[6] Y. Gao, Q. Li, and L. Xiao. Numerical Simulation of JCO/JCOE Pipe Forming. 2009 WRI
World Congress on Computer Science and Information Engineering, Los Angeles, USA,
2009, Volume 2, p. 233-237, 10.1109/CSIE.2009.675.

[7] Y. Zhao, E. Yu, and T. Yan. Deformation analysis of seamless steel tube in cross rolling pierc-
ing process. 2010 International Conference on Computer Design and Applications (ICCDA),
Quinhuangdao, China, 2010, Volume 3, p. 320-323, 10.1109/ICCDA.2010.5541258.

[8] J. Meihui, T. Chengtong, and W. Wengang. Spatial shape prediction of multi-
bends metal tube bending. 2011 IEEE International Conference on Computer Science
and Automation Engineering (CSAE), Shanghai, China, 2011, Volume 2, p. 770-775,
10.1109/CSAE.2011.5952615.

[9] K. Chen, et al. Numerical simulation for pipe forming in multi-process hot extrusion. 9th In-
ternational Conference on Computer-Aided Industrial Design and Conceptual Design, Kun-
ming, China, 2008, p. 685-687, 10.1109/CAIDCD.2008.4730657.

96



Proceedings of the 26th Nordic Seminar on Computational Mechanics
A. Logg, K.A. Mardal, A. Massing (Eds.)
c⃝Oslo, 2013

Design of Ultra High Performance Fiber Reinforced Con-
crete shells

Michael S. Jepsen1, Soren Heide Lambertsen, Lars Damkilde.

(1)Division of Structures and Materials, Aalborg University Esbjerg Denmark, msj@civil.aau.dk

Summary. The paper treats the redesign of the float structure of the Wavestar waver energy converter.
Previously it was designed as a glass fiber structure, but due to cost reduction requirements a redesign has
been initiated. The new float structure will be designed as a double curved Ultra High Performance Fiber
Reinforced Concrete shell. The major challenge in the design phase has been securing sufficient stiffness of
the structure while keeping the weight at a minimum. The weight/stiffness issue has been investigated by
means of the finite element method, to optimize the structure regarding overall deformation and buckling
resistance.
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Main ideas

The basic idea of the Wave star wave energy concept is to generate power by the motion of the
waves, letting a float structure follow the wave elevations. This displaces the floats up and down.
The floats are connected to an arm structure, which are mounted on a hull structure, see figure
1. The float displaces the arm position vertically and as the arm moves vertically it drives a
hydraulic cylinder which is attach to the top surface of the arm structure. Inside the hydraulic
cylinder a piston follows the displacement of the arm. The piston pumps hydraulic oil into a
common manifold system, collecting the oil pressure from each hydraulic pump mounted on each
arm. The manifold creates an even flow of high oil pressure into a hydraulic motor that drives an
electric motor directly. The concept behind the Wavestar WEC was formulated back in 2000 by
Niels and Kjeld Hansen and has since proved its feasibility at open sea. Thus a redesign of the

Figure 1. Right - The current WSE prototype of steel arm and glass fiber float. Left - UHPFRC design.
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arm and float is initiated, see figure 1, to improve the structure and avoid the problems made
evident on the first prototype. The major concern is how to lower the overall cost and increase
the durability of the float structure. In the current design of the structure several problems has
been recognized during manufacturing and installation[1]. The current design of the Wavestar
float is a complex glass fibre structure. The structural design can be seen in figure 2 and it
consists of an outer double curved 5 meter in diameter shell hemisphere which is connected to
the top cap. Inside the float a complex system of thin bracing walls secures the rigidity of the
structure. The complexity in manufacturing the glass fibre floats has been a major issue for the

Figure 2. Left - Existing glass fiber float, Right - Ultra High Performance Fiber Reinforced concrete float.

Wave Star project, because a full scale Wave Star wave energy converter will consist of 20 floats.
Thus a series production is a necessity to reduce the overall cost. This requirement has initiated
a structural optimization where the current material configuration of the float has been changed
from glass fibre to an Ultra High Performance Fibre Reinforced Concrete structure.

New Design Material

Choosing the UHPFRC as the main material makes it possible to accommodate the need for
series production and increase the durability [2]. The float will be cast in two parts, one hemi-
sphere and one top cap. The composition of the UHPFRC utilized in the project is a mortar
with quartz sand, and steel fibre contents up to 6 vol. % straight steel fibres of 12 mm in length
and 0.4 mm in diameter. Generally the UHPFRC matrix has compression capacities above 120
MPa. Increasing the compressive strength of concrete causes highly brittle failure modes. This
is abbreviated by means of the fibre addition. The fibres increase the overall ductility and the
ultimate tensile strength capacity, which is approximately 1/10 of the compressive strength. In
figure 3 the material behavior is illustrated by means of direct tensile tests. When the first
micro crack opens, the fibers inside the crack prevents further crack opening, because less en-
ergy is needed to open another micro crack. The development of multiple micro cracks causes
strain hardening which is a very desirable material property in the design of civil engineering
structures.

Design principles of the UHPFRC float

The basic idea is to create a UHPFRC float as seen in figure 2 where the outer geometry is
adopted from the existing float. While the outer geometry is kept, the entire load carrying
system inside the float is changed. In the new design no ballast tank is necessary, due to the
increased weight of the structure. This means that no secondary support structure has to be
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Figure 3. Strain hardening effect of the UHPFRC materials [3].

provided inside the float. Consequently a more efficient load carrying system can be achieved.
In the new design, the internal forces are carried in the bracing system situated in the walls, see
figure 2. The external forces at the shell or the top cap will be transferred to the cap beams.
The beams are connected to the inner ring, which connects the float to the transition piece
and arm. This gives an effective load carrying system, where the external forces on the shell
structure is transferred directly into the inner ring as normal forces and bending moment in the
top cap beams. Here the cap shell also contributes in carrying the normal forces, by membrane
effect. Bending of the cap will be carried by the beams. One of the major concerns of the new
design has been the weight/stiffness ratio. To investigate the design linear buckling analysis
was carried out, to secure that the final design has sufficient buckling stiffness, which is of great
importance in thin shell structures.

Computational issues

The structural analysis of the float is carried out in ANSYS Workbench 14.5. The first finite
element model is designed to reveal which load conditions that will govern the design regarding
weight and stiffness. In figure 4 the float model can be seen and it is initially analysed as a
linear elastic structure discretised by ANSYS SOLID186 which is a 20 node element. The model
is furthermore discretised by means of adaptive meshing, which has revealed geometrical spots
with high stress gradients. This has been of special concern due to the geometrical design of
both the internal bracing and the hatch in the top cap, see figure 4 right. In the design of the

Figure 4. Left - (Blue) Boundary condition, (Red) Pressure load, Right - Internal bracing.

float, great effort has been directed to estimate the governing load conditions and how they can
be applied to the model. In figure 4 the red area illustrates the pressure load, which simulates
the slamming wave load on the top part of the double curved shell. Several load conditions has
been investigated, but the case sketched in figure 4 cause the most critical condition regarding
buckling [4]. In the structural investigation the pressure load is situated between two internal
bracings. The resulting span between the two bracings in combination with the hole cut out for

99



the hatch make this section sensitive to a significant compressive stress field in the membrane
plane. The design optimization of the internal geometry of the float, concerns primarily the
number of bracings. The number of bracings has to be kept at a minimum to secure minimum
weight. The final number of bracings was achieved by means of a linear elastic buckling analysis,

Figure 5. Left - Boundary condition, Right - Pressure load.

treated as an eigenvalue problem in ANSYS Workbench. For the most critical load case a load
factor of 14 was achieved and clearly depicts the high buckling resistance of the structure. The
float design has converged to an initial design with a weight of 9.7 tons, where 1.5 tons is the
bracing in the double curved shell and in the top cap.

Result

The float structure has initially been investigated by means of linear elastic analysis, where the
overall deformations of the UHPFRC structure have been considered. It has to be emphasized
that the current float model does not take eventual rebar reinforcement into account and relies
solely on the elastic properties of the UHPFRC material. The new design has a very desirable
load carry system, where the loads primarily is obtained in the thin shell and translated into
normal forces and flexure of the beams in the top cap. The arrangement of the internal bracing
gives high rigidity against buckling, as can be seen in figure 5.

Conclusion

The redesign of Wavestar float has been investigated and a more efficient load carrying system
has been achieved. The design has shown high rigidity to the environmental loadings, where
especially the slamming loading is a governing condition. The number of internal bracings is
optimized regarding stiffness and weight, and it can be concluded that 12 bracings are sufficient
to cope with the overall deformation criterion and the buckling resistance.
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Summary. A study on the hydroelastic modelling of pontoon bridges is presented, and exemplified
with the Bergsøysund Bridge. The structural modelling is based on the finite element method using the
FE-software Abaqus; the fluid-structure interaction, as well as the wave action, are modelled applying
linearized potential theory represented by the DNV HydroD Wadam software. The main emphasis
is put on the stochastic response analysis within the framework of the power spectral density method.
The accuracy of the presented modelling is outlined. Convergence of the response obtained by modal
technique is dealt with.
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Introduction

The Norwegian Public Roads Administration (NPRA) is currently working on plans for rebuild-
ing Highway E39 along the Norwegian west-coast. This route stretches 1100 km between the
cities Kristiansand and Trondheim, and incorporates multiple crossings of deep fjords, which
today are operated by eight ferry connections [4]. Floating bridges of the pontoon type are
proposed as feasible options for such crossings. In connection with the NPRA’s project, the
objective is to carry out verification of the accuracy of the modelling methods used to assess
the overall dynamic behaviour of floating structures exposed to environmental action, especially
due to locally wind generated waves.

Outline of general theoretical modelling

Within the framework of a Finite Element Method (FEM) formulation, the equations of motion
for the floating bridge can be written as:

[Ms] {ü(t)}+ [Cs] {u̇(t)}+ [Ks] {u(t)} = {ph(t)}, (1)

where {ph} is the hydroelastic action, including the fluid-structure interaction as well as the wave
action, [Ms] the structural mass matrix, [Cs] the structural damping matrix, [Ks] the structural
stiffness matrix, and {u(t)} represents the displacements of the degrees of freedom defined
for the system [3]. Hence, the floating elements contribute with forces from the interaction
between the water and the structure. These forces are dependent on displacements, velocities
and accelerations of the pontoons, which give rise to hydrodynamic mass, damping and stiffness.
In the frequency domain, this results in the following total system matrices:

[M(ω)] = [Ms] + [Mh(ω)] , [C(ω)] = [Cs] + [Ch(ω)] , [K] = [Ks] + [Kh] . (2)
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Assuming harmonic oscillating response, the following equations of motion for the coupled sys-
tem are obtained:

[M(ω)] {ü(t)}+ [C(ω)] {u̇(t)}+ [K] {u(t)} = {p(t)}, (3)

where {p(t)} represents the wave excitation force vector acting on the pontoons. As stated in
Langen and Sigbjörnsson [1], the displacements and forces can be expressed within the theory
of stochastic processes using generalized harmonic decomposition:

{u(t)} =

� ∞

−∞
eiωtd{Zu(ω)}, {p(t)} =

� ∞

−∞
eiωtd{Zp(ω)}, (4)

where {Zp(ω)} and {Zu(ω)} are the spectral processes corresponding to the response vector
and the load vector, respectively. Using the principles of superposition Equation 3 can, hence,
be rewritten as follows:

� ∞

−∞

�
−ω2 [M(ω)] + iω [C(ω)] + [K]

�
� �� �

[H(ω)]−1

eiωtd{Zu(ω)} =

� ∞

−∞
eiωtd{Zp(ω)}. (5)

Langen and Sigbjörnsson [1] express the cross-spectral densities of the displacement {u(t)} and
the wave action {p(t)} as:

[Su(ω)] = E[d{Zu(ω)}d{Zu(ω)}∗], [Sp(ω)] = E[d{Zp(ω)}d{Zp(ω)}∗], (6)

where the operator [·]∗ is used as complex conjugate and matrix transpose. Combining this with
Equation 5 gives:

[Su(ω)] = [H(ω)] [Sp(ω)] [H(ω)]∗ . (7)

Here, the excitation spectral density matrix can be obtained from a given wave spectral density
describing the geometry of the wavy sea surface (see e.g. [2]). To explore the hydroelastic
properties of the fluid-structure system, it can be beneficial to introduce the excitation as a
white noise given by a frequency independent auto-spectral density (identity) matrix and zero
cross-spectral density matrices.

Furthermore, the coherence function and the correlation coefficient corresponding to the
processes x and y, with standard deviances σx and σy, and covariance σxy, are respectively
defined as [1]:

γxy(ω) =
|Sxy(ω)|2

Sx(ω)Sy(ω)
, ρxy =

σxy
σxσy

. (8)

Computational modelling

An Abaqus/CAE[5] truss model of the Bergsøysund Bridge developed by Sindre M. Hermstad
was used. This model is shown in Figure 1. The structural modal system properties, such as
mode shapes, damping ratios and natural frequencies, were extracted from this model. Con-
tributions from the floating elements to the overall system stiffness, damping and mass, were
calculated using DNV HydroD Wadam[7]. These contributions were thereafter transformed
to modal space using the modal shapes retrieved from the FE-model. The established system
properties formed the basis for response calculations, that were performed applying a Matlab
computer code specially developed for the purpose.

Numerical results

Figure 2 shows the response spectral densities for heave of pontoons 1 to 3 induced by assumed
load spectral densities. Above the diagonal, the coherence spectra are plotted. Figure 3 displays
selected response spectral densities from the white noise calculations, with different number of
modes included.

102



(a) Entire model,
with pontoons.

(b) Bridge truss
used to find the
structural proper-
ties from Abaqus.

Figure 1. FE-model used for calculations of structural properties in Abaqus/CAE.

0 0.5 1 1.5

0
0.5
1

1.5

P
o
n
to
o
n
1

0 0.5 1 1.5
0

0.5

1

0 0.5 1 1.5
0

0.5

1

0 0.5 1 1.5

0
0.5
1

1.5

P
o
n
to
o
n
2

0 0.5 1 1.5

0
0.5
1

1.5

0 0.5 1 1.5
0

0.5

1

0 0.5 1 1.5

0
0.5
1

1.5

Pontoon 1

P
o
n
to
o
n
3

0 0.5 1 1.5

0
0.5
1

1.5

Pontoon 2

0 0.5 1 1.5

0
0.5
1

1.5

Pontoon 3

Figure 2. Response spectral densities for heave response (DOF 3) of the first 3 pontoons of the Bersøysund
Bridge induced by assumed wave spectral densities. The auto-spectral densities are found on the diagonal,
while the cross-spectral densities are plotted below the diagonal and the coherence spectra above the
diagonal. The x-axes show the frequency in rad

s , and the y-axes show the cross-spectral densities of the

displacements in m2s
rad , except for the coherence plots above the diagonal, which have dimensionless y-axes

in the range 0 to 1 (see Equation 8). Blue plots show real parts, while red plots show imaginary parts of
the cross-spectral densities.

Discussion and concluding remarks

Based on the white noise approximation it is seen that the response spectra of the Bergsøysund
Bridge model approaches convergence when approximately 20 modes are included. When as-
sumed sea load spectra are enforced (dominating period equal to 10 s), approximately 30 modes
give near-converged results. On the other hand, the 100 modes used on the Bergsøysund Bridge
model at most, did not introduce considerable computation time. In general, it is found that for
sea states with short dominating period a higher number of modes are needed than for the long
periodic ones. Furthermore, the number of modes required depends also on the response quantity
under consideration, e.g. the acceleration response requires more modes than the displacement
response. Similar applies to internal forces.

The response is sensitive to the crest length of the waves. In the case displayed in Figure 2, it
is seen that the response induced by long crested waves results in response with high correlation
(ρ ≈ 0.9 between the responses of pontoon 1 and 2); furthermore, it is seen that the coherence is
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Figure 3. Selected cross- and auto-spectral densities for the Bergsøysund Bridge, with different number
of modes included in the calculations. Only real parts of the spectra are plotted. Because the white noise

loading is assumed unity, the units of the response spectra are s4

kg2 .

very high, which is characteristic when the dominating wave period is long as in this case (about
10 s). For a wave field with shorter characteristic periods, this changes, and the result is lower
correlation and smaller coherence, which is important to account for in fatigue computations.

The sea state used to create Figure 2 is not characteristic for the Bergsøysund environ-
ments. Therefore, the next step is to compare response measurements of the Bergsøysund
Bridge with calculated response based on wave spectral densities representing the real sea state
in the Bergsøysund, which is apparently characterised by locally generated wind seas.

Furthermore, by the means of system identification applying response measurements, modal
parameters such as damping ratios, natural frequencies and modal shapes need to be determined.
The identified system will then be used to calibrate the presented computational hydroelastic
model, and thereby quantify the uncertainties of the methods applied.

References

[1] Ivar Langen and Ragnar Sigbjörnsson. Dynamisk analyse av konstruksjoner. Tapir, Trond-
heim, 1979.

[2] Ivar Langen and Ragnar Sigbjörnsson. On the stochastic dynamics of floating bridges. Engi-
neering Structures, 2, 1980, 209-216.

[3] Ivar Langen. Frequency domain analysis of a floating bridge exposed to irregular short-crested
waves. SINTEF, Trondheim.

[4] Olav Elleveset. Project Overview Coastal Highway Route E39. Norwegian Public Roads Ad-
ministration, 2012.

[5] Abaqus/CAE, version 6.12-1. Dassault Systèmes, 2011, software.
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Ionic strength induced swelling for determination of thin
polymer film elastic properties
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Summary. Deposition of polymers at the surface of an ionic hydrogel is conventionally used to tailor
properties of the composite material for application within for instance drug release and cell encapsulation.
Here we describe a method for determination of the mechanical properties of a thin polymer film deposited
on an ionic hydrogel core.

Key words: thin-film, hydrogel, finite element analysis

Introduction

Selective deposition of polymers at the surface of an ionic hydrogel is conventionally used to
tailor properties, e.g., barrier properties, of the composite material for application within for
instance drug release and cell encapsulation. The impact of such a layer on the the mechanical
properties of the structure is largely unknown. By combination of high resolution monitoring
of ionic strength induced swelling properties of the hydrogel core before and after polymer
deposition and inverse finite element modelling, we suggest an approach to extract information
on the equivalent mechanical properties of the layer. The constraining of the hydrogel swelling
by a 4 and 8 chitosan-alginate composite multilayer was used as a basis for estimating mechanical
properties of these materials. The approach also required thickness measurements of the polymer
film as obtained by confocal imaging.

Methods

Experimental procedure

Hemi-ellipsoidal hydrogels (radius about 50-60 µm) of co-polymerized AAM and AMPSA were
synthesized covalently attached to the end of an optical fiber. Then chitosan-alginate multilayers
composed of four and eight polymer bilayers were deposited on the anionic acrylamide-based
hydrogel core in a 150 mM NaCl solution at pH∼5.4 after pre-equilibration of the hydrogel.
A high resolution interferometric technique (Invivosense) was employed for monitoring the op-
tical length changes of non-modified hydrogel and hydrogel with deposited multilayers upon
variation of ionic strength in immersing solution.
The interferometric setup consisted of an optical fiber of diameter 2Rf = 125µm with a hydrogel
physically bound at one end and a connector/adapter system at the other. See [1, 2] for further
information.
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Figure 1. Finite element models. Model 1 corresponds to the anionic gel without polymer coating (t = 0).
Model 2 corresponds to the anionic gel with polymer coating (t �= 0).

Material constitutive models

In order to describe the mechanical behavior of the anionic gel used in this study, we use the
following free energy function U [3]:

U =
1

2
NkBT (I1 − 3− 2ln(J)) +

kBT

vs

�
(J − 1)ln

�
1− 1

J

�
+ χ

�
1− 1

J

��
+ γCA−

+kBT


�

α�=s

Cα

�
ln

Cα

Jcrefα

− 1

�
+ CAH ln

�
CAH

CA− + CAH

�
+ CA− ln

�
CA−

CA− + CAH

�
(1)

where N is the network crosslink density, vS the volume per solvent molecule, kB is the Boltz-
mann constant, χ the Flory-Huggins parameter and γ the molar heat of dissociation. Cα and
crefα are the nominal and reference concentrations, respectively, of the different mobile species
(protons H+, positive ions +, negative ions−). CAH and CA− are the nominal concentrations
of the associated group AH and dissociated group A−, respectively. J is the Jacobian of the
deformation and I1 is the first principal invariant of the right Cauchy-Green deformation tensor
C. Further details on the use of this constitutive material law can be found in [3].
The average mechanical behavior of the multilayers is modeled with the following strain energy
W function proposed by Ehret and Böl [4] for biofilms,

W =
C0

4
Ω

�
1

1− Λ
�
I1/3

− Λ

��
I1
3

− 2Λ
I1
3

+ Λ2

�
I1
3

�3/2
��

+W0, (2)

with Ω =
L

lp
, Λ =

r0
L

and r20 = 2l2p

�
L

lp
− 1 + e−L/lp

�
, (3)

where L is the contour length, lp the persistence length and r0 the end-to-end distance between
two junctions in the reference configuration. W0 is a constant term calculated such as W (I1 =
3) = 0. C0 is a material parameter to be determined in the present study representing the
equivalent elastic properties of the chitosan-alginate multilayers. The multilayers are modeled
as fully incompressible. The constitutive material model defined by eq.(2) was implemented in
an ABAQUS user-subroutine UHYPER.

Inverse finite element modelling

A finite element model was used to simulate the ionic strength induced swelling of the anionic
hydrogel with and without polymer coating (see Fig, 1). The network crosslink density N and
the Flory-Huggins parameter χ of the hydrogel (AMPSA) used in this work were identified by
fitting the length of the hydrogel sensor LFE

g (model 1, Fig 1) computed using the finite element
software ABAQUS to the length Lexp

g . Lexp
g was measured during our swelling experiment
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Table 1. Parameters of the ionic hydrogel (APSMA)

vN χ pKa f t Lexp
g,0.15 (µm)

AMPSA 3.3e-3 0.48 2.0 0.022 0 54.0

Table 2. Elastic parameter C0 (eq.(2))for the deposited shells with 4 and 8 bilayers (Chitosan-alginate)

C0/(kBT/v) lp (nm) L (nm) t (µm) Lexp
g,0.15 (µm)

Chitosan-alginate 4 bilayers 2.1e-2 15 250 0.8±0.2 54.7
8 bilayers 2.6e-2 15 250 0.8±0.2 50.2

with varying salt concentration (varying c̄+) and constant pH (constant c̄H+) and the hydrogel
bound to the optical fiber without deposited polymer layer. The fitting was performed using the
lsqnonlin function in the Optimization Toolbox of the commercial software MATLAB together
with the trust-region-reflective algorithm.
Then, the material parameter C0 in eq.(2) of the thin polymer layer deposited on the surface
of the ionic hydrogel is determined using a similar numerical procedure and using the network
crosslink density N and the Flory-Huggins parameter χ for the ionic hydrogel found previously
and the finite element model 2 , see Figure 1.

Results

The identified material parameters obtained with the FE constrained model for the ionic hydrogel
(AMPSA) and the deposited shells with 4 and 8 bilayers (Chitosan-alginate) are summarized in
Tables 1 and 2.
Comparisons between experiments and numerical simulations using the identified parameters,
provided in Figure 2, show satisfying agreement.
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Figure 2. Comparison between the axial strain ϵaxial = (Lg − Lg,0.15)/Lg,0.15 of the hydrogel measured
during experiments at different levels of salt concentration and the one computed from finite element
analyses with the fitted parameters from Tables 1 and 2. Red circles, blue squares and black triangles
correspond to experimental results for the gel without deposited layer, the gel with four and eight bilayer
chitosan-alginate coating, respectively. The solid lines correspond to the numerical results.
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Concluding remarks

We develop a method to characterize multilayer thin films material properties from finite element
analysis. Experimental measurements of the deformations of the hydrogel and the thickness of
the deposited thin film are used as inputs to determine the crosslink densities of the hydrogel
first and the elastic property of deposited multilayer in a second step. This can be achieved by
means of an inverse modeling approach using a nonlinear least square technique. The method
is applied to a hemi-ellipsoidal hydrogel with chitosan and alginate multilayers. It may easily
be employed with other types of geometries and polymer films. Therefore, this method can be
adapted to the experimental set-up available. Moreover, the numerical method described in this
study may be used with other kinds of constitutive material models.
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Juhani Pitkäranta
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Summary. We study the accuracy of classical shell bending theory for spherical domes as compared
to the full three dimensional elasticity theory. The analysis is based on variational methods and on the
Hypercircle theorem of the linear theory of elasticity.
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Introduction

In [1] the accuracy of a classical engineering model for a shell roof was studied in case of the
so called Girkmann problem, a textbook example presented in [2]. In the Girkmann problem
the roof consists of a spherical dome stiffened by a foot ring, and the problem is to find the
horizontal force and moment acting at the junction of the dome and the ring when the roof is
loaded by its own weight, see Figure 1. The material of the structure is assumed homogeneous
and linearly elastic with Yuong modulus ν = 0. In [1] the accuracy of the classical model was
tested against the full axisymmetric 3D linear elastic model of the roof.

Shell bending theory

We focus here on the subproblem of the Girkmann problem where the stiffening ring is removed
and only the spherical shell remains. In the subproblem we want to evaluate the horizontal shift
(Λ) and the rotation (Ψ) of the edge of the dome due to given axisymmetric tractions acting at
the edge of the dome. The classical shell bending theory gives the solution in the form

EΛ = k11R+ k12M, EΨ = −k12R− k22M, (�)

where E is the Young modulus and R,M are the force and moment per unit length at the
edge due to the tractions acting there. The coefficients kij depend on the thickness (d) of the
dome, the radius (r0) of its midsurface and the opening angle (α) of the dome. Approximate
expressions for kij were historically found manually using simplified shell bending theory [2, 3].
In [1] it was demonstrated that even more accurate expressions are manually computable using
asymptotic expansions.

The problem we pose is: Suppose we know the coefficients kij in model (�) precisely as
corresponding to classical shell bending theory with no simplifications. Then how accurate is
such a model as compared to the full 3D axisymmetric linear elastic model? We approach
this problem by mathematical error analysis that is based on the Hypercircle theorem of linear
elasticity. In this way we obtain rigorous, computable error bounds.
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Figure 1. The Girkmann problem. Cross-section of the structure.

Results

In the 3D linear elastic model we need to specify the normal and shear stress distributions at
the edge more closely, since only the horizontal stress resultant R and moment M are referred
to in (�). We consider kind of edge conditions:

A. Soft edge: No kinematic constraints. The stresses σθ and τrθ (spherical coordinates) are
specified as

σθ(α, r) =
r0
r

�
Rcosα

d
− 12M

d3
(r − r0)

�
,

τrθ(α, r) =
r0
r

· R sinα

d
.

B. Hard edge: For the displacements, only rigid horizontal deflection (Λ) and rotation (Ψ)
are allowed at vertical profiles of the edge, so that

Uθ(α, r) = Λ cosα+Ψ(r − r0), Ur(α, r) = Λ sinα.

For the stresses only the two resultant conditions are specified:

� r0+d/2

r0−d/2
[ cosασθ(α, r) + sinα τrθ(α, r) ] rdr = r0R,

� r0+d/2

r0−d/2
σθ(α, r)(r − r0) rdr = −r0M.

The kinematic constraint of case B holds in classical shell theory, so the two cases A,B differ
only in the 3D model.
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In the error analysis we use the fact that classical shell bending theory follows from the 3D
energy principle when enforcing the kinematic assumptions of classical shell theory, that is: Uθ

varies linearly in r and Ur is constant in r. This allows us to derive direct energy bounds for the
gaps of the spring coefficients kij in between the two models. Applying the Hypercircle theorem
to such bounds we obtain the following result.

Theorem 1. Let kij be the spring coefficients in (�) according to the 3D model and let kSij be
the coefficients according to classical shell bending theory. Then the following error bounds hold:

0 ≤ kii − kSii
kSii

≤
√
3

10
· d

r0
+O

�
d

r0

�3/2

, i = 1, 2,

|k12 − kS12|
kS12

≤
√
6

10
· d

r0
+O

�
d

r0

�3/2

.

In Table 1 we give the spring coefficients kSij and the bounds for |kij − kSij | according to
Theorem 1 for the Girkmann problem where d/r0 = 0.0026. (The remainder terms in the bounds
are computable as well, but these are insignificant.) In the table, k12 and k22 are given in the
units [cm] and [cm2], respectively (k11 is dimensionless). The coefficients kSij were computed by
1D FEM and also confirmed manually by using the improved engineering bending theory of [1].

Table 1. Spring coefficients and error bounds in the
Girkmann problem

i, j 11 12 22

kSij = 8343 144.68 5.0115

|kij − kSij | ≤ 4 0.09 0.0023

We conclude that classical shell bending theory is very accurate — indeed so accurate that it
is not easy to beat by modern 3D FEM tools. In the context of the original Girkmann problem,
software tests referred to in [1] lead to similar conclusions.
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Summary. We show that higher vowel formants may consist of multiple acoustic resonances. We com-
pute the Helmholtz resonances of the vocal tract (VT) using FEM. The resulting resonance and pressure
information is then compared to formants extracted from recorded vowel phonation. It is observed that
the pure longitudinal modes appear in the sequence of all acoustic modes in an order that depends on
the vowel even in a single test subject.
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Introduction

It is well known that the two or three lowest vowel formants F1, F2, . . . (in increasing order of
frequency) are sufficient to distinguish between vowels in most cases. The formants, determined
from sound samples, correspond closely to the acoustic resonance frequencies R1, R2, . . . of the
human vocal tract (VT). The relevance of the higher formants and resonances (i.e., n ≥ 4) has
been a subject of study for a long time. The most recent findings are due to computational
modelling of the VT acoustics in 3D geometries that have been obtained using X-ray computer
tomography (CT) [7, 8].

The purpose of this article is to model VT acoustics using a 3D Helmholtz resonance model
and Finite Element Method (FEM) for its numerical solution. Resonances obtained from the
Helmholtz model are compared to (i) the resonances obtained from Webster’s horn model with
one spatial dimension, and (ii) the spectral envelopes extracted from sound samples from the
same test subject. We observe that the Finnish vowel [œ] has transversal components in reso-
nances R4, R5, R6, and these form a cluster that gets experimentally recognised as just a single
formant F4. In this data, the lowest transversal resonance takes always place in piriform sinuses
and not in the mouth cavity, see [6]. We remark that the positions of the longitudinal resonance
frequencies in the sequence of all resonance frequencies vary, depending on the vowel geometry
even in the same subject (see Fig. 1).

The computational geometries for this article have been obtained using Magnetic Resonance
Imaging (MRI). Using MRI is not as straightforward as CT since osseous structures (such as
maxillae and teeth) do not show up in the images. Further, the MRI machine produces a lot
of acoustic noise which makes simultaneous speech recording more difficult [2, 3]. However,
MRI can be used to make a large number of measurements from the same subject not having a
medical condition that would justify the use of ionising radiation.
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Methods

We use 3D geometries of the VT and a MATLAB-based FEM solver for the Helmholtz equation
(1). The raw MRI data is first vectorised as described in [1]. In addition to Eq. (1), more simple
acoustic resonance model Eq. (3) is used. The latter model accounts only for the longitudinal
acoustic resonances. Hence, identification of pure longitudinal acoustic resonances from Eq. (1)
can be carried out by comparison, without inspecting 3D eigenfunctions of Eq. (1) individually.
Finally, Linear Predictive Coding (LPC) is used to determine spectral envelopes from recorded
sound samples, and their peaks are compared to the computed resonances R1, R2, . . ..

Helmholtz equation

We solve the acoustic resonances by first solving the Helmholtz problem

{
λ2Φλ = c2ΔΦλ on Ω, Φλ = 0 on Γ1,
∂Φλ
∂ν = 0 on Γ2, and λΦλ + c∂Φλ

∂ν = 0 on Γ3,
(1)

where the speed of sound is denoted by c, Ω ∈ R3 is the interior volume of the VT whose
boundary ∂Ω = Γ1 ∪ Γ2 ∪ Γ3 consists of the mouth opening Γ1, the VT tissue walls Γ2, and the
(virtual) control surface Γ3 right above the glottis. The exterior normal derivative is denoted
by ∂

∂ν and the solution Φλ is the velocity potential, giving the acoustic pressure by ρλΦλ where
ρ is the density of air.

The variational formulation of Eq. (1) can be turned into a quadratic eigenvalue problem as
shown in [4]. The matrices for the eigenvalue problem are constructed using FEM with piecewise
linear shape functions and tetrahedral meshes with approximately 105 elements. We obtain the
stiffness matrix K, the mass matrix M, and the matrix P which presents the absorbing glottis
boundary condition in Eq. (1). The discretised eigenvalue problem can be written as

λ2Kx(λ) + λcPx(λ) + c2Mx(λ) = 0. (2)

The imaginary parts of the smallest eigenvalues give resonance frequencies R1, R2, . . . (in increas-
ing order of frequency), and the longitudinal resonances are identified from these by comparing
them to the resonances obtained from (3).

Resonance version of Webster’s horn model

Using the 3D wave equation is impractical for modelling acoustics of the VT in high temporal
and spatial resolution. The classical Webster’s horn model is computationally much lighter,
and in some special geometries even analytic solutions are possible [9]. For Webster’s model, a
tubular domain is defined by a parameterised centreline and corresponding cross-sectional areas
A(s) as shown in Fig. 2. The resonances of Webster’s horn model can then be obtained from
the eigenvalue problem

λ2ψλ =
c2Σ(s)2

A(s)

∂

∂s

�
A(s)

∂ψλ

∂s

�
for s ∈ [0, ℓ], (3)

where ℓ is the length of the VT, and the function Σ(s) has been introduced in [5] for taking into
account the centreline curvature. The Webster’s velocity potential ψλ corresponds to the 3D
velocity potential given by (1). We solve Eq. (3) numerically by using piecewise linear elements
and end point conditions at s = 0, ℓ corresponding to the boundary conditions in Eq. (1).

Eqs. (1)–(3) are solved numerically using sufficiently many elements so that all computed
resonances can be regarded as accurate.
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Figure 1. The spectral envelopes of Finnish vowels [œ,e] recorded in an anechoic chamber. These curves
differ only slightly from those recorded during the MRI [3]. The solid vertical lines represent longitudinal
resonances while the dashed lines represent transversal resonances, both computed from Eq. (1).

LPC

Spoken vowels can be identified based on wide bandwidth acoustic energy concentrations around
discrete frequencies in the power spectrum of the measured signal. Such energy peak locations
F1, F2, . . . (in increasing order of frequency) are called formants, and they are related to the
frequencies R1, R2 . . . computed from Eq. (1). In measured signals, formants can discriminated
from harmonic overtones of the fundamental glottal frequency by the fact that formants, indeed,
have much wider bandwidth. Thus, smoothing of the power spectrum allows the formants to be
usually extracted with good accuracy.

The most popular method of spectral smoothing in speech science is LPC. LPC is a forward
predictor FIR filter whose frequency response gives an estimate for the spectral envelope of the
signal; the poles of the filter can be regarded as a practical definition of formant locations. LPC
is mathematically equivalent to fitting a low-order rational function R(s) to the power spectrum
function on the imaginary axis. Thus, plotting the values of |R(iω)| for real ω yields the desired
smoothing of the power spectrum, and formant frequencies F1, F2, . . . correspond then to the
imaginary parts of the poles of R(s).

Results

The LPC spectral envelopes and resonance frequencies R1, R2, . . . up to 4 kHz for Finnish vowels
[œ, e] are shown in Fig. 1. Some of the resonances are identified as longitudinal by Webster’s horn
model, and they are plotted with solid lines in Fig. 1. The remaining resonances from Eq. (1)
are regarded as transversal, and this behaviour can be observed from the acoustic pressure
distributions shown in Fig. 2.

Results presented here and in [7, 8] confirm that higher formants may consist of a cloud of
longitudinal and transversal resonances. This clustering phenomena appears to be significant
from the fourth formant onwards. As expected, the first and second formants can be reliably
identified with the resonances of Webster’s horn model.

Conclusions

The resonances from Eq. (1) differ somewhat from those extracted from experimental data.
Apart from the lowest formant F1 (where the formant extraction from speech signal is most
error-prone), the discrepancy is likely to be caused by the unrealistic acoustic impedance at
mouth in Eq. (1) as discussed in [4].

The full classification of the resonance structure of the VT in various vowel configurations
requires additional effort and a combined MRI/sound data set from several test subjects. An-
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Figure 2. Modes of the first eight resonances for vowel [œ], the surface mesh with face, and an example
of a generated area function.

other interesting challenge is the study of the singer’s formant in sopranos and tenors where
similar resonance clustering is expected to take place.
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J. Malinen, T. Murtola, R. Parkkola, J. Saunavaara, T. Soukka, and M. Vainio. Measure-
ment of acoustic and anatomic changes in oral and maxillofacial surgery patients. 2013.
arXiv:1309.2811.

[4] A. Hannukainen, T. Lukkari, J. Malinen, and P. Palo. Vowel formants from the wave
equation. J. Acoust. Soc. Am. Express Letters, 122(1):EL1–EL7, 2007.

[5] T. Lukkari and J. Malinen. Webster’s equation with curvature and dissipation. arXiv
1204.4075, 2013 (submitted).

[6] J. Sundberg. Articulatory interpretation of the “singing formant“. J. Acoust. Soc. Am.,
55(4):838–844, 1974.
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Isogeometric Collocation Methods for 1D thin structures
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Summary. We study isogeometric collocation methods for 1D thin structures, focusing on the simplest
example of the Timoshenko beam problem, and considering a mixed formulation. In particular, we show
that locking-free solutions are obtained, independently on the approximation degrees selected for the
unknown fields.

Key words: Timoshenko beam model, isogeometric collocation methods, locking-free schemes.

Introduction

Isogeometric Analysis (IGA) is an idea, firstly introduced by Hughes et al. [4, 5], to fill the gap
between Computational Mechanics and Computer Aided Design (CAD). The key feature of IGA
is to extend the Finite Element Method (FEM) representing the geometry by spline functions
typically used by CAD systems, and then invoking the isoparametric concept to define field
variables. As a consequence, the computational domain exactly reproduces the CAD description
of the physical domain.

Within the framework of IGA, collocation methods have been proposed in [1] as an appealing
high-order low-cost alternative to standard Galerkin approaches. In [3] we initiate the investiga-
tion about the IGA collocation methods for the approximation of thin structure problems: the
aim of this paper is to report on the results detailed in that paper.

We focus on the simple case of an initially straight planar Timoshenko beam. Despite
its simplicity, the numerical approximation of this problem often presents some difficulties,
especially when dealing with FEM in connection with low-order schemes. Indeed, one has to
avoid the so-called shear locking phenomenon, which arises when the beam thickness parameter
becomes “small”. Within the FEM framework, several options to overcome shear locking are
nowadays well-established. For example, ad-hoc reduced integration of the shear energy term
can be used. Alternatively (and, sometimes, equivalently), the employment of discrete schemes
based on a suitable mixed formulation can be of great advantage. However, the use of a mixed
formulation does not solve the problem by itself: the discrete approximation spaces must be
carefully chosen to avoid shear locking, and to prevent the occurrence of spurious modes.

On the contrary, it has been shown in [3] that suitable isogeometric collocation methods
can be designed, leading to locking-free schemes without the need of any compatibility condition
between the selected discrete spaces. Therefore, the convergence behaviour, uniform in the thick-
ness parameter, is dictated only by the approximation features of the discrete spaces. We note
that this very appealing property is deeply linked to the collocation method adopted and not
only a consequence of the isogeometric approach.
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Timoshenko beam equations

We consider an initially straight, planar, elastic, and homogenous beam. The beam axis is
assumed to occupy the interval [a, b]. Following the Timoshenko model [6], we introduce a
suitably scaled mixed formulation, where the unknown variables are the displacements v(x)
(usually referred to as deflections), the rotations ϕ(x), and the scaled shear strain τ(x). Assuming
for simplicity, but without loss of generality, clamped boundary conditions, the equations to be
solved are the following:





τ �(x) = αq(x), x ∈]a, b[,
−ϕ��(x) + τ(x) = 0, x ∈]a, b[,
v�(x) + ϕ(x)− α−1t2τ(x) = 0, x ∈]a, b[,
v(a) = v(b) = 0,

ϕ(a) = ϕ(b) = 0,

(1)

where q(x) represents the transversal load, α is a positive parameter depending on the material
properties and on the cross section geometry, and t is a slenderness parameter.

Isogeometric collocation methods for the Timoshenko beam

In this section, we present our collocation methods for the Timoshenko beam, which are imple-
mented in the spirit of isogeometric collocation methods, as introduced in [1] and further devel-
oped in [2]. Before proceeding, we need to introduce the pϕ-degree B-spline space Φh ⊂ C2(a, b),
used for the rotation approximation, and associated with the knot vector

{ξϕ1 = 0, ..., ξϕnϕ+pϕ+3 = 1}. (2)

Analogously, we introduce the pv-degree B-spline space

Vh ⊂ C2(a, b), (3)

used for the deflection approximation, and associated with the knot vector

{ξv1 = 0, ..., ξvnv+pv+3 = 1}. (4)

Finally, we define the pτ -degree B-spline space

Γh ⊂ C1(a, b), (5)

used for the shear stress approximation, and associated with the knot vector

{ξτ1 = 0, ..., ξτnτ+pτ+1 = 1}. (6)

Furthermore, we introduce suitable sets of collocation points in [a, b]:





N (Φ��
h) =

�
x1, x2, . . . , xnϕ

�
,

N (V �
h) = {y1, y2, . . . , ynv+1} ,

N (Γ�
h) = {z1, z2, . . . , znτ−1} .

(7)
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Mixed discretization

We now introduce our collocation method based on the mixed formulation (1). Given the finite
dimensional spaces Φh, Vh and Γh, together with the collocation points introduced in (7), the
discretized problem reads as follows.





Find (ϕh, vh, τh) ∈ Φh × Vh × Γh such that:

τ �h(zi) = αq(zi), zi ∈ N (Γ�
h)

−ϕ��
h(xj) + τh(xj) = 0, xj ∈ N (Φ��

h)

v�h(yk) + ϕh(yk)− α−1t2τh(yk) = 0, yk ∈ N (V �
h)

vh(a) = vh(b) = 0,

ϕh(a) = ϕh(b) = 0.

(8)

Notice that problem (8) is a linear system of (nϕ+nv +nτ +4) equations for (nϕ+nv +nτ +4)
unknowns.

Error estimates

We make the following fundamental assumption on the collocation points.

Assumption 0.1 (Stable interpolation) There exists a constant Cint, independent of the
knot vectors, such that the following holds. For all functions θ, w, and r in C0(a, b) there exist
unique interpolating functions

θII(xj) = θ(xj) ∀ xj ∈ N (Φ��
h), θII ∈ Φ��

h,

wIII(xj) = w(xj) ∀ zi ∈ N (V �
h), wIII ∈ V �

h,

rI(xj) = r(xj) ∀ yk ∈ N (Γ�
h), rI ∈ Γ�

h,

with the bounds
||θII ||L∞) ≤ Cint||θ||L∞ ,

||wIII ||L∞ ≤ Cint||w||L∞ ,

||rI ||L∞ ≤ Cint||r||L∞ .

The following error estimate, uniform in the thickness parameter t, has been proved in [3].

Theorem 0.1 Let (ϕ, v, τ) and (ϕh, vh, τh) represent the solutions of problem (1) and (8), under
Assumption 0.1 on the collocation points. Then it holds

||ϕ− ϕh||W 2,∞ + ||v − vh||W 1,∞ + ||τ − τh||W 1,∞ ≤ Chβ |q|Wβ,∞ (9)

with
β = min (pv, pτ , pϕ − 1), (10)

and where the constant C is independent of the knot vectors and the thickness parameter t.
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Summary. We present computational results for the so called Girkmann benchmark problem involving
a spherical shell stiffened with a foot ring. In particular, we compare the accuracy of finite element
formulations based directly on the three-dimensional theory of elasticity to formulations based on dimen-
sionally reduced structural models. We conclude that, in the Girkmann problem, shell elements are very
economical and can be recommended instead of solid elements. Nevertheless, we express concern over
the membrane behaviour of the lowest-order shell elements.

Key words: verification & validation, shell elements, hp-adaptivity, concrete structures

Introduction

Shell finite element formulations involve various explicit and implicit modelling assumptions
that extend beyond the limits of mathematical convergence theory currently available, see [1].
However, thanks to modern computation technology, such as the hp-adaptive finite element
method [2, 3], shell analysis can also be based directly on three-dimensional elasticity theory.
Such approach rules out the modelling errors arising from the simplifications of dimensionally
reduced structural models but requires in general more degrees of freedom for the discrete model.
Also, if simplified representations of the stress state such as the stress resultants are needed,
they must be post-processed from the three-dimensional stress field.

Girkmann problem

A model problem called the Girkmann problem, which was revived some time ago, highlights the
above complications rather dramatically, see [4–7]. The problem involves a concrete structure
consisting of a spherical dome stiffened by a foot ring under a dead gravity load, see Fig. 1.
The task is to determine the values of the shear force and the bending moment at the junction
between the dome and the ring as well as the maximum bending moment in the dome.

The problem was initially presented and solved analytically in the text book [8]. More
recently, in the bulletin of the International Association of Computational Mechanics (IACM)
[9], the problem was posed as a computational challenge to the finite element community. The
purpose of the challenge was to find out how the process of verification, that is the process of
building confidence that an approximative result is within a given tolerance of the exact solution
to the mathematical model, is carried out by the community given the Girkmann problem. The
results, that are summarized in [4, 10], without attribution and details on how verification
was actually performed, are scandalous. Out of the 15 results submitted, 11 have a very large
dispersion and are not within any acceptable tolerance of the reference values computed in [4–6]
using different models and formulations.

So far detailed verification studies have been published for the axisymmetric models based
on elasticity theory as well as axisymmetric dimensionally reduced models. In [4], the p-version
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Figure 1. The Girkmann problem. Cross-section of the structure.

of FEM was used in conjunction with the extraction procedure of [11] to compute accurate
values for the quantities of interest. Similar approach with the hp-version of FEM was taken
in [5], where also the axisymmetric h-version with selective reduced integration was successfully
employed to discretize the dimensionally reduced model.

In the present work, we use the Girkmann problem to benchmark general 3D shell elements.
Namely, we model a quarter of the dome as shown in Fig. 2 and use different type of shell
elements to approximate the deformation. We use the bilinear and biquadratic shell elements of
LUSAS finite element analysis software as well as the bilinear shell element proposed in [12].

�→

Figure 2. Bilinear finite element representation of the Girkmann dome.
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QTS4 MITC4S

Figure 3. Solution using bilinear shell elements - membrane part

MITC4S of [12]

N EΛ EΨ k11 k21 k22
16 -2.247e6 8.833e5 6.927e3 1.147e4 -4.341e4
32 -2.294e6 9.273e5 7.930e3 1.379e4 -4.877e4
64 -2.302e6 9.277e5 8.249e3 1.454e4 -5.057e4
128 -2.300e6 9.295e5 8.318e3 1.477e4 -5.097e4

QTS4 of LUSAS

N EΛ EΨ k11 k21 k22
16 -2.467e6 7.697e5 6.236e3 9.914e3 -3.882e4
32 -2.333e6 8.887e5 7.658e3 1.316e4 -4.702e4
64 -2.313e6 9.139e5 8.167e3 1.435e4 -5.011e4
128 -2.307e6 9.181e5 8.327e3 1.477e4 -5.152e4

Reference values
N EΛ EΨ k11 k21 k22

-2.300e6 9.338e5 8.345e3 1.477e4 -5.113e4

Table 1. Convergence of the inverse spring coefficients with bilinear elements.

Convergence studies

In the first phase, we rule out any modelling errors arising from the shell-solid intersection at
the junction by using the force method associated to the free-body splitting of Fig. 1. That is,
we study the convergence of the inverse spring coefficients kshellij and displacements Λshell,Ψshell

in the expansions
EΛshell = EΛshell

0 + kshell11 R+ kshell12 M,

EΨshell = EΨshell
0 + kshell21 R+ kshell22 M,

where Λshell and Ψshell denote the horizontal displacement and rotation of the shell at the
junction, respectively, and R,M are the unknown reactions.

Our first observation is that when computing the first terms Λshell
0 andΨshell

0 in the expansions
with bilinear elements, there is no convergence! This is reflected in Fig. 3 which shows that
axisymmetry of the solution is lost for the bilinear QTS4 element of LUSAS and MITC4S of
[12]. However, convergence occurs in the sense of average displacement over the whole junction
line as shown in Table 1. Based on these values and a consistent model for the ring, see [6],
rather accurate values of the stress resultants can be computed, see Table 2.
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Model/Element type Q (N/m) M (Nm/m) Mmax θmax

Solid / ICES hp-FEM 943.7 -36.79 254.9 38.14
3D Shell / MITC4S 944.7 -37.66 251.7 38.13

Table 2. Summary of numerical results
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[4] B. A. Szabó et al. “The problem of verification with reference to the Girkmann problem”.
In: Engineering with Computers 26 (2009), pp. 171–183.

[5] A. H. Niemi et al. “Finite element analysis of the Girkmann problem using the modern hp-
version and the classical h-version”. In: Engineering with Computers 28 (2012), pp. 123–
134.
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Summary. We propose new locking-free finite element methods for Biot’s consolidation model by cou-
pling nonconforming and mixed finite elements. We show a priori error estimates of semidiscrete and fully
discrete solutions. The main advantage of our method is that a uniform-in-time pressure error estimate
is provided with an analytic proof. In our error analysis, we do not use Grönwall’s inequality, so the
exponentially growing factors in time do not appear in the error bounds.

Key words: Biot’s consolidation model, nonconforming finite elements, poroelasticity, locking-free

Introduction

Biot’s consolidation model describes deformation of saturated elastic porous media and viscous
fluid flow in the porous media, simultaneously. In studies of numerical solutions for Biot’s model
with continuous Galerkin finite elements, nonphysical pressure oscillations of numerical solutions
are observed [1, 2, 3]. This nonphysical pressure oscillation phenomenon is called poroelasticity
locking and various numerical methods have been suggested to resolve it [4, 7, 5]. Most of
these numerical methods use nonconforming elements or discontinuous Galerkin methods with
stabilization techniques. Although some numerical results of the methods illustrate that they
are locking-free, the complete a priori error analysis is achieved with the assumption that the
constrained specific storage coefficient, denoted by c0, is uniformly positive. However, in a
heuristic analysis [12] the locking phenomena occur when c0 is vanishing or very close to 0, so
the analysis is not enough to guarantee that the methods are locking-free.

In our work we propose a new locking-free finite element scheme for Biot’s consolida-
tion model. In our numerical scheme we obtain an a priori error estimate of the pressure in
L∞([0, T ];L2) norm without assuming uniformly positive c0, so the error analysis confirms that
our method is locking–free.

Biot’s consolidation model

Consider a bounded domain Ω ⊂ Rn, n = 2, 3, with piecewise smooth boundary. We use u, p,
f , g to denote the displacement of porous media, fluid pressure, body force, source/sink density
function of fluid, respectively. The governing equations of quasistatic Biot’s consolidation model
are

− div Cϵ(u) + α∇p = f , (1)

c0ṗ+ α div u̇− div(κ
�
∇p) = g, (2)
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in which C, c0 ≥ 0, κ
�
, α > 0 denote the elastic stiffness tensor, the constrained specific storage

coefficient, the hydraulic conductivity tensor which is positive definite, and the Biot–Willis
constant, respectively. Here ṗ, u̇ stand for the time derivatives of p, u.

To define boundary conditions we consider two partitions of ∂Ω,

∂Ω = Γp ∪ Γf , ∂Ω = Γd ∪ Γt,

and assume that Γd is of positive measure. We assume that boundary conditions are

p = 0 on Γp, −κ
�
∇p · n = 0 on Γf , u = 0 on Γd, σ

�
n = 0 on Γt, (3)

for all time, where n is the outward unit normal vector field on ∂Ω and σ
�
:= Cϵ(u) +αpI is the

Cauchy stress tensor. We also assume that the initial data of u, p and f satisfy the compatibility
condition (1).

Variational formulation

For simplicity we set α = 1 and κ
�
is the identity tensor. By introducing a new unknown z := ∇p

in (1) and (2), we have a new system

− div Cϵ(u) +∇p = f , (4)

z −∇p = 0, (5)

c0ṗ+ div u̇− div z = g. (6)

Defining

Σ = {u ∈ H1(Ω;Rn) |u|Γd
= 0},

V = {z ∈ H(div,Ω) | z · n|Γt = 0},
W = L2(Ω),

the variational formulation of (4)-(6) is to seek (u, z, p) ∈ Σ× V ×W such that

a(u,v)− (p, div v) = (f ,v), v ∈ Σ, (7)

(z,w) + (p, divw) = 0, w ∈ V, (8)

(c0ṗ, q) + (div u̇, q)− (div z, q) = (g, q), q ∈ W, (9)

in which a(u,v) = (Cϵ(u), ϵ(v)).

Finite element spaces

We assume that our triangular mesh is shape regular. The finite element space Vh ⊂ V the
lowest order Raviart–Thomas element and Wh ⊂ W is the piecewise constant element. For Σh

we use vector-valued nonconforming H1 finite elements, say Mardal–Tai–Winther type elements,
which are originally developed for Stokes–Darcy flow problems [8, 9]. The discrete H1 norm for
Σh is defined by

�v�21,h =
�

T∈Th
�∇u�20,T +

�

E∈Eh

1

hE
�[[u]]�20,E , (10)

in which Th, Eh are the set of triagnles/tetrahedra and the set of edges/faces, respectively. Here,
if E ⊂ ∂Ω, then the jump [[u]] on E means the trace of u.

The Mardal–Tai–Winther type elements satisfy a discrete Korn’s inequality, and the pair
(Σh,Wh) satisfies the inf-sup condition with the above discrete H1 norm and the L2 norm. It
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turns out that these features are very useful to develop robust numerical schemes for Biot’s
consolidation model.

Rectangular Martal–Tai–Winther type elements [5] and higher order triangular Mardal–
Tai–Winther type elements [10] are developed. Therefore our approach can be extended to
rectangular meshes and triangular meshes with higher order elements.

Differential algebraic equations and compatibility conditions

The semidiscrete problem corresponding to the system (7)-(9), is not a system of ordinary
differential equations, so existence and uniqueness of its solutions should be treated carefully.
In particular, the algebraic equations (7) and (8) give a compatibility condition on initial data.
We say that numerical initial data is compatible if it satisfies the compatibility conditions given
by the corresponding discrete equations of (7) and (8). We prove that the semidiscrete problem
of (7)-(9) has a unique solution if its initial data is compatible.

The compatibility of numerical initial data is also important for robustness of time dis-
cretization schemes. If the initial data of differential algebraic equation is not compatible, then
the Crank–Nicolson scheme, which is absolutely stable, may give a spurious numerical solution
because numerical solutions do not satisfy the algebraic equations in all time steps. To avoid
this problem, we show that we can always find a compatible numerical initial data which is close
to the original initial data.

Semidiscrete and fully discrete error estimates

We use �u�L∞([0,T ];H1
h)

to denote the standard space-time norm with the discrete H1 norm in

(10). Let (u, z, p) and (uh, zh, ph) be the exact and semidiscrete solutions. If the exact solution
is sufficient regular, then we have

�u− uh�L∞([0,T ];H1
h)

+ �z − zh�L2([0,T ];L2) + �p− ph�L∞([0,T ];L2) = O(h).

In our error analysis, to avoid Grönwall’s inequality, we adapt the energy estimates of linear
evolutionary partial differential equations to our differential algebraic equation.

For the fully discrete solutions we use the Crank–Nicolson scheme with time step Δt. Let N
be the last time step. Defining tj = jΔt for integer 0 ≤ j ≤ N and denoting the fully discrete
solution at j-th time step by (U j ,Zj , P j), we have

sup
0≤j≤N

�u(tj)−U j�1,h +
�

0≤j≤N

�z(tj)−Zj�20 + sup
0≤j≤N

�p(tj)− P j�0 = O(h+ (Δt)2).

In the error analysis of fully discrete solutions there is an additional technical difficulty arising
from time discretization. It is mainly due to the fact that the c0-weighted L2 norm of p is not an
upper bound of �p�0 because c0 is not uniformly positive. We are able to handle this problem
in the help of the inf-sup condition of (Σh,Wh) and the error estimate of u.
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Summary. A simple numerical test for two low-order standard Lagrange type elements for the polar-
continuum model in 3-D is performed.
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Introduction

The ordinary Cauchy continuum model cannot describe effects originating from the microstruc-
ture of a material, such as the size-effect. After the first trials by Woldemar Voigt [14] and the
brothers Eugene and Francois Cosserat [2] for generalizing the Cauchy continuum model, it took
more than a half century for growing interest to the generalized continuum models [1, 5, 9, 6, 13].

Micropolar continuum

Equilibrium equations

For the micropolar continuum the following local forms of the equilibrium equations can be
obtained

∂σji
∂xj

+ ρbi = 0, (1)

∂µji

∂xj
+ ρci + ϵijkσjk = 0, (2)

where σ and µ stand for force- and moment stress tensors, b, c are the body force and moment
per unit mass, respectively. In general, the force stress and moment stress tensors are not
symmetric. The alternating tensor is denoted as ϵijk and ρ is the mass density.

Constitutive equations

For centrosymmetric material the linear constitutive equations for the force-stress σij and the
couple-stress µij can be written as [3, 12, 10]

σij = C
(γ)
ijklγkl, µij = C

(κ)
ijklκkl, (3)

where the Cosserat’s first strain tensor γij and microcurvature tensor κij are defined as

γij = uj,i − ϵkijϕk, and κij = ϕj,i, (4)
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in which ϕ is the independent microrotation field. The material stiffness tensors for an isotropic
solid can be expressed as

C
(γ)
ijkl = λδijδkl + µ(δikδjl + δilδjk) + µc(δikδjl − δilδjk), (5)

C
(κ)
ijkl = αδijδkl + β(δikδjl + δilδjk) + γ(δikδjl − δilδjk). (6)

In addition to the classical Lamé constants λ, µ, there are four additional material parame-
ters: µc,α,β and γ. However, a more comprehensible set of constants are the Young’s modulus
E = µ(3λ+ 2µ)/(λ+ µ), the shear modulus µ, and [8, 10, 11]

the characteristic length in torsion ℓt =

�
β

µ
, (7)

the characteristic length in bending ℓb =

�
β + γ

4µ
, (8)

the coupling number N =

�
µc

µ+ µc
, (9)

and the polar ratio ψ =
β

β + 1
2α

. (10)

The allowed range for the dimensionless parameters N and ψ are

0 ≤ N ≤ 1, and 0 ≤ ψ ≤ 3

2
, (11)

Determination of the four additional constants is a major problem for practical applications.
Neff et al. [10, 11] have inroduced so called conformally invariant curvature state, which reduces
the number of additional material parameters to two and which also facilitates a stable estimation
of them. For conformally invariant curvature state, the curvature tensor is purely deviatoric and
symmetric, thus

γ = 0, β = µℓ2t , α = −2
3µℓ

2
t . (12)

The conformally invariant curvature state corresponds thus to the upper limit of the polar ratio,
i.e. ψ = 3

2 . Notice that in this case ℓb = 1
2ℓt. It also results in a non-sigular behaviour

of stiffening in torsion and bending, see Figure 1, where the stiffening effect in pure bending
of a straight beam with circular cross-section is shown. The singular behaviour of the non-
conformally invariant curvature state is clearly seen. The analytical solution in given in [7].

Numerical solution

The virtual work expression for the polar continua can be written as

�

V

��
−∇ · σT − ρb

�
· δu +

�
−∇ · µT − � : σ − ρc

�
· δφ
�
dV = 0. (13)

After integration by parts and utilizing the divergence theorem, it transforms into the form
suitable for finite element approximation

�

V

�
σ :
�
(∇δu)T − skew(δϕ)

�
+ µ : (∇δϕ)T

�
dV −

�

S
(t · δu +m · δϕ) dS = 0. (14)

As an example a straight beam with square cross-section is solved with both 27-node tri-
quadratic and 8-node trilinear standard C0-elements. The beam is divided in ten equal elements
and loading is a uniform traction in the vertical direction at the free end of the beam. The
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Figure 1. (a) Ratio of bending rigidity of the polar continuum versus standard Cauchy’s continuum
model Ωb as a function of the radius a of the beam’s cross-section with different values of the coupling
modulus µc; from bottom to top µc/µ = 0.01, 0.02, 0.03, . . . , 0.09, 0.1. Conformally invariant curvature
case (β = 4µℓ2b, γ = 0) shown by solid lines and the case with parameters γ = 0.01β indicated by dashed
lines. (b) Limit value of Ωb when a → 0 as a function of the coupling modulus µc for the conformally
invariant curvature state.
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Figure 2. (a) The effect of the coupling modulus µc to the tip displacement of the cantilever beam. The
reference value is the tip deflection according to the Euler-Bernoulli beam model: vref = FL3/3EI. The
material length in bending is ℓb = h/200, where h is the cross-section height. The upper two curves
correspond to solutions with triquadratic elements and the lower ones with trilinear elements. Solid lines
indicate solutions where the rotations are free at the clamped edge and the dashed line where they are
supressed. (b) The effect of internal length scale ℓb on the FE solution: µc = µ.
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length to height ratio of the beam is L/h = 10. Two different types of boundary conditions are
computed; both the rotations and displacements are supressed at the clamped edge or only the
displacements are supressed. Only conformally invariant curvature state is considered.

It is clearly seen from the Figure 2(a) that the trilinear elements lock also earlier as expected
from standard continuum in the limit µc → ∞. The behaviour of the quadratic element is also
peculiar for the fully clamped case, Figure 2(b). However, it should be noted that the analytical
solution is unknwon for this case.
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Summary. A shell element which can account for multiple internal delaminations is presented. The
shell kinematics is enriched based on the eXtended Finite Element Method (XFEM) and the element is
verified against numerical tests.

The oral presentation will include three numerical examples and the kinematics will be explained in
greater detail.

Key words: multiple delaminations, XFEM, shell theory

Introduction

There is an ever increasing interest in utilising Fiber Reinforced Polymers (FRP) in the auto-
motive industry, especially for structural components. This calls for computational tools which
can be used for the evaluation of crashworthiness. One key point is the need for computational
efficiency as the models are generally very complex. Furthermore, there is a multitude of fail-
ure mechanisms which may be triggered in a layered composite, during impact or crash, with
multiple delaminations being one of the primary mechanisms.

It is therefore of high importance to be able to model delaminations in a computationally
efficient manner, especially for a large number of laminae. In fact, to be able to simulate the pro-
gressive failure of FRP components is a necessity for such components to be competitive within
the automotive industry, as e.g. stated in the ERTRAC Research and Innovation Roadmap for
Safe Road Transport [1].

In view of this, this work is a first step towards developing a computationally efficient shell
element which can account for multiple (interlaminar) delaminations. Such an element may be
constructed by enriching a suitable shell element with discontinuous shape functions in accor-
dance with the XFEM, cf. [2] for a similar approach. Note that the present approach is similar
to a layerwise model where displacements jumps are hierarchically added to the displacements
field, cf. e.g. [3].

Continuous shell kinematics

To set the stage, we first briefly describe the underlying shell kinematics for a non-delaminated
shell, which in the subsequent section then will be extended to allow for arbitrarily many de-
laminations.
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Figure 1: Mappings of shell model defining undeformed and deformed shell configurations rela-
tive to inertial Cartesian frame.

Initial shell geometry and convected coordinates

As a staring point, the initial configuration B0 of the shell is considered parameterised in terms
of convected (covariant) coordinates (ξ1, ξ2, ξ) as

B0 =
�
X := Φ(ξ) = Φ̄(ξ̄) + ξM(ξ̄)

with ξ̄ ∈ A and ξ ∈ h0
2 [−1, 1]

�
(1)

where we introduced the contracted notation ξ = (ξ1, ξ2, ξ) and ξ̄ = (ξ1, ξ2) and where the
mappingΦ(ξ) maps the inertial Cartesian frame into the undeformed configuration, cf. Figure 1.
Furthermore, A is the midsurface of the inertial configuration. In Eq. (1), the mapping Φ is
defined by the midsurface placement Φ̄ and the outward unit normal vector field M (with
|M | = 1). The coordinate ξ is associated with this direction and h0 is the initial thickness of
the shell.

Current shell geometry

The current (deformed) geometry is in the present formulation described by the time dependent
deformation map ϕ(ξ, t) ∈ B of the inertial Cartesian frame as

x(ξ, t) = ϕ̄(ξ̄, t) + ξm(ξ̄, t) +
1

2
ξ2γ(ξ̄, t)m(ξ̄, t) (2)

where the mapping is defined by the midsurface placement ϕ̄, the spatial director field m
and an additional scalar thickness inhomogeneity strain γ, cf. Figure 1. As it can be seen,
the specification of the current configuration corresponds to a second order Taylor expansion
along the director field, involving the inhomogeneity strain γ, thereby describing inhomogeneous
thickness deformation effects of the shell. In particular, the pathological Poisson locking effect
is avoided in this fashion.

XFEM extension for multiple delaminations

As stated above, the primary focus of the current work is to develop a shell element formulation
able to represent arbitrarily many delaminations within one element. Consequently, the above
basic shell kinematics need to be extended to allow for displacement and director discontinuities
across each delamination interface. For this purpose, we propose herein a kinematical extension
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Figure 2: Illustration of a laminate subject to multiple delaminations.

in line with the XFEM (or partition of unity concept) such that the deformation map into the
spatial deformed configuration is subdivided into one continuous and one discontinuous part as

x(ξ, t) = ϕc(ξ, t) +ϕd(ξ, t) (3)

where the continuous part takes on the same form as the underlying non-delaminated shell
element

ϕc(ξ, t) = ϕ̄c(ξ̄, t) + ξmc(ξ̄, t) +
1

2
ξ2γ(ξ̄, t)mc(ξ̄, t) (4)

As for the discontinuous part, it is considered as a sum of enrichments – one for each delamination
– according to the XFEM, however restricted only to discontinuous enrichment of the midsurface
placement and the director field. Hence, in the case of Ndel delaminations through the thickness,
the discontinuous part takes on the following form

ϕd(ξ) =

Ndel�

k=1

HS (Sk(X, t))
�
ϕ̄d

k(ξ̄, t) + ξmd
k(ξ̄, t)

�
= HSk

�
ϕ̄d

k + ξmd
k

�
(sum over k) (5)

In Eq. (5), HS(Sk(X)) = HSk
is introduced as the standard Heaviside function pertaining to the

particular delamination surface ΓSk
. Furthermore, Sk is an associated level set function defining

the position ξ̄k (in thickness direction) of this surface.

Numerical example

To illustrate the proposed kinematics, a numerical example is presented below. This example
concerns simulation of the common double cantilever beam (DCB) test with the purpose of
validating the kinematics of the element under progressive delamination.

The problem consists of a beam, composed of two laminae, which has an initial crack (de-
lamination zone) of length a = 3 mm, see Figure 3 for a description. The length of the beam is
L = 200 mm, has a height of h = 3 mm and a width of w = 15 mm.

Since this example focus on the growth of a single delamination, only one set of discontinuous
dofs {x̄d

1 , m
d
1} needs to be added to the solution field of the nodes within the delamination zone

ΓS
k . In order to model the progressive growth of the delamination a bilinear cohesive zone, is

inserted between the two laminae. The fracture energy associated with mode I loading of the
cohesive zone is set to GIc = 400 N/m in this example.
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Figure 4: Reaction force for DCB simulation with cohesive zone.

The beam is modelled using 384 quadratic triangular elements with an increased mesh density
in the region close to the delamination front. The free ends of the beam are subjected to
prescribed displacements in the vertical direction with a magnitude p and the resulting reaction
force R is registered. In Figure 4, the reaction forces corresponding to three values of the
interface strength (of the cohesive zone) σfn = {15, 30, 45} MPa are shown. Also, a reference
solution obtained from Euler-Bernoulli beam theory is indicated. As can be seen from the
figure, the load–reaction curves correspond rather well with beam theory, more so during the
delamination phase. It can thus be concluded that the proposed shell element is capable of an
accurate representation of progressive delamination.
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Summary. We present a locally quadratically convergent optimization algorithm for solving topology
optimization problems. The distinguishing feature of the algorithm is to treat the design as a smooth
function of the state and not vice versa as in the traditional nested approach to topology optimization,
which we achieve by inverting a part of perturbed optimality conditions for the problem. In this way, the
computational bottleneck is conveniently shifted from evaluating the merit function to a direction finding
subproblem. The latter involves solving certain linearized PDEs, and the computational effort is similar
to that of finding a gradient of the merit function in the traditional nested approach. We illustrate the
performance of the algorithm on benchmark topology optimization problems in fluid mechanics.

Key words: topology optimization, variational discretization, Newton’s algorithm

Introduction

Topology optimization has matured enormously in the past quarter of a century, and has been
successfully adapted by a variety of industries, most notably automobile and aerospace. Further-
more, recent advances in manufacturing technologies have made it possible to directly fabricate
the designs computed by the optimization algorithm. Coupled with the improvements in com-
puting methodology and computer hardware, these enable topology optimization to be used
not only at conceptual and preliminary, but also at final design stages. The latter usage puts
considerable requirements on the accuracy of the designs computed using this approach.

On the one hand, the classes of mathematical programming algorithms capable of produc-
ing highly accurate solutions in a reasonable number of iterations, that is, those exhibiting
local superlinear or quadratic convergence, in the nutshell are based on exact or approximate
Newton’s iteration for the system of optimality conditions for the problem under consideration.
Their global convergence is ensured by one of the several well established mechanisms, such as
linesearches, trust regions, and/or filters.

On the other hand, modern successful algorithms (that is, the ones requiring tens to hun-
dreds iterations/FEM evaluations to converge to solutions with moderate accuracy as opposed
to thousands to millions iterations needed by many non-derivative search based methods) for
topology optimization are often based on the first order approximations. For some methods
widely used in practice, their convergence is enforced using very simple heuristic devices, which
do not guarantee that the resulting limit points do in fact satisfy the optimality conditions.

There are, of course, very good reasons for this. The scarsity of methods utilizing the
exact second-order information in the typical formulations of high-fidelity topology optimization
problems is owing to the enormous number of optimization variables combined with the fact that
the elements of the Hessian are (a) expensive to compute and (b) impossible to store owing to
the fact that the matrix is fully populated. (One could of course try to resort to limited-
memory quasi-Newton methods, but they do not seem to perform favourably when compared
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with the best first order separable convex approximation algorithms.) The reluctance to rely
upon convergence-enforcing safeguards, such as linesearches, is owing to (c) the expensiveness of
function evaluations, which involves solving one or several, possibly non-linear, PDEs governing
the physical system under consideration.

In what follows we outline an alternative solution approach to topology optimization prob-
lems, which quite elegantly avoids the difficulties (a), (b), and (c). We then demonstrate its
behaviour on some benchmark problems in topology optimization of flow domains for viscous
incompressible flows.

The model problem, its variational discretization, and the solution algorithm

The model problem

We consider the classical problem of topology optimization applied to fluid mechanics, namely
the problem of finding the shape of a flow domain of a given volume, which minimizes the power
dissipation of a viscous fluid passing through it [1].

More precisely, we are given an open bounded polyhedral domain Ω ∈ Rd, d ∈ {2, 3} with
Lipschitz boundary ∂Ω, the flow velocity at the boundary u0 ∈ [H1/2(∂Ω)]d satisfying the
compatibility condition

∫
∂Ω n · u0 = 0, volumetric forces f ∈ [L2(Ω)]d, and a volume fraction

γ ∈]0, 1[. We introduce the convex set of admissible designs G = { ρ ∈ L∞(Ω) |
∫
Ω ρ =

γ|Ω|, and 0 ≤ ρ ≤ 1, a.e. in Ω } and the trial space of velocities V = {u ∈ [H1(Ω)]d : u |∂Ω =
u0 }. We will use a monotone convex function α : [0, 1] �→ [0, ᾱ] mapping designs to the inverse
permeability coefficient of Brinkmann equations, α(ρ) = ᾱq[(q + 1)/(ρ+ q)− 1], where ᾱ and q
are positive parameters. We will be interested in solving the following problem:

minimize
(u,ρ)∈V×G

J(u , ρ) =
1

2

�

Ω
gradu : gradu +

1

2

�

Ω
α(ρ)u · u −

�

Ω
f · u ,

subject to divu = 0.

(1)

It is well known that this problem admits solutions [1], which are unfortunately not unique
owing to the non-convexity of the penalization term 1

2

∫
Ω α(ρ)u · u .

The standard way of solving this problem, see for example [1], is to introduce the reduced
cost j(ρ) := minu J(u , ρ), where minimization is carried out over all solenoidal fields in V , and
then minimize j(ρ) over all admissible designs ρ ∈ G. This method suffers from the difficulties
(a), (b), (c) outlined above; indeed, every evaluation of j(ρ) involves solving a system of partial
differential equations, which constitutes the set of optimality conditions for minimizing J w.r.t.
u for a fixed ρ.

The barrier problem and its variational discretization

In the spirit of interior-point methods we introduce a small parameter µ > 0 and a perturbation
of the problem (1)

minimize
(u,ρ)∈V×L∞(Ω)

Jµ(u , ρ) = J(u , ρ)− µ

�

Ω
log[ρ(1− ρ)],

subject to divu = 0, and

�

Ω
ρ = γ|Ω|.

(2)

Let Lµ : V × L∞(Ω)× L2
0(Ω)× R → R,

Lµ(u , ρ, p,λ) = Jµ(u , ρ)−
�

Ω
p divu + λ

� �

Ω
ρ− γ|Ω|

�
, (3)

be the Lagrangian for the problem (2). We introduce the variational discretization of the prob-
lem (2) by considering a pair of finite-dimensional subspaces V h × Qh of V × L2

0(Ω) satisfying
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the LBB condition for the incompressibility constraint and then by studying the stationarity
of Lµ on V h × G × Qh × R. Note that we do not explicitly discretize the design space (which
is inspired by the variational discretization concept of [2]), but this does not prevent us from
solving the problem on a computer.

Indeed, for a given pair (uh,λh) ∈ V h × R, whenever we need the value of ρuh,λh(x ) at a

point x ∈ Ω where uh is continuous, we simply solve the following scalar non-linear equation:

∂L

∂ρ
(x ) =

1

2
α�(ρ(x ))uh(x ) · uh(x )− µ

ρ(x )
+

µ

1− ρ(x )
+ λh = 0. (4)

Note that the problems (4) are completely independent from each over for different values of
x and may be solved very efficiently in a parallel computing environment. In a computer
implementation of our algorithm the equation (4) is solved in each Gaussian quadrature point.

The Newton’s algorithm for the barrier problem

We initialize the solution (uh, ph) by solving the discretized Stokes problem for the given bound-
ary conditions and volumetric forces, and set λh = 100. At every iteration, we linearize the equa-
tions of stationarity of Lµ around the current approximation (uh, ρuh,λh , ph,λh). We eliminate
the equations concerning the stationarity w.r.t. ρ by taking the appropriate Schur complement.
(This does not destroy the sparsity of the left-hand side because the equations (4) are indepen-
dent from each other.) We solve the reduced system for a search direction (δuh, δph, δλh); this
requires solving a Brinkmann-like system of PDEs, and the computational effort is comparable
with one gradient evaluation in the standard nested approach to topology optimization. The
linesearch is then performed for the augmented Lagrangian merit function

φ(α) = Jµ(uα, ρα) + λα

� �

Ω
ρα − γ|Ω|

�
+

ν

2

� �

Ω
ρα − γ|Ω|

�2
, (5)

where (uα, ρα,λα) = (uh+αδuh, ρuh+αδuh,λh+αδλh ,λh+αδλh), and ν > 0 is a penalty parameter.
After a step-length satisfying the Wolfe’s conditions has been found, we update the current
approximation. Should the search direction fail to be a descent direction for the merit function,
we perturb the Hessian so that it is positive definite on the null space of the linearized constraints
and recompute the search direction. If necessary, we also increase ν.

Numerical experiments

We test the numerical performance of our algorithm on the benchmark problems described
in [1]. In all problems, the computational domain Ω is either a unit square or a rectangle;
µ = 10−3, ᾱ = 2.5 · 104, q = 0.1. We use a heuristic non-monotone strategy for updating ν,
which is basically kept at a value slightly above the current estimate of the Lagrange multipliers
at the beginning of every step. We test the method on both structured (S, in which case
we report the number of subdivisions of the shorter side of the rectangle) and quasi-uniform
unstructured (U, in which case we report the largest diameter of the element) conforming meshes
of triangles in our experiments. We also use well-known LBB-stable pairs of elements for the
spaces V h × Qh, namely “mini”, Taylor–Hood (TH), and non-conforming Crouzeix–Raviart
(CR). For the design discretization, we use Gaussian quadrature exact for polynomials of order
3 for CR elements, and of order 7 for “mini” and TH elements. We terminate the algorithm when
either �δuh�[H1(Ω)]d/�uh�[H1(Ω)]d < 10−10, or when the directional derivative of Jµ is smaller

than 10−12. In all cases we observe local superlinear convergence predicted by the theory. The
method is implemented mostly in Python using FEniCS tools [3].

The results are summarized in Table 1, where we also compare them with the traditional
nested algorithm, stopped after a much more relaxed criterion of function values changing less
than 10−5 as reported in [1].
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Table 1. Numerical performance of the method. Problem names are taken from [1], “rugby (0.8)” refers
to “rugby ball” problem with a volume fraction γ = 0.8. Dbl. pipe (S) and (L) refer to the “double
pipes” problem with the domain length of 1.0 and 1.5, respectively. Discretizations are reported as S/U
(structured or unstructured) X is the size of mesh (number of elements along one axis for structured
meshes/diameter of the larges element for unstructured) “element” (finite element family). J∗

µ is the
optimal value and #it is the number of optimization iterations.

Problem → Diffuser Pipe bend Rugby (0.8) Dbl. pipe (S) Dbl. pipe (L)
Discretization ↓ J∗

µ #it J∗
µ #it J∗

µ #it J∗
µ #it J∗

µ #it

S50 [1] 30.59 29 10.01 64
S100 [1] 30.46 33 9.76 85 31.75 47 25.67 61 27.64 236

S100CR 30.27 14 9.37 33 31.31 13 21.00 28 22.87 28
S100TH 30.44 14 9.56 34 31.43 14 21.71 33 23.65 29
S100Mini 30.53 13 9.72 32 31.55 12 22.03 26 24.02 32
S200Mini 30.47 14 9.66 33 31.46 12 21.93 29 23.90 30
U0.01Mini 30.50 14 9.65 34 31.47 12 21.93 30 23.90 28

Conclusions and extensions

Our numerical experiments suggest that (i) the number of algorithmic iterations is virtually
independent from the utilized mesh and finite element discretization; (ii) our algorithm out-
performs the standard nested approach on this suite of problems at least by a factor of two in
terms of the number of iterations, which is very promising if this can be extrapolated to other
problems.

The fast local convergence of the algorithm may of course be utilized for the path-following
applications, such as for example solving a sequence of problems with (ᾱ−1, q−1, µ) → (0, 0, 0).
We have successfully tested this approach also in connection with adaptive refinement based on
the PDE-form of the problem’s optimality conditions (i.e., also following the parameter h → 0).
Finally, and perhaps even more importantly, the algorithm trivially extends to power minimiza-
tion of non-Newtonian fluids while maintaining the same step complexity, thus providing a very
efficient way of solving these optimization problems constrained with non-linear PDEs.
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Summary. This paper introduces novel boundary conditions for computational homogenization with
application to the linear Poisson problem. The novel boundary conditions pertain to generalized Dirichlet
and Neumann type boundary conditions and can be used to obtain upper and lower bounds on the effective
(up-scaled) coefficients.
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Introduction

This contribution concerns the issue of determining effective properties for (micro)heterogenous
random media. Typical applications include the determination of effective mechanical properties
for elastic composites or effective heat conductivity in bi-phasic media.

Adopting so-called first order homogenization of random media, the randomness of the un-
derlying subscale vanishes on the macroscale due to the separation of scales assumption. More
specifically, the effective properties on the macroscale are defined by the response of an infinite-
sized Representative Volume Element (RVE) inside which all imposed macroscale variables vary
smoothly. In practice, using numerical simulations, one has to restrict to sampling of finite sized
Statistical Volume Elements (SVEs). Using virtual testing, it is well known that the effective
properties can be bounded from above and below by the classical assumptions of Dirichlet and
Neumann boundary conditions, see e.g. [1, 2]. Furthermore, by adopting periodic boundary
conditions, accurate estimates of the effective properties can be obtained. However, for the
latter, no control of the quality exists.

When considering problems with increasing contrast of the properties of the phases, the
classical bounds mentioned above deteriorate. The limit case of infinite contrast, corresponding
to a problem on a ”perforated” domain, the classical conditions may be impossible to apply.

In this contribution, we shall present a novel approach to construct alternative bounds for
virtual testing of random media with large-contrast constituent properties. The new bounds arise
from generalizations of the classic assumptions pertinent to Dirichlet and Neumann boundary
conditions, in that the solution (or flux) is restricted on each SVE boundary. The extension
follows from adopting different strategies for determining the appropriate shape of such restricted
boundary fields.

Model problem and homogenization

We consider the linear Poisson problem of determining u(x ) satisfying

Div q = b, (1)

q = −k(x )Gradu, (2)
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where k(x ) is the realization of a random field.
Assuming separation of scales, we may consider the effective problem on a macroscale as

Div q̄ = b̄, (3)

q̄ = −k̄ ·Grad ū, (4)

where k̄ is the up-scaled (homogenized) effective coefficient tensor and b̄ is the effective load
(not discussed further here).

The problem we consider is now how to compute k̄ for known random process generating
k(x ). More general, we may seek the effective relation q̄(ḡ) for a non-linear problem, expressed
in terms of the macroscale gradient ḡ := Grad ū.

Virtual testing denotes the procedure of studying a number of realizations of k(x ) on finite
sized SVEs Ω�. Solving equations 1,2 on Ω� for b = 0 together with suitable boundary conditions
defines the effective response of the SVE realization, q̄�(ḡ).

Generalized boundary conditions

The generalized Dirichlet boundary conditions can be stated as follows:

u = ḡ · [x +ψ] on ∂Ω�, (5)

for known effective gradient ḡ , where ψ is a pre-computed fluctuation on each natural subdivision
of the boundary. Here, ψ is constructed such that the average gradient of u inside Ω� is
guaranteed to be ḡ . In practice, ψ is computed from a boundary value problem defined on the
boundary, in order to approximate a suitable fluctuation corresponding to a constant flux along
the boundary. Setting ψ = 0 returns the classical Dirichlet conditions.

The generalized Neumann boundary conditions, on the other hand, can be stated as follows:

qn := q · n = q̄ · [φn ] on ∂Ω�, (6)

for known effective flux, q̄ , where φ is a pre-computed fluctuation on each natural subdivision
of the boundary. Here, the fluctuation φ is required to satisfy that the average of the flux
q inside Ω� is exactly q̄ . In order to compute a suitable fluctuation, φ is computed locally
corresponding to a uniform gradient across the boundary. Setting φ = 1 returns the classical
Neumann conditions.

It can be shown that, under mild restrictions, any choice of ψ and φ based on pointwise local
information, i.e. coefficient k(x ), renders statistical bounds on the effective properties.

Numerical examples

A few numerical examples for the Poisson problem in 2D will be presented at the conference,
illustrating the behavior of the proposed method.
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Summary. In momentum-based time integration methods, the internal forces appear naturally as an
approximate representation of the time integral of the internal forces over the integration interval. It is
highly desirable that this force integral also represents the increment of the internal energy. A simple
global form of the effective internal force is presented, in which it is represented by its algebraic mean
value plus a higher order term in the form of the product of the increment of the tangent stiffness matrix
at the interval end-points and the corresponding displacement increment. This explicit representation is
of fourth order, and leads to the exact energy increment for systems with quartic internal energy function.
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Introduction

Traditionally, time integration algorithms in structural dynamics have been based on increments
over the time integration interval h = Δt and various weighted mean values, typically in the
two-parameter format developed by Newmark [1], or in the extended α-modifications of the
basic format, see e.g. [2]. These algorithms were initially formulated for linear problems, and
their properties characterized by spectral analysis. In the case of non-linear problems the basic
collocation format, in which the state variable increments are expressed in terms of averages of
forces corresponding to specific times tn, suffers from the basic weakness that the corresponding
energy increment over the time interval can not be expressed in this format. Thus, the collocation
format intrinsically breaks with the property of energy conservation for non-linear problems.

About two decades ago an alternative approach to time integration algorithms in dynamics
was developed based on representing the time integral of the state-space equations of motion.
The original development by Simo and co-workers [3] was based on the observation that in
linear elasticity with Green strains the effective internal force over a time increment can be
represented via the product of the mean value of the strain gradient and the mean value of
the stress. The procedure was later generalized to non-linear elasticity by Gonzalez [4], using
a stiffness representation similar to that of the classic BFGS method. These methods provide
momentum and energy balance within a second-order time accurate scheme. However, the
format has the drawback that the internal force is formed in terms of a product of averages
at the element level, and therefore requires reformulation of traditional element procedures, in
which the internal force is formed for a particular state associated with the discrete points tn
used in the time integration algorithm. It was later shown by Krenk [5, 6] that in the case of
linear elasticity with Green strains energy conservation could be attained by supplementing the
mean value of the internal forces with an additional stiffness term formed by the increment of
the geometric stiffness matrix. This term can be formed at the global level, and thus permits
inclusion as a simple modification of existing finite element codes.
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The present paper develops a fourth-order representation of the internal force in terms of
values of the internal force and the tangent stiffness matrix at the integration interval end-points
at tn and tn+1. The result is based on Taylor series expansions, and therefore does not require
any special format of the internal energy. For energy functions that are up to quartic in the
displacement components the energy is conserved exactly, and otherwise to the fourth order.

Momentum based state-space equations

Consider a mechanical system, described in terms of displacements contained in the column
vector u. The internal forces are assumed to be given in terms of the potential G(u) in the form

g(u) = ∇uG(u) (1)

where ∇u denotes the derivatives with respect to the displacement components of u. For
convenience the resulting components are defined to be in column format. The mass matrix M
is assumed to be constant, as e.g. for models using isoparametric elements. The corresponding
equation of motion is

Mü(t) +Cu̇(t) + g(u) = f(t) (2)

where f(t) is the load vector, and C is a matrix representing linear viscous damping.
It is convenient to introduce the velocity v = u̇ and work in terms of the state-space variables

[uT ,vT ]. The equation of motion can then be expressed by the following symmetric set of first-
order differential equations,

�
C M

M 0

��
u̇

v̇

�
+

�
g(u)

−Mv

�
=

�
f(t)

0

�
(3)

The key step in momentum based integration methods is the use of a time integrated form of
these equations, here expressed as

�
C M

M 0

��
Δu

Δv

�
+ h

�
g∗

−Mv̄

�
= h

�
f̄

0

�
(4)

where g∗ � h−1
∫
g dt and the time mean values of v and f are represented by their algebraic

mean.
The important point now is to identify a suitable definition of the representative mean value

g∗, such that it also satisfies the energy increment relation

ΔG = ΔuT∇uG∗ = ΔuTg∗ (5)

In [3] and [4] this problem was solved for a linear/non-linear elastic body via properties in the
mean state at tn+1/2, while [5] obtained an explicit expression in terms of the increment of the
geometric stiffness for a linear elastic body with Green strains. In the following section a general
expression for g∗ of order four is obtained for a general potential function G(u) in terms of the
increment of the full stiffness matrix.

Representation of the internal force

The present representation of g∗ is obtained from a suitably modified form of the Taylor expan-
sion of the potential G(u). For this purpose the displacement increment is parameterized over
the time interval [tn, tn+1] as

u = un+1/2 + ξΔu (6)
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This gives the following expression for the energy increment

ΔG =

� n+1

n
g(u)T du = ΔuT

� 1/2

−1/2
g(un+1/2 + ξΔu) dξ (7)

The internal force is now expanded in terms of ξ as

g(u) = g(un+1/2) + ξg�(un+1/2) + 1
2ξ

2g��(un+1/2) + · · · (8)

When substituting this expansion into the integral in (7) it is seen that only the even powers of
ξ contribute, and when including only the first two contributing terms

ΔG = ΔuT
�
g(un+1/2) + 1

24g
��(un+1/2) + O(h4)

�
(9)

where it has been used thatΔu is of order h, and that each derivative with respect to ξ introduces
a factor Δu of order h. The terms inside the square brackets define the effective internal force
as

g∗ = g(un+1/2) + 1
24g

��(un+1/2) + O(h4) (10)

The first term in this representation is evaluated in the mean displacement state un+1/2. This
would be a serious drawback, and this term is therefore reformulated by use of the Taylor
expansion (8) to express the algebraic mean of the internal force,

1
2 [gn+1 + gn ] = g(un+1/2) + 1

8g
��(un+1/2) + O(h4) (11)

When this relation is used to eliminate gn+1/2 in (10) the effective force is expressed as

g∗ = 1
2 [gn+1 + gn ] − 1

12g
��(un+1/2) + O(h4) (12)

The final task now is to obtain a representation of the second term without explicit reference to
the mean state un+1/2.

The second term is expressed in terms of the increment of the tangent stiffness, ΔK. In
order to obtain this expression the first derivative of the internal force with respect to the
non-dimensional parameter ξ is expressed as

g�(u) =
dg

du
Δu = K(u)Δu (13)

In the present formulation the displacement increment Δu is fixed, and the second derivative of
the internal force with respect to the non-dimensional parameter ξ therefore follows as

g��(u) =
dK

dξ
Δu � ΔK

Δξ
Δu = ΔKΔu (14)

Substitution of this representation into the expansion (12) then gives the final form

g∗ = 1
2

�
gn+1 + gn

�
− 1

12ΔKΔu + O(h4) (15)

In this form the effective internal force is expressed to fourth order entirely by the internal force
and the stiffness matrix at the integration interval end-points. The form of this representation
is similar to that obtained in [5] for the special case of linear easticity in terms of the Green
strain, where the second term was given in terms of the increment of the geometric stiffness as
−1

4ΔKg Δu. However, the present result dos not require any special form of the energy function,
and no separation of the stiffness matrix is involved.
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Fourth-order conservation algorithm

The discretized form (4) of the equations of motion is now expressed by use of the fourth-order
representation (15) of the internal force, whereby

�
C− 1

12hΔK M

M 0

��
Δu

Δv

�
+

h

2

�
g(un+1) + g(un)

−Mvn+1 −Mvn

�
= h

�
f̄

0

�
(16)

The viscous damping in terms of C can be replaced or supplemented by an algorithmic damping
by inserting additional terms in the diagonal of the first block matrix, following the procedure
in [6].

In the solution procedure the the velocity vn+1 is eliminated in the first equation by use of
the second, and a non-linear equation is obtained in un+1. Subsequently, the velocity vn+1 is
obtained from the second equation, using the now known value of un+1.

The present conservative time integration procedure with fourth-order stiffness representa-
tion is illustrated by some simple examples, demonstrating the improved time representation
in the solution, as well as the use in problems with internal energy representation that is not
directly of fourth degree in the displacements.
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Summary. In this work the first order fast sweeping method of J. Qian at el. [SINUM, 45(1):83–107,200]
for solving the Eikonal equation on unstructured triangular meshes is recast into an optimization problem.
We show that the new formulation is equivalent with the old one and present how it can be used to derive
a second order method. Furthermore, we present a new local geometrical solver that is potentially cheaper
and applicable to higher order finite elements.
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Motivation

A popular choice for modeling the evolution of an interface separating two phases is the level-set
method, where the interface γ ∈ Rn−1 represents a zero contour of function φ : (Ω× R) �→ Rn,
Ω being domain of interest in R2 or R3. The level-set function can be chosen arbitrarily, but
a popular choice is to make it a signed distance function. If u is the velocity at the interface,
then the evolution of φ is governed by

∂φ

∂t
+ u ·∇φ = 0. (1)

Common finite elemet methods for solving (1) are Streamline-Upwind/Petrov-Galerkin(SUPG)
and discontinuous Galerkin(DG). Regardless of the approach, the signed distance property of
the level-set function is gradually lost during the computation unless the function is reinitialized.

An alternative to the interface capturing level-set methods are the front tracking methods.
One such front tracking method is proposed in [2], where γ is seeded with particles and ordinary
differential equations for the evolution of a particle’s position x 0, normal vector n and curvature
tensor ∇n are derived from (1). Solving this system or equations for all particles, one obtains
rich information about the interface that can be used to set the level-set values in the nodes of
a Eulerian mesh. For cells containing particles, the value at node x is computed from a Taylor
expansion

φ(x ) = n · (x − x 0) +
1

2
(x − x 0) ·∇n · (x − x 0) +O(h3), (2)

where h is a typical mesh size. The level-set function in the rest of the domain is then updated
by a fast sweeping method [3] that solves the Eikonal equation

|∇φ| = 1. (3)

We aim to combine traditional solvers of (1) with the particle method of [2] and use particles
to reinitialize the level-set function in a narrow band around the interface. It follows from (2)
that the method for setting φ in the intersected cells is third order accurate. Thus, in this region
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particles are an excellent tool for reinitialization of the level-set function. To verify this claim
we have implemented the particle-based method and level-set methods based on SUPG and DG.
An option to reinitialize the level-set function using particles was added to the latter two solvers.
All the solvers were then compared using the Zalesak disk test case. The results are summarized
in Figure 1. An improvement in the solution of SUPG and DG due to reinitialization is evident.

(a) (b) (c)
Figure 1: Zalesak disk test case. Comparison of zero level-set position after one disk rotation.
Mesh with 50 × 50 cells and 1000 particles was used. Result of a traditional solver is denoted
with black line. Red line denotes result of a solver with the level-set function reinitialized in the
intersected cells at every time step. (a) Oriented particles. (b) SUPG. (c) DG.

To keep the order of accuracy from the intersected cells in the rest of the narrow band a
third order accurate method for solving the Eikonal equation is required. However, if only the
first term is kept in (2), a second order accurate method will be sufficient. In the remainder of
this article we show how such a method can be constructed.

Geometrical solver

The fast sweeping method [3] solves the Eikonal equation on a structured rectangular grid by
sweeping through the domain and by applying to the ordered Eulerian nodes a local solver
based on finite differences. This procedure is repeated until φ is not altered by a new sweep.
The method thus does not adhere so strictly to the Huygens principle and there is not need
to keep a heap-like structure with the closest points. As a result complexity of the method is
O(M), M being the number of nodes in the mesh, which should be compared with O(M logM)
complexity of the fast marching method. Ordering of the nodes on a rectangular grid is given
naturally by their indices. On an unstructured mesh there is no natural ordering of the nodes
and the lack of structure renders finite differences practically unusable. In [1], a fast sweeping
method for unstructured triangular meshes is proposed. The method uses ordering of the nodes
determined by their distance from a predefined set or reference points and the local Eikonal
solver is based on geometrical reasoning.

The local geometrical solver [1] works as follows (see Figure 2a). Given triangle ABC with
known values of φ at vertices A and B such that φA < φB update the value φC by (i) computing
the angle θ, (ii) computing h = |C−PG| = a sin(α−θ) and (iii) φC = min(φC , h+φB). Assuming
that the triangle is acute, we can see that increasing θ can make C closer to the plane. In such
case, updating φC from A and B violates the causality principle that is valid for the Eikonal
equation; nodes closer to the front update those that are further away. We refer readers to the
original paper to see how such cases are handled.

To recast the geometrical solver into an optimization problem, note that the correct value
φC = |C −C �| = |PO −C �|+ |PO −C | and the distance |PO −C �| is obtained from the linear
interpolant of φA, φB on the edge c evaluated at PO. Moreover, since the update vector C −C �
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Figure 2: Local Eikonal solvers. (a) Distance of vertex C from the plane with point C � is to
be computed from known values of φA, φB. Linear minimization method seeks intersect PO.
Geometrical solver is based on PG. Both methods end up updating vertex C using C �. (b)
Distance of vertex C from point S is to be computed from known values of φA, φB and φD.
Linear method approximates circular wavefront by a plane and the local solver fails to find
the correct intersect. Quadratic method approximates wavefront using distance from additional
point D = 0.5(A +B). Intersect P2

O found by the method is almost identical to the true one
denoted by cross. Inverse problem for higher order geometrical solvers: from known values of
φA, φD, φC point S can be found as a center of blue circle which passes through A and is tangent
to the red circles. The center can be used to update φC .

passes through PO, the point is a solution to the problem of finding a point on the wavefront
with the closest distance to C .

Proof of the equivalence of the two formulations is based on two observations: (i) Let P :
[0, 1] �→ R2, P(t) = At+B(1−t), then t = (φB−φA)/|P−B |. (ii) For PG found by geometrical
solver cos(α− θ) = |PG −B |/|C −B |. Combining (i) and (ii) with a definition of θ yields that

tG =
|C −B | cos(α− θ)

|A−B | cos(θ) . (4)

To finish the proof it remains to show that tG is a minimizer of ψ(t) = φAt+φB(1−t)+ |C −P |.
This is indeed true, but the calculations will no be presented here.

The minimization method was implemented using FEniCS [4]. A function space constructed
from cG1 finite elements was used for φ and all the cell-node connectivity was provided by
FEniCS’s functionality. The method was tested using the problem of finding the distance to
two circles (see [1]). Results are summarized in Table 1 and confirm first order convergence of
the method. Note that at most three iterations were required for convergence.

Table 1: Convergence rates of the first order minimization method measured using L1 and L2

norms. Uniform mesh with N × N triangles was used. Convergence of iteration process was
measured in L∞ norm and the absolute tolerance was set to machine precision.

N L1-rate L2-rate Iter.

8 – – 2
16 0.83 0.95 2
32 0.98 1.05 2

N L1-rate L2-rate Iter.

64 0.92 0.97 3
128 0.95 0.98 3
256 0.98 0.99 3
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Second order method

As a consequence of the Huygens principle, the accuracy of local solvers of the Eikonal equation
depends solely on the approximation of the wavefront. In the minimization framework, a method
of arbitrary accuracy can in principle be designed by using an interpolant of the same order. A
second order accurate local solver could thus be constructed in the following way (cf. Figure 2):
Given triangle ABC with unknown value φC find an edge c, C /∈ c, with three known values
of φ. If such an edge exists, find tO that is a minimizer of ψ(t) = φA(1− t)(1− 2t) + 4φDt(1−
t) + φBt(2t− 1) + |C −P | with P(t) = At+B(1− t) and t ∈ [0, 1]. If ψ(tO) > min(φA) then
update φC = min(φC ,ψ(tO)).

Figure 2b shows that our quadratic local solver gives a more accurate update than the linear
one. Moreover, for a simple test case such as the one portrayed in the figure, second order
convergence can be obtained. We implemented a fast sweeping method based on the quadratic
solver using cG2 finite elements. To get the necessary cell-node, node-edge, edge-cell connectivity
FEniCS’ built-in functions were used. Early results from the tests are promising but we have
noticed that the numerical solution tends to produce undershoots. We believe the issue is related
to properties of the quadratic Lagrange interpolant and can be addressed by enforcing causality
in the local solver or in the sweeping strategy, perhaps, by different choice of reference points.

In the second order method, the number of calls to the local solver has grown substantially
since more nodes have to be updated, and for midpoints the solver must take into account two
edges. Therefore, computational cost of the local solution becomes of interest and a method
based on geometrical reasoning might be an alternative to the optimization. In Figure 2, the
problem of finding distance from vertex C to source S can be thought of as a problem of finding
the source. The latter is a type of Apollonius’ problem as we are asking for a circle that passes
through vertex A and is tangent to circles centered at D and B with radii φD−φA and φB−φA

respectively. The cost of this search might be lower than that of optimization. We should note
however that such a geometrical solver is not equivalent to the above minimization problem. This
can be seen from the fact that unlike the geometrical solver, quadratic Lagrange interpolation
produces wavefronts that are not perfect circles. Also note that a geometrical solver would be
exact in the problem depicted in Figure 2b.

Conclusions and future work

The minimization framework appears to be a promising source of higher order methods for the
solution of the Eikonal equation. In this article, we proposed a local quadratic solver and a new
geometrical solver. Both solvers will be implemented into fast sweeping methodss in the near
future. Since the core idea of the geometrical solver is very close to the Huygens principle we
believe that it can be used as a foundation for higher order methods.
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Summary. We consider the average Lagrangian method, a variational integrator with integral averaging,
for use on highly oscillatory problems. When applying particular quadrature rules to approximate the
integrals, the method coincides with the variational IMEX method presented in [1]. We test these methods
against an energy preserving method, and two trigonometric integrators from [2].
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Introduction

Many physical systems satisfy a Lagrangian variational principle, meaning their dynamics are
governed by a Lagrangian function L(q , q̇). Furthermore, systems in Lagrangian mechanics often
have components acting on different time scales, posing a challenge for traditional numerical
integrators. Such highly oscillatory problems with Lagrangian

L(q , q̇) = q̇TMq̇ − U(q)−W (q), (1)

where the potential energy is the sum of a “fast” potential W and a “slow” potential U , are
encountered in for example molecular dynamics. Finding integrators whose timestep is not
limited by the scale of the fast oscillations, but still captures the relevant dynamics, is therefore
of great interest.

Variational integrators

Hamilton’s principle states that the correct solution path for systems in Lagrangian mechanics
is obtained by finding the trajectory q(t) that minimizes the action integral.

� tN

t0

L(q(ξ), q̇(ξ)) dξ, subject to fixed endpoints q(t0) = q0, q(tN ) = qN .

A standard result shows that this minimization problem is equivalent to the Euler-Lagrange
equations

d

dt

∂L

∂q̇
=

∂L

∂q
. (2)

Such systems lend themselves readily to variational integrators, a class of geometric numerical
methods obtained directly from the Lagrangian. Variational integrators approximate the conti-
nous solution path q(t) by a discrete sequence of points {qn}Nn=0 with q i ≈ q(ti) = q(t0 + ih).
Upon replacing the action integral with a suitable discrete action integral

Lh(qn, qn+1) ≈
� tn+1

tn

L(q(ξ), q̇(ξ)) dξ,
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the discretized Hamilton principle amounts to minimizing the discrete action sum

Sh({qn}Nn=0) =
N−1�

n=0

Lh(qn, qn+1), subject to q0, qN fixed.

This procedure yields the discrete Euler Lagrange (DEL) equations, which can be written in the
following way by introducing discrete momentum variables pn

pn = − ∂Lh

∂qn+1

(qn, qn+1), pn+1 =
∂Lh

∂qn

(qn, qn+1). (3)

Variational integrators preserve, by construction, a discrete version of the Lagrangian variational
structure. Consequently, they are automatically symplectic and momentum-preserving, with
good long-time energy behavior [3].

Introduction of methods

Variational methods

For a highly oscillatory Lagrangian (1), the average Lagrangian (AL) method uses

LAL
h (qn, qn+1) = vT

n+ 1
2

Mvn+ 1
2
− h

� 1

0
U(a(ξ; qn, qn+1)) dξ − h

� 1

0
W (a(ξ; qn, qn+1)) dξ, (4)

where a(ξ; qn, qn+1) ≡ (1− ξ)qn + ξqn+1 and

vn+ 1
2
≡ qn+1 − qn

h
. (5)

The DEL equations (3) corresponding to LAL
h can then be written

Mvn+ 1
2
= pn − h

� 1

0

∂U

∂q
(a(ξ; qn, qn+1))f1(ξ) dξ − h

� 1

0

∂W

∂q
(a(ξ; qn, qn+1))f1(ξ) dξ,

qn+1 = qn + hvn+ 1
2
, (6)

pn+1 = Mvn+ 1
2
− h

� 1

0

∂U

∂q
(a(ξ; qn, qn+1))f2(ξ) dξ − h

� 1

0

∂W

∂q
(a(ξ; qn, qn+1))f2(ξ) dξ.

with f1(ξ) ≡ 1− ξ and f2(ξ) ≡ ξ.
We can approximate the integrals in (4) using the trapezoidal rule for the first, involving U ,

and the midpoint rule for the second, involving W . This produces the implicit-explicit (IMEX)
variational integrator introduced in [1], with discrete Lagrangian

LIMEX
h (qn, qn+1) = vT

n+ 1
2

Mvn+ 1
2
− h

U
�
qn+1

�
+ U (qn)

2
− hW

�
qn+1 + qn

2

�

Testing out other quadrature rules to approximate the integrals, is still work in progress.

Average vector field method

Given the system of ordinary differential equations (ODEs)

ẏ = f (y), y(0) = y0 ∈ Rn,

the average vector field (AVF) method is defined as

yn+1 = yn + h

� 1

0
f ((1− ξ)yn + ξyn+1) dξ.

Suppose f (y) = S∇H(y) with S a constant skew-symmetric matrix. The Hamitonian, H, is
then conserved along both the exact and the discrete numerical solution [5]. Using position and
momentum variables, y = [qT ,pT ]T , Hamilton’s equations, equivalent to (2), has this form.
Applying AVF to Hamilton’s equations for (1) can be written as (6), with f1(ξ) = f2(ξ) ≡ 1/2.
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Table 1. Functions defining the considered trigonometric integrators. Here sinc(ξ) = sin(ξ)/ξ. Note that
ψ0(ξ) and ψ1(ξ) are defined by the symmetry requirements ψ(ξ) = sinc(ξ)ψ1(ξ) and ψ0(ξ) = cos(ξ)ψ(ξ)

Name ψ(ξ) φ(ξ) ψ0(ξ) ψ1(ξ)

(B) sinc(ξ) 1 cos(ξ)sinc(ξ) 1
(E) sinc2(ξ) 1 cos(ξ)sinc2(ξ) sinc(ξ)

Trigonometric integrators

The highly oscillatory system of second order ODEs

q̈ +Ω2q = g(q), with Ω =

�
0 0
0 ωI

�
, ω � 1, (7)

matches the Euler Lagrange equations (2) for the system (1) in the particular case

g(q) = −∇U(q), W (q) = qTΩ2q , M = I .

A trigonometric integrator for the system (7), has the one step form

qn+1 = cos(hΩ)qn +Ω−1 sin(hΩ)q̇n +
1

2
h2Ψgn,

q̇n+1 = −Ω sin(hΩ)qn + cos(hΩ)q̇n +
1

2
h2
�
Ψ0gn +Ψ1gn+1

�
, (8)

where gn = g(Φqn), Φ = φ(hΩ), Ψ = ψ(hΩ), Ψ0 = ψ0(hΩ) and Ψ1 = ψ1(hΩ). We consider
two common such integrators, method (B) and (E) from [2]. The real valued and even functions,
φ(ξ), ψ(ξ), ψ0(ξ) and ψ1(ξ), that defines these integrators, are given in Table 1. The methods
are symmetric by construction, and (B) is also symplectic.

It was shown in [4] that the variational IMEX method is a modified trigonometric integrator,
i.e. it can be written on the form (8), but with a modified fast frequency ω̃.

Numerical results

We compare the presented methods on the well known highly oscillatory Fermi-Pasta-Ulam
(FPU) problem, as stated and analyzed in [2]. In suitable variables, the problem has Hamiltonian

H(x ,y) =
1

2

m�

i=1

(y20,i + y21,i) +
ω2

2

m�

i=1

x21,i

+
1

4
((x0,1 − x1,1)

4 +
m−1�

i=1

(x0,i+1 − x1,i+1 − x0,i − x1,i)
4 + (x0,m + x1,m)4) (9)

All methods are second order accurate in position for small timesteps. However global error is
a poor quantity to evaluate, since the system is chaotic. In Figure 1 the numerical trajectories
for the oscillatory energies and Hamiltonian (total energy) are shown for this problem.

It is shown in [2] that trigonometric integrators struggle to capture all the dynamic properties
of the FPU system. They also often suffer from artificial resonances. In method (E), the slow
exchange of energy between the stiff springs happens too slow. Method (B) captures the correct
exchange rate to leading order, see again [2]. However, unlike method (E), it suffers from wide
resonance bands, making it unusable for a significant region of stepsizes. Both trigonometric
integrators conserve H to leading order away from resonances.
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The AVF method preserves H up to round off error by construction, but has problems
capturing the correct energy exhange rate. The AL method fares slightly better than the AVF
method with respect to the energy exhange rate, but we observe poor energy conservation for
large stepsizes due to instability. The variational IMEX method resembles the reference solution.
In [4] it is proved that for problems (7), this method has no artificial resonances, conserve H to
second order, and captures the slow energy exchange to leading order.

� �� ��� ��� ���
�

���

���

���

���

�

���

���

�

��

��

��
�

�

(a) Reference solution

� �� ��� ��� ���
�

���

���

���

���

�

���

���

�

(b) Trigonometric integrator (B)

� �� ��� ��� ���
�

���

���

���

���

�

���

���

�

(c) Trigonometric integrator (E)

� �� ��� ��� ���
�

���

���

���

���

�

���

���

�

(d) Average Lagrangian

� �� ��� ��� ���
�

���

���

���

���

�

���

���

�

(e) Average vector field

� �� ��� ��� ���
�

���

���

���

���

�

���

���

�

(f) Variational IMEX

Figure 1. Comparison of methods on the highly oscillatory Fermi-Pasta-Ulam problem (9), with m = 3,
ω = 50 and h = 0.03. Initial conditions are as in [2]. For all methods we plot the evolution of the
Hamiltonian H, the oscillatory energy of the individual stiff springs I1, I2 and I3, and the total oscillatory
energy I =

�N
j=1 Ij = I0 + O(ω−1), which is an adiabatic invariant. The energy transfer between stiff

springs occurs on the slow timescale O(ω).

Conclusions

We have compared a selection of methods on a well known highly oscillatory test problem. The
IMEX method appears to outperform the other methods for the FPU problem. It performs
well with respect to the considered measures, and avoids the drawbacks of the other methods.
The introduced Average Lagrangian method suffers from instability for this problem, when the
stepsize becomes large with respect to the fast oscillations. However, preliminary experiments
indicate that the AL and AVF methods may compare favourably to the IMEX method for
certain highly oscillatory Lagrangian systems (1).
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Summary. In this lecture, I will present some recent results obtained on two different – albeit related
– topics of interest in this conference and special session. The first topic lies in the context of parameter-
dependent mixed formulations as arises in structural mechanics, and concerns a sharp ellipticity condition
for ensuring the convergence – together with the classical inf-sup condition – of the solution when the
parameter considered tends to zero, such as in the asymptotic analysis of structural models when the
parameter in question represents the thickness of the structure [4]. The second subject concerns the
asymptotic analysis of so-called 3D-shell models, for which strong convergence results have been recently
obtained [7], thereby improving on earlier results [5, 4], and further substantiating the 3D-shell concept
which has already raised much interest in engineering applications due to its versatility and modeling
accuracy.

Key words: Mixed formulations; shell modeling; 3D-shells; ellipticity condition; inf-sup condition

Ellipticity condition for parameter-dependent mixed formulations

This work – carried out in collaboration with K.J. Bathe – pertains to the analysis of parameter-
dependent mixed formulations of the type
Find (U ε,Σε) in V × T + such that

�
A(U ε, V ) +B(V,Σε) = F (V ), ∀V ∈ V
B(U ε,Ξ)− ε2D(Σε,Ξ) = 0, ∀Ξ ∈ T + (1)

where A, B and D denote bilinear forms defined on the Sobolev spaces V and T + – with A and
D symmetric – F is a linear form defined on V, and ε represents a small dimensionless model
parameter with

0 < ε ≤ εmax,

and e.g. related to the thickness of the structure in structural mechanics, or to the inverse of
the bulk modulus in nearly-incompressible formulations.

Under certain assumptions to be specified, this sequence of solutions parametrized by ε can
be shown to converge – when ε tends to zero – to the solution of the following limit mixed
formulation
Find (U,Σ) in V × T such that

�
A(U, V ) +B(V,Σ) = F (V ), ∀V ∈ V
B(U,Ξ) = 0, ∀Ξ ∈ T (2)

where T is another Sobolev space less regular than T +, with continuous and dense inclusion
T + ⊂ T .
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It was soon realized in the development of mixed formulations that the classical conditions
ensuring the well-posedness of (2), namely, the inf-sup condition pertaining to B and the ellip-
ticity of A on the subspace

V0 = {V ∈ V | B(V,Ξ) = 0, ∀Ξ ∈ T },

see in particular [2], are not sufficient for guaranteeing convergence of (U ε,Σε) to (U,Σ) when
ε tends to zero, and similar difficulties hold for associated discrete mixed formulations. As a
consequence, classical earlier such convergence results were established under stronger – or more
restrictive – assumptions, such as that A be coercive over the whole space V , or T + = T . For
plate and shell models, however, such conditions do not hold.

I will thus present an alternative ellipticity condition which, together with the classical inf-
sup condition, can be shown to provide a set of necessary and sufficient conditions for the desired
convergence, with a natural counterpart in a discrete setting, see details in [3, 4]. As we will
see, a possible technique of proof consists in using a stabilized mixed formulation as in [6].

Strong convergence of 3D-shell models

Most mathematical models and finite elements considered for shell structures are based on
the Reissner-Mindlin kinematical assumption, namely, stating that any material line originally
transverse to the shell mid-surface in the reference configuration remains “rigid” (i.e. straight
and of preserved length) during the whole deformation process, see [1] and references therein.
This leads to so-called “5-parameter models”, in which the variational unknowns correspond
to the 3D displacements of the mid-surface and the rotations of the transverse material lines,
with some well-known technicalities to effectively parameterize the rotations, especially when
finite transformations are considered. Furthermore, in these formulations another assumption
must be used – sometimes implicitly – concerning the stress state, namely that through-the-
thickness stresses vanish, which may be quite difficult to handle for nonlinear constitutive laws,
and non-physical in many applications (one may think e.g. of metal forming), notwithstanding
the well-known paradox of the conflicting assumption of vanishing through-the-thickness strain
[4]. To circumvent these various limitations, higher-order kinematical assumptions can be used.
More specifically, when considering quadratic variations of displacements across the thickness, we
can obtain shell models of the utmost interest and that feature the following major advantages,
in particular [5]:

• no stress assumption need – nor in fact should – be made, hence we can directly use general
3D constitutive laws;

• considering the same kinematical assumptions for all the displacement components has
important practical consequences, since Cartesian coordinates can then be used for all
nodal unknowns in the corresponding finite element procedures, and no rotation handling
is needed any longer;

• of course, more accurate physical behaviors can be represented, in particular when large
through-the-thickness deformations are concerned.

In the lecture, I will outline the derivation of 3D-shell formulations, and show how mathe-
matical analysis can bring most valuable insight into the models and their physical behaviors.
In particular, I will discuss how the first of the above highlights (i.e. no stress assumption)
can be rigorously justified by a complete asymptotic analysis of the shell formulation, and this
analysis also more generally substantiates the model validity for thin structures. Namely, by
this asymptotic analysis we are able to establish that shell model solutions have the same limit
behaviors as 3D elasticity solutions [8] when considering sequences of problems with decreasing
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thickness parameters, for a fixed structure midsurface. This so-called asymptotic consistency
holds throughout the tremendous diversity of behaviors that shell structures are able to undergo
– depending on their geometries and boundary conditions, in particular – with the two main
types of asymptotic behaviors given by membrane- and bending-dominated states [9, 4]. More-
over, this asymptotic analysis result has recently been enhanced by establishing complete strong
convergence results [7].
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Summary. This article discusses the issues related to choosing an appropriate hierarchic error indicator
for hp-FEM solution of shell problems. For problems subject to strong locking, it is advantageous to
emphasize edge modes if the initial polynomial order is low. Overall the ideal situation is when the
locking is detected a priori and the polynomial order has been set sufficiently high allowing the use of
local indicators.

Key words: shells, hp-FEM, error estimation

Introduction

Shell structures and in particular thin shell structures remain the most challenging simple struc-
tures from the computational point of view. The basic source of numerical difficulties in shell
problems is the small dimensionless parameter, the effective thickness of the shell that appears,
e.g., in the energy formulation based on any classical dimension reduction model. The effective
thickness of the shell is defined as t = d/L, where d is the actual thickness of the shell and
L is the length scale one is trying to resolve, for instance, the diameter of the domain or the
characteristic length in a boundary layer. Shell is considered (effectively) thin when t � 1.
Shells exhibit a rich variety of boundary layers, including internal layers, each of which has its
own characteristic length. Indeed, the solution of any linear shell problem can be viewed as a
linear combination of characteristic features.

The geometry of the shell, kinematic constraints, and loading are all factors affecting the
activation of characteristic features. Thus, the shells of revolution are an excellent subset of shell
problems for mathematical study of thin shell problems since different types of Gaussian surfaces
are easy to generate. Furthermore, through appropriate parameterization the computations can
be carried out in exact geometry.

One of the challenges in shell problems is to avoid numerical locking. Here, we let the higher-
order FEM alleviate the locking and accept that some thickness dependent error amplification
or locking factor, K(t) ≥ 1, is unavoidable. For hp-FEM solution one can derive a simple error
formulation

error ∼ K(t)(h/L)p,

where h is the mesh spacing, and p is the degree of the elements. It is possible that K(t) diverges
as t tends to zero, with the worst case being for pure bending problems: K(t) ∼ 1/t. Of course,
for K(t) ∼ 1 one can expect the hp-solution to be optimal in the sense of approximation
theory. This simple error formula also suggest why higher-order methods are advantageous in
shell problems: the mesh over-refinement in the “worst” case is ∼ (1/t)1/p, which for a fixed
t = 1/100, say, indicates that for p = 4 the requirement is moderate in comparison to the case
of p = 1. For a more detailed discussion on this and further references, see [1].
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Figure 1. Free cylinder with t = 1/100: Comparison of error indicators through seven adaptive steps.
Initial polynomial orders: (left: p = 2, right: p = 4). Notice the relative order of (0, 3) and (3, 0) in the
two cases.

In this paper we study the performance of hierarchical error estimators in relation to shell
problems. Since the basis functions of the standard hp-methods are hierarchic, the idea of using
hierarchic enrichments of approximation spaces is natural [2]. However, the central question is
how to choose the extra degrees of freedom in terms of polynomial orders. Here we use the
notation (e, b) to indicate the choice of polynomial orders p+ e and p+ b for edges and bubbles,
respectively, when p is the underlying polynomial order. Of course, any choice of type (0, b) is
of special interest, because in these cases the elemental indicators can be computed in parallel.

Our conclusion is that for problems subject to strong locking, it is advantageous to emphasize
edge modes if the initial polynomial order is low. Overall the ideal situation is when the locking
is detected a priori and the polynomial order has been set sufficiently high allowing the use of
local indicators.

Hierarchic Error Estimation

Our test cases are cylindrical shells of the seminal study by Pitkäranta and co-workers [3].
The adaptive hp-algorithm is adapted from the one documented in our previous work [4]. All
results are given in terms of squared energy. The two initial polynomial orders p = 2 and
p = 4 are chosen to represent the scenarios where the locking is ignored and taken into account,
respectively.

Here we present results of an ensamble study of twelve indicators, (e, b), e = 0, . . . , 3, b =
0, . . . , 3. The benchmark shell is the free Pitkäranta cylinder, which is known to exhibit the
strongest locking. In Figure 1 the estimated errors for three representative indicators (3, 0),
(0, 3), and (3, 3) are shown over seven adaptive steps for two initial polynomial orders p = 2
and p = 4, with the same initial mesh. Notice, that the indicators are consistent, that is, the
respective graphs never cross, but the relative order between (3, 0) and (0, 3) is changed. This is
in line with our intuition, since for lower polynomial orders detecting the long scale responsible
for the locking requires an indicator which spans the whole domain. In the case of initial p = 4,
the local indicators such as (0, 3) perform well, because the underlying solution has effectively
captured the long scale.

The analysis above is supported by Figures 2 and 3, where it is clear that the adaptive
algorithm has h-refined the mesh over the whole computational domain for initial p = 2, whereas
for initial p = 4 the h-refinement is concentrated at the boundary layer. Notice, that in the
eye-ball norm all indicators are performing satisfactorily in comparison with the exact energy
error shown in the upper left hand corner.
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Figure 2. Free cylinder with t = 1/100: Error indicators after seven adaptive steps. Initial p = 2.
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Figure 3. Free cylinder with t = 1/100: Error indicators after seven adaptive steps. Initial p = 4.
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Conclusions and Future Work

The initial results are well aligned with our a priori expectations. In the case of strong locking
and low polnomial order, the local enrichment in the form of (0, b) does not perform well. One
remedy for this situation is to probe for energy distribution with a minimal mesh and sufficiently
high polynomial order, p = 4, say. If the problem turns out to be bending-dominated, it is
beneficial to start with a higher initial polynomial order.

At the moment we do not have a clear picture of the cost/benefit ratio between different
indicators when the whole adaptive algorithm is considered. Addressing this shortcoming is of
high priority.
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[3] J. Pitkäranta, Y. Leino, O. Ovaskainen, and J. Piila, Shell Deformation states and the Finite
Element Method: A Benchmark Study of Cylindrical Shells, Computer Methods in Applied
Mechanics and Engineering, 128:81–121:1995.

[4] H. Hakula, and T. Tuominen, Mathematica Implementation of the High Order Finite Ele-
ment Method Applied to Eigenproblems, To appear in Computing, 2013.

160



Proceedings of the 26th Nordic Seminar on Computational Mechanics
A. Logg, K.A. Mardal, A. Massing (Eds.)
c⃝Oslo, 2013

Locking free parametric continuous/discontinuous FEM
for the Mindlin–Reissner plate

Peter Hansbo1 and Mats G. Larson2

(1)Department of Mechanical Engineering, Jönköping University, SE-551 11 Jönköping, Sweden,
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Summary. We develop a finite element method with continuous displacements and discontinuous rota-
tions for the Mindlin-Reissner plate model on quadrilateral elements. To avoid shear locking, the rotations
must have the same polynomial degree in the parametric reference plane as the parametric derivatives
of the displacements, and obey the same transformation law to the physical plane as the gradient of
displacements. We prove optimal convergence, uniformly in the plate thickness, and provide numerical
results that confirm our estimates.
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Introduction

The Reissner-Mindlin equations is a model of the displacement of a moderately thick plate under
transversal load. The unknows are the normal displacement field u and the rotation field θ of a
normal fiber. The difficulty with this model, from a numerical point of view, is the matching of
the approximating spaces for θ and u. As the thickness t → 0, the difference ∇u− θ must tend
to zero, which, for naive choices of spaces, leads to a deterioration of the approximation known
as locking or in this case shear locking since the difficulty emanates from the term involving the
shear energy. The situation is particularly difficult if we wish to use low order approximations.

There are basically three different approaches to solve this problem. Perhaps the most com-
mon approach has been to use a projection to relax the equation, which essentially corresponds
to a mixed formulation where an additional variable, often the shear vector proportional to
(∇u− θ)/t2, is introduced. For instance, the MITC element family of Bathe and co-workers [3]
are based on this approach.

Another approach is to use a stabilized mixed formulation, see Chapelle and Stenberg [5, 6].
Finally, a third approach is to use finite element spaces that are rich enough to satisfy the

shear constraint exactly while maintaining optimal approximation properties. This approach
was first proposed by Hansbo and Larson [10], where continuous piecewise quadratics for the
displacements and discontinuous piecewise linears for the rotations in a discontinuous Galerkin
formulation.

When the thickness of the plate tends to zero we obtain the Kirchhoff plate and our scheme
can be seen as a version of the method proposed in [8], see [9]. In this contribution we extend the
method of [10] to quadrilateral elements. We show that, with the proper definition of the finite
element space for the rotations, we can satisfy the equation ∇u−θ = 0 exactly while maintaining
optimal approximation properties and thus together with stability we obtain optimal a priori
error estimates uniformly in the thickness parameter.
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Using continuous tensor product quadratics for the displacements the suitable space for
the rotations consists of discontinuous parametric vector polynomials that are also mapped in
the same way as the gradient of elements. The mapping is the rotated, or covariant, Piola
mapping that preserves tangent traces, and naturally appears in the context of curl conforming
elements, see [7].The interpolation error estimates on quadrilaterals are based on the observation
that tensor product polynomials mapped with a bilinear map contain complete polynomials, cf.
[1, 2], and thus the estimates follows from the Bramble–Hilbert lemma and scaling.

We remark that the idea of using covariant maps to obtain suitable approximations of the
rotations has also recently been used in the context of isogeometric approximations by Beirão da
Veiga, Buffa, Lovadina, Martinelli, and Sangalli [4].

The Reissner-Mindlin Plate Model

Energy Functional

Consider a plate with thickness t occupying a convex polygonal domain Ω in R2, which is clamped
at the boundary ∂Ω. The Reissner-Mindlin plate model can be derived from minimization of
the sum of the bending energy, the shear energy, and the potential of the surface load

ERM(u, θ) :=
1

2
a(θ,θ) +

κ

2 t2

�

Ω
|∇u− θ|2 dΩ−

�

Ω
g u dΩ (1)

Here u is the transverse displacement, θ is the rotation of the median surface, t is the thickness,
t3 g is the transverse surface load, and the bending energy a(·, ·) is defined by

a(θ,ϑ) :=

�

Ω

�
2µε(θ) : ε(ϑ) + λ∇ · θ∇ · ϑ

�
dΩ (2)

where ε is the curvature tensor with components εij(θ) =
1
2(

∂θi
∂xj

+
∂θj
∂xi

). The material parameters

are given by the relations κ = E k/(2(1 + ν)), µ := E/(24(1 + ν)), and λ := νE/(12(1 − ν2)),
where E and ν are the Young’s modulus and Poisson’s ratio, respectively, and k is a shear
correction factor. We shall alternatively write the bending energy product as

a(θ,ϑ) =

�

Ω
σ(θ) : ε(ϑ) dΩ (3)

where σ(θ) := 2µε(θ) + λ∇ · θ 1 is the moment tensor.
The transverse displacement and rotation vector are solutions to the following variational

problem: find (u, θ) ∈ H1
0 (Ω)× [H1

0 (Ω)]
2 such that

a(θ,ϑ) +
κ

t2
(∇u− θ,∇v − ϑ) = (g, v), ∀(v,ϑ) ∈ H1

0 (Ω)× [H1
0 (Ω)]

2 (4)

where (·, ·) denotes the L2(Ω) inner product, Hk(Ω) are the usual Sobolev spaces, and the
functions in H1

0 (Ω) have zero trace on the boundary ∂Ω.

The Finite Element Method

LetKh = {K} be a family of quasiuniform partitions of Ω into convex quadrilateralsK = FK( �K)
with mesh parameter h such that ch ≤ hK ≤ Ch, where hK = diam(K), for all K ∈ Kh. We
also assume that Kh is a shape regular partition in the sense that hK/ρK ≤ C for all K ∈ Kh,
where ρK is the smallest diameter of the largest inscribed circle in any of the four subtriangles
obtained by inserting a diagonal between two opposite corners in K.

162



Parametric Elements for Displacements and Rotations

In order to define our finite element spaces we begin with a continuous parametric finite element
space V h

D for the displacement u and then we determine a space V h
R of discontinuous piecewise

parametric functions for the rotations θ such that

∇V h
D ⊆ V h

R (5)

in order to be able to satisfy the equation θ−∇u = 0 exactly, when the thickness tends to zero.
Using this inclusion we identify the proper space for the rotations. We restrict the presentation
to quadratic tensor product approximation of the displacements.

Let �K be the reference unit square and Qk,l( �K) the space of tensor product polynomials of
order k and l in each variable, more precisely

Qk,l( �K) = span{�xα�yβ : 0 ≤ α ≤ k, 0 ≤ β ≤ l} (6)

and Qk( �K) = Qk,k( �K). For each K ∈ Kh let FK : �K → R2 be the bilinear, i.e., FK ∈ [Q1( �K)]2,

mapping such that K = FK( �K). We define the space of parametric tensor product polynomials
on K by

VD,K = {p : K → R : p = �p ◦ F−1
K } (7)

and the corresponding space on Kh of continuous piecewise parametric tensor product polyno-
mials

V h
D = {v : Ω → R : v|K ∈ VD,K ∀K ∈ Kh, v ∈ C(Ω)} (8)

Turning to the space for the rotations we recall that, since p = �p ◦ F−1
K , we have

∇p(x) = DF−T
K
�∇�p(�x) = DF−T

K
�∇�p(F−1

K (x)) (9)

where �∇ is the gradient in the reference coordinates. Introducing the rotated or covariant Piola
mapping

RK : �V R � �θ �→ DF−T
K
�θ ◦ F−1

K ∈ V R (10)

we have ∇p(x) = DF−T
K
�∇�p(�x) = RK

�∇�p(�x). We are thus led to defining the following space for
the rotations

V R,K = RK
�V R (11)

where �V R is a space on the reference unit square �K that satisfies

�∇�VD,K = Q1,2( �K)×Q2,1( �K) ⊆ �V R,K (12)

We finally define the space of discontinuous mapped parametric functions

V h
R = {θ : Ω → R2 : v|K ∈ V R,K ∀K ∈ Kh} (13)

Let Eh = {E} be the set of edges in the mesh Kh. We split Eh into two disjoint subsets

Eh = Eh
I ∪ Eh

B (14)

where Eh
I is the set of edges in the interior of Ω and Eh

B is the set of edges on the boundary ∂Ω.
Further, with each edge we associate a fixed unit normal n such that for edges on the boundary
n is the exterior unit normal. We denote the jump of a function v ∈ V h

R at an edge E by
[v] = v+ − v− for E ∈ Eh

I and [v] = v+ for E ∈ Eh
B, and the average �v� = (v+ + v−)/2 for

E ∈ Eh
I and �v� = v+ for E ∈ Eh

B, where v±(x) = lim�↓0 v(x∓ ϵn) with x ∈ E.
The method takes the form: find (uh,θh) ∈ V h

D × V h
R such that

ah(θ
h,ϑ) +

κ

t2

�
∇uh − θh,∇v − ϑ

�
= (g, v) ∀(v,ϑ) ∈ V h

D × V h
R (15)

163



Here the bilinear form ah(·, ·) is defined by

ah(θ
h,ϑ) =

�

K∈Kh

(σ(θh), ε(ϑ))K

−
�

E∈Eh
I ∪Eh

B

(�n · σ(θh)�, [ϑ])E + (�n · σ(ϑ)�, [θh])E

+(µ+ λ) γ
�

E∈Eh
I ∪Eh

B

(h−1
E [θh], [ϑ])E

where γ is a positive constant, hE is defined by

hE =
�
|T+|+ |T−|

�
/(2 |E|) for E = ∂T+ ∩ ∂T− (16)

with |K| the area of K, on each edge, and (·, ·)ω is the L2(ω) inner product with ω = K,E.
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Summary. We show a mesh-dependent norm analysis of mixed finite elements for the linear elasticity
with weakly symmetric stress. Based on this analysis, we construct a three dimensional rectangular
element with minimal number of degrees of freedom that has the optimal order of convergence for all
unknowns.
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analysis

Introduction

We construct a simple three dimensional rectangular element, analogous to the simplified 2D
element in [1], that has 36 stress, 3 displacement and 3 rotation DOFs on each cube. For the
stability analysis we use the mesh-dependent norm idea of [3] and [4] combined with the discrete
Korn’s inequalities shown in [2]. The stability analysis shows that the stress space must contain
the trace of rigid body motions at element interfaces. This information provided by the mesh-
dependent norm analysis is the key for defining the stress space with minimal number of degrees
of freedom.

Consider the problem

Âσ “ ϵpuq, ´div σ “ f in Ω, and u “ 0 on BΩ.

Here Ω Ă R3 is a bounded domain with polygonal boundary and Â is a bounded positive definite
stiffness tensor with the standard symmetry. Extend Â as identity for skew-symmetric matrices
and denote this tensor as A. The associated weak problem is: Find pσ, u, γq P Hpdiv,Ω;R3ˆ3q ˆ
L2pΩ;R3q ˆ L2pΩ;R3ˆ3

skw q such that

Apσ, τq ` Bpu, γ; τq “ 0, τ P Hpdiv,Ω;R3ˆ3q, (1)

´Bpv, η;σq “ pf, vq, pv, ηq P L2pΩ;R3q ˆ L2pΩ;R3ˆ3
skw q, (2)

where

Apψ, τq :“ pAψ, τq and Bpv, η; τq :“ pv, div τq ` pη, τq. (3)

Here p¨, ¨q denotes the L2 inner product over Ω.
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Formal definition of the finite element spaces

Let Th denote the rectangular mesh on Ω and K an element in Th. By PkpG;Xq for G Ă Ω, we
denote X–valued polynomials of degree ď k on G. On a face F of K, we use RMpF q Ă P1pF ;R3q
to denote the trace space of rigid body motions of K on F and use

ĄRMpF q :“ tξ P RMpF q | pξ, qqF “ 0, q P P0pF ;R3qu
to denote the subspace of RMpF q which is orthogonal to P0pF ;R3q. In addition, we define

ĄRMhpBKq :“ tξ : BK ÞÑ R3q | ξ|F P ĄRMpF ;R3q for a face F of Ku.
The finite element spaces are

Σh “ tτ P Hpdiv,Ω;R3ˆ3q | τ |K P ΣK , K P Thu, (4)

Uh “ tv P L2pΩ;R3q | v|K P P0pK;R3q, K P Thu, (5)

Γh “ tη P L2pΩ;R3ˆ3
skw q | η|K P P0pK;R3ˆ3

skw q, K P Thu. (6)

Let RT0pKq be the space of lowest order rectangular Raviart–Thomas shape functions on K
and define

ΣK “ RT0pKq ` BpKq where RT0pKq :“
¨
˝
RT0pKq
RT0pKq
RT0pKq

˛
‚Ă P1pK;R3ˆ3q. (7)

The BpKq denotes the additional shape functions that fulfill the following Lemma 1.

Lemma 1. Let K P Th and ν be the unit outward normal vector field on BK. There exists a
vector space BpKq Ă P2pK;R3ˆ3q such that

divBpKq “ 0, (8)

tτν|BK | τ P BpKqu “ ĄRMhpBKq, (9)

and the map τ ÞÑ τν|BK from BpKq to ĄRMhpBKq is bijective, which implies dimBpKq “ 18.

The degrees of freedom of τ P ΣK are

τ ÞÑ
ż

F
τν ¨ q ds, q P P0pF ;R3q, p6 ˆ 3 “ 18 DOFsq (10)

τ ÞÑ
ż

F
τν ¨ q ds, q P ĄRMpF q, p6 ˆ 3 “ 18 DOFsq (11)

for a face F of K and the unit outward normal vector ν on F .
The practical implementation of BpKq is omitted here but there are natural shape functions

for each face that fulfill Lemma 1 and are associated to the degrees freedom (11).

Mesh dependent norms and stability

Let RMpKq denote the space of rigid body motions on K P Th and define

RMh “ tv P L2pΩ;R3q | v|K P RMpKq, K P Thu.
For η P Γh, η|K is a constant skew-symmetric matrix on every K P Th, so we can find a unique
rη P RMh such that

gradh rη “ η, (12)ż

K
rη dx “ 0, K P Th, (13)
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where gradh denotes the element-wise gradient.
Let F˝ be the set of faces of Th in the interior of Ω, FB be the set of faces on BΩ, and denote

by F “ F˝ Y FB the set of all faces. For a piecewise polynomial g, we define

rrgss “
#
the jump of g over F, if F P F˝,
g, if F P FB.

(14)

The mesh-dependent norms, analogous to [3], are

}τ}20,h “
ÿ

FPF
hF }τνF }2F , (15)

}pv, ηq}2h “
ÿ

FPF
h´1
F }rrv ` rηss}2F , (16)

for τ P Σh and pv, ηq P Uh ˆ Γh, where hF denotes the size of face F and νF denotes a unit
normal vector on F .

It is clear [3] that } ¨ }0,h is equivalent to the L2pΩq norm } ¨ }Ω in Σh. To see that }p¨, ¨q}h is
a norm in the finite element spaces, we need the discrete Korn’s inequality [2, estimate (1.22)].

Theorem 2 (Stability). Ap¨, ¨q is continuous on Σh and there exists c ą 0 such that Apτ, τq ě
c}τ}20,h for τ P Σh. Bp¨, ¨; ¨q is continuous on Uh ˆΓh ˆΣh and for any 0 “ pv, ηq P Uh ˆΓh, one
can find τ P Σh satisfying

Bpv, η; τq ě }pv, ηq}2h and }τ}0,h ď }pv, ηq}h. (17)

Proof. Clearly

|Apψ, τq| “ |pAψ, τq| ď c}ψ}}τ} ď c}ψ}0,h}τ}0,h,
|Apτ, τq| “ |pAτ, τq| ě c}τ}2 ě c}τ}20,h.

Let τ P Σh, v P Uh and η P Γh. Using the definition (3), property (12), and element-wise
integration by parts, gives

Bpv, η; τq “ pdiv τ, vq ` pτ, ηq “ pdiv τ, vq ` pτ, gradh rηq
“

ÿ

KPTh
pxτν, vyBK ´ pτ, gradh vqK ` xτν, rηyBK ` pdiv τ, rηqKq .

Since v is piecewise constant, gradh v “ 0. By property (13) the last term also vanishes because
div τ is piecewise constant. Thus we get

Bpv, η; τq “
ÿ

FPF
xτν, rrv ` rηssyF . (18)

The p¨, ¨qG denotes the L2 inner product over G Ă Ω and x¨, ¨yBG denotes the L2 inner product
over BG. Suppose that 0 “ pv, ηq P Uh ˆ Γh is given. Note that rrv ` rηss|F P RMpF q because
v ` rη is a piecewise rigid body motion on each cube K and set

τν|F “ h´1
F rrv ` rηss|F , @F P F . (19)

Using the definition of norms (15)–(16) and the equality (18), we get

}τ}20,h “
ÿ

FPF
hF }τν}2F “

ÿ

FPF
h´1
F }rrv ` rηss}2F “ }pv, ηq}2h,

Bpv, η; τq “
ÿ

FPF
xτν, rrv ` rηssyF “ }pv, ηq}2h.
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Error analysis

Let Πh : H1pΩ;R3ˆ3q Ñ Σh be the Raviart–Thomas interpolation operator defined by (10) and
let Ph : L2pΩ;R3q Ñ Uh and Qh : L2pΩ;R3ˆ3

skw q Ñ Γh denote the orthogonal L2 projections. It
holds that

}τ ´ Πhτ} ` }v ´ Phv} ` }η ´ Qhη} ď chp}τ}1 ` }v}1 ` }η}1q (20)

for pτ, v, ηq P H1pΩ;R3ˆ3q ˆ H1pΩ;R3q ˆ H1pΩ;R3ˆ3
skw q.

Theorem 3. Suppose pσ, u, γq is the exact solution of (1)–(2) and pσh, uh, γhq is the correspond-
ing finite element solution. Then there exists c ą 0 independent of mesh sizes such that

}Πhσ ´ σh}0,h ` }pPhu ´ uh, Qhγ ´ γhq}h ď chp}σ}1 ` }γ}1q. (21)

Theorem 4. Suppose pσ, u, γq is the exact solution of (1)–(2) and pσh, uh, γhq the corresponding
finite element solution. Then the following error estimates hold:

}σ ´ σh} ` }u ´ uh} ` }γ ´ γh} ď chp}σ}1 ` }γ}1q. (22)
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Summary. The development of solvers that enable the fully coupled iterative solution of linear al-
gebraic equations arising from the discretization of multifield problems is a contemporary challenge in
many fields of computational modelling. The classic block Gauss-Seidel iteration is still widely used in
practice, since constructing the monolithic system matrix is not often seen to be a feasible approach.
The block Gauss-Seidel scheme can nevertheless be adapted to be a preconditioner for the GCR method
such that preconditioned iterations for the fully coupled system can be realized without assembling the
monolithic system matrix in a literal manner and without a need to perform the full matrix-vector prod-
ucts corresponding to the monolithic discretization. We describe the key ideas which lead to such an
implementation.

Key words: preconditioning, generalized conjugate residual method, subspace iteration, multiphysics

Introduction

By way of introduction, consider a generic two-field multiphysics problem, discretization and
linearization (by a lagged value approximation of nonlinear terms, say) of which leads to solving
a linear algebra problem �

K D
H A

� �
q
v

�
=

�
f
g

�
, (1)

where the vectors q ∈ Em and v ∈ Ep describe the approximations of the unknown fields, with
En the n-dimensional Euclidean space. Often sophisticated software for solving the constituent
single-physics models associated with the coefficient matrices K and A may already be avail-
able, while software tools for constructing and handling the monolithic system (1) do not exist.
Therefore, the coupling of the constituent models is customarily enabled by using segregated
solution strategies where the solution is attempted by decoupling the equations and solving the
resulting subproblems sequentially via an iteration. A common choice of this type is to apply
the block Gauss-Seidel scheme.

Convergence problems may however limit the feasibility of the basic segregated solvers in
cases where the physical coupling of the equations is strong. Robust solvers for the coupled
problem (1) may in principle be devised by using the monolithic solution approach where all the
discrete equations are assembled into the same system and then solved simultaneously by using
the Krylov subspace methods such as the minimum residual methods GMRES or GCR. Despite
this conceptual simplicity, a standard implementation of such strategy requires the ability to
perform the matrix-vector product corresponding to the left-hand side of (1). This requires
flexibility that may not be offered by the usual software, while enabling the functionality required
would necessitate software modifications that may not be straightforward to implement. Due
to these challenges and apparent constraints associated with reusing existing single-field solvers
in the monolithic solution, the segregated solution strategies remain widely used in practical
simulations.
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Our aim here is to describe some ideas which enable applying a preconditioned version of the
GCR method to the fully coupled problem (1) without assembling the monolithic system matrix
in a literal manner and without a need to perform the full matrix-vector products corresponding
to the monolithic discretization. We show that this is possible since in the case of the block
Gauss-Seidel preconditioning the optimality criterion associated with the preconditioned GCR
iteration can be expressed simply in terms of the matrix blocks K and D. That is, the residuals
generated in the iteration lie in an invariant subspace V of Em+p which has the dimension
m, provided that the residual corresponding to the initial guess also belongs to V. It should
be noted that related ideas have already been considered for example in [1, 2], but the use of
the GCR method has not been considered in this context previously. We note that a relative
merit of applying the GCR method in this connection is that the effect of the right-oriented
preconditioning can be obtained without switching temporarily to a new variable vector. Thus,
the fully coupled iteration for (1) can be implemented fairly easily when solvers for handling the
discrete single-fields models in the primitive variables q and v are already available.

The optimality criterion and invariance

Let (q�
k+1,v

�
k+1) denote the block Gauss-Seidel update which is obtained by using a previous

estimate vk of v as

Kq�
k+1 = f −Dvk,

Av�
k+1 = g −Hq�

k+1.
(2)

The basic GCR method can easily be adapted such that the block Gauss-Seidel scheme (2) is
utilized to generate search directions for the minimum residual iteration. Such preconditioned
version of the GCR method thus produces a sequence of improving iterates such that the kth
iterate lies in the space �

q0

v0

�
+ Vk, (3)

with

Vk = span{
�
q�
1 − q0

v�
1 − v0

�
, . . . ,

�
q�
k − qk−1

v�
k − vk−1

�
}, (4)

and makes the Euclidean norm of the corresponding residual minimal over all solution candidates
from this space.

If we now define a subspace V of Em+p as

V = {ξ ∈ Em+p | ξ =

�
η
0

�
, η ∈ Em }, (5)

we find that the space V is invariant with respect to the preconditioned GCR method in the
following sense.

Proposition. Assume that the initial guess (q0,v0) for solving (1) is chosen such that the
associated residual belongs to V, i.e. the system g − Hq0 − Av0 = 0 is satisfied. Then the
residual associated with any solution candidate (q̂k, v̂k) from (3) belongs to V, i.e. all solution
candidates satisfy

g −Hq̂k −Av̂k = 0 (6)

for any k ≥ 1. In addition, the norm of the residual associated with the monolithic system (1)
can be expressed as

||f −Kq̂k −Dv̂k||. (7)
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Although the standard implementation of the preconditioned GCR algorithm considered
would depend on the ability to perform the matrix-vector product corresponding to the left
side of (1), the above proposition implies that we can carry out the same iteration without
implementing the full matrix-vector product. Indeed, by using the alternate (7) to express the
optimality criterion associated with the method, the minimum residual iteration will basically
depend only on routines for performing the matrix-vector products with the matrices K and
D. Therefore, the fully coupled solver can be implemented in such a way that it is essentially
as modular as the basic block Gauss-Seidel method, supports independent discretizations in an
analogous manner, and requires straightforward software modifications which can be localized
into the independent single-field solvers.

Implementation aspects

In view of the proposition given in the preceding section, the optimality condition corresponding
to the minimum residual GCR iteration based on the block Gauss-Seidel preconditioning is seen
to reduce to finding iterates that satisfy the orthogonality condition

�f −Kqk −Dvk,Ksq +Dsv� = 0 (8)

for all (sq, sv) ∈ Vk. Here �·, ·� denotes the Euclidean inner product, with � · � the corresponding
norm. The equivalent orthogonality conditions and hence the same sequence of iterates as ob-
tained with the standard implementation of the method can be achieved alternatively by simply
implementing the modified Gram-Schmidt procedure that realizes the conditions (8). Impor-
tantly, this process requires only the matrix-vector products corresponding to the matrices K
and D and hence enables the modular implementation with respect to the model corresponding
to the matrix A.

The GCR method generally requires that all basis vectors for spanning the search space
and the associated residual space are saved. Significant savings in memory usage and also in
computation may however be possible here, since in practice it suffices to save the entries which
are relevant to computing the matrix-vector products in (8). Interesting scenarios arise especially
when the size of K is considerably smaller than that of A, or when the coupling matrix D is
sparse such that D contains a large number of trivial rows (this happens, for example, when two
PDE models are coupled via a surface coupling). In such cases the size of vectors that have to be
saved in the computer memory may be reduced significantly. In addition, a rapid convergence
of the iteration can then be expected, since the associated residuals lie in a subspace of small
dimension.

To conclude, the block preconditioned GCR algorithm for solving the monolithic system
(1) via the orthogonality requirement (8) to minimize the equivalent norm (7) can now be
implemented as follows: Set k = −1 and let v−1 contain an approximation to v. Then, perform
the following steps:

1. Solve q�
k+1 from the preconditioning system

Kq�
k+1 = f −Dvk.

2. Solve v�
k+1 from the preconditioning system

Av�
k+1 = g −Hq�

k+1.

3. If k = −1, set q0 = q�
k+1 and v0 = v�

k+1, define the residual r0 = f − Kq0 − Dv0, set
k = k + 1 and go to Step 1. Otherwise compute the minimum residual update:
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sk+1 =

�
q�
k+1 − qk

v�
k+1 − vk

�

yk+1 =
�
K D

�
sk+1

do j = 1, k
yk+1 = yk+1 − �yk+1,yj�yj

sk+1 = sk+1 − �yk+1,yj�sj
end do

yk+1 = yk+1/�yk+1�
sk+1 = sk+1/�yk+1�
uk+1 =

�
qk+1

vk+1

�
=

�
qk

vk

�
+ �rk,yk+1�sk+1

rk+1 = rk − �rk,yk+1�yk+1

4. If �rk+1�/(�K��uk+1�+ �f�) < TOL, where TOL is a given stopping tolerance, stop the
iteration. Otherwise set k = k + 1 and go to Step 1.

It is noted that here the solver for the model associated with the coefficient matrix A may be
utilized essentially in a black-box manner. In addition, the minimum residual iteration done in
Step 3 can reuse the matrices which are assembled in Step 1 in order to solve the preconditioning
problem.

Concluding remarks

The ideas which have been described here have many applications. We have applied the algo-
rithm described in this paper to handle linear systems arising in acoustic fluid-structure inter-
action, approximation via domain decomposition and modelling dissipative wave propagation
via the Navier–Stokes equations. These methods have been implemented into the finite element
software Elmer [3], which is based on the use of modular design.
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Summary. We simulate slightly viscous turbulent low Mach number 3d bluff body flow (including
streamlined bodies) by computational solution of the incompressible Navier-Stokes equations with a slip
boundary condition modeling observed small skin friction, by using a residual stabilized adaptive finite
element method, referred to as Direct Fem-Simulation (DFS) since no turbulence model beyond automatic
residual stabilization is used. We find by duality based a posteriori estimation that mean value quantities
such as drag and lift are computable to accuracies comparable to experiments. As a key example, we
show that the turbulent flow around a complete airplane is computable and inspecting solutions leads
to a new theory of flight essentially different from the accepted theory by Kutta-Zhukovsky-Prandtl
developed 100 years ago. We find that turbulent bluff body flow in general can be described as potential
flow modified by rotational slip separation as a flow which is resolvable computationally using millions
of mesh points, except in a far-field wake of little influence on lift and drag, and also is understandable
through a mathematical stability analysis.

Key words: turbulence, bluff body, direct numerical simulation, aerodynamics

From Prandtl 1904 back to Euler 1757

Turbulent bluff body flow is considered as a main unsolved problem of classical mechanics
beyond theoretical description and also beyond computational simulation, because of thin no-
slip boundary layers dictated by Prandtl in 1904 [7] requiring impossible trillions of mesh points
to be resolved. In recent work we have discovered that using a slip boundary condition as a model
of the small skin friction of slightly viscous turbulent flow, allows predictive simulation of mean
value quantities such as drag and lift of turbulent bluff body flow (including streamlined bodies),
with instead millions of mesh points. Basic aspects of turbulent flow from an applications point of
view thus show to be computable by stabilized finite element methods with automatic turbulence
modeling from residual stabilization, referred to as Direct FEM-Simulation (DFS), which opens
large areas for exploration.

As a key example, we show that the turbulent flow around a complete airplane is com-
putable, in contradiction to state-of-the-art. From an idea that a computable phenomenon is
also understandable mathematically, we are led to a new theory flight [2, 3] essentially different
from the accepted theory by Kutta-Zhukovsky-Prandtl developed 100 years ago. With evidence
from computation and basic stability analysis we have been led to the conclusion that turbu-
lent bluff body flow, including the aerodynamics of flight, can be described mathematically as
potential flow modified by a phenomenon of rotational slip separation as a both computable [4]
and understandable flow, in accordance with Euler’s original dream [1].

Neumann boundary conditions

The key to the break of the Prandtl spell, which has blocked development for 100 years, is
the from a mathematical point of view obvious realization that the Navier-Stokes equations
as an accurate model of fluid mechanics can be combined with either Dirichlet or Neumann
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type boundary conditions or combinations thereof. For slighly viscous flow the skin friction
is observed to be very small which allows accurate modeling by a slip boundary condition as
a combined Dirichlet-Neumann condition. Using a slip condition eliminates no-slip boundary
layers and thus circumvents the computational impossibility dictated by Prandtl and therefore
opens to progress. Simulations show good agreement with observations for drag and lift (and
more generally for pressure distributions), leading to the conclusion that Prandtl’s conjecture
of a main role of no-slip boundary layers is false.

Rotational Slip Separation

The key to understanding bluff body flow is its description as potential flow modified by ro-
tational slip separation as a generic quasi-stable gross pattern flow resulting from a generic
instablity of potential flow at separation [6]. The large eddy flow in the vicinity of the body thus
shows to be resolvable computationally with millions of mesh points with quasi-stable features
and total turbulent dissipation under mesh refinement. The turbulent dissipation occurs mainly
in the far-field wake which increases in length under refinement, keeping total dissipation nearly
constant, without changing the total pressure on the body. The flow field thus appears as a
bride sweep which gets longer under refinement without changing drag or lift on the body.

References

[1] L. Euler, Principes generaux du mouvement des fluides, Memoires de l’academie des sciences
de Berlin 11, 1757, pp. 274-315

[2] J. Hoffman, J. Janson and C. Johnson, New Theory of Flight, submitted to J. Math Fluid
Mech.

[3] J. Hoffman and C. Johnson, Computational Turbulent Incompressible Flow, Springer 2008.

[4] N. Jansson, J. Hoffman, J. Jansson, Framework for Massively Parallel Adaptive Finite El-
ement Computational Fluid Dynamics on Tetrahedral Meshes, SIAM J. Sci. Comput., Vol.
34(1), pp. C24-C41, 2012.

[5] J. Hoffman, J. Jansson and R. Vilela De Abreu, Adaptive modeling of turbulent flow with
residual based turbulent kinetic energy dissipation, Computer Methods in Applied Mechanics
and Engineering, Vol.200(37-40), pp.2758-2767, 2011.

[6] J. Hoffman and N. Jansson, A computational study of turbulent flow separation for a cir-
cular cylinder using skin friction boundary conditions, Quality in Large Eddy Simulation II,
ERCOFTAC Series Vol.16, Springer, 2011.

[7] L. Prandtl, Motions of fluids with very little viscosity, NACA Technical Memorandum 452,
1904.

174



Figure 1. The velocity field of DFS with 3 million mesh points for an landing airplane at large angle of
attack (20 degrees) and low subsonic speed.

Figure 2. Comparison between simulation and experimental observation: pressure distribution around
the above wing with flaps.
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Figure 3. Quasi-stable rotational slip separation for slightly viscous incompressible flow around a circular
cylinder with the length of the turbulent wake increasing under refinement keeping total dissipation
constant.

Figure 4. Corresponding surface pressure distribution showing stability of total pressure under mesh
refinement.
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Summary. During the last years, offshore wind turbine structures were reported to settle on the
monopile structure and the resulting force flow in the structures became different to that intended at
the design stage. A joint industry project was therefore carried out by DNV to investigate the struc-
tural capacity of these connections from autumn 2009 to January 2011. It was found that the axial
capacity of the grouted connections is a more sensitive function to the diameter and surface tolerances
than that accounted for in existing design standards. Based on this experience a design procedure with
conical shaped connections was developed. In January 2011 another joint industry project on capac-
ity of cylindrical shaped grouted connections with shear keys was initiated. In this project analytical
design equations were developed both for the Ultimate Limit State and the Fatigue Limit State. The
recommended design methodology was supported by a number of laboratory tests. It was found that also
the design documentation for grouted connections between piles and sleeves used in traditional jacket
structures had to be improved. Some of the experience from these projects is presented in this paper.
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Introduction

During the last years, the offshore wind industry experienced that the design of the grouted
connections between the transition piece and the monopile did not result in an acceptable safety
level. A grouted connection is used to connect the transition piece to the monopile as indicated
in Figure 1. A transition piece is installed on top of the monopile resting on temporary supports.
The transition piece is then jacked up to the correct verticality before the grouting is carried
out. After curing, the jacks are removed, leaving a gap between the temporary supports and the
monopile. Most of the grouted connections between the transition piece and the monopile are
grouted plain cylindrical connections made without using shear keys. Shear keys are normally
used in grouted connections in jacket structures for transfer of load from the structure to the
piles. By shear keys are understood use of circumferential weld beads around the piles and
around the inside of the sleeves in the jacket structure such that sliding between steel and grout
is restricted. The axial force due to the self-weight of the structure above the grouted connection
in monopiles is in general relatively small. The moments have been assumed to be transferred
mainly through contact forces (as force couples) and due to relevant friction between the steel
and the grout surfaces [1]. The grouted connection is designed with a rather large diameter.
Although the thicknesses of the transition piece and pile are large, the resulting diameter to
thickness ratios is also large - and larger than those traditionally used in the design of jacket
structures, where these connections have a long positive experience record.

The stresses in the monopile due to the bending moment from wind and wave loading can be
more than one order of magnitude larger than those due to the axial load alone. Owing to the
large diameter to thickness ratio, the grouted connections become rather flexible with respect to
bending moment and a radial cracking of the grout may be expected. Some opening and sliding
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Figure 1. Principle of grouted connection in monopile structure.

between the steel and the grout may also be expected due to the flexibility of the connection
when subjected to a large bending moment.

Joint industry projects on capacity of grouted connections in monopiles

During 2009 the axial capacity of large diameter plain grouted connections in monopile structures
became questioned. Based on uncertainty related to capacity of these connections, a joint
industry project was initiated regarding the capacity of large diameter grouted connections
in offshore wind turbine structures (for plain connections without shear keys). This project
was started in November 2009 and finished in January 2011. A design methodology based on
grouted conical connections was established in this project [2, 3, 4]. This design methodology
was included in the DNV standard in 2011 [1]. During early 2010 it was confirmed by inspection
that a number of wind farms with plain grouted connections had settled such that the temporary
supports were again resting on the top of the monopiles, ref. Figure 1, and the force flow through
the structures was different from that assumed in design. The unintended force transfer through
temporary supports has led to concern about fatigue cracking in these structures which has lead
to costly repairs for the industry.

In January 2011 another joint industry project on capacity of cylindrical shaped grouted
connections with shear keys was initiated. In this project analytical design equations were
developed both for the Ultimate Limit State and the Fatigue Limit State for design of cylindrical
shaped grouted connections with shear keys. Results from this project are presented in [5, 6].
The recommendations from this project are now being included in the DNV standard for wind
turbine structures.

Testing of large diameter connections

Most of the laboratory fatigue tests on grouted connections with shear keys reported in the
literature was performed with specimens with a diameter less than 400 mm. It has been ques-
tioned whether these specimens were representative for the structural behaviour of large diameter
grouted monopile connections which are subjected to a static axial load and a significant dynamic
bending moment. Therefore an effort was made to design test specimens with a representative
radial stiffness similar to that of grouted connections of large diameter piles in the order of 5
meters or even larger.
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Figure 2. Box test specimen for simulation of large diameter connection.

From laboratory testing of grouted connections it has been observed that compression struts
are developed in the grout between shear keys on the transition piece and the pile. These
struts are rather stiff compared with the radial stiffness of the pile and the transition piece.
Therefore the radial deflection is mainly governed by the thickness of the steel, the geometry
of the connections in terms of radius, grout thickness; shear key geometry and Youngs modulus
for the steel. From this information it was possible to design box specimens that could simulate
the structural behaviour of large diameter connections. Reference is made to Figure 2 showing a
photo of a box specimen. This figure also shows a vertical and a horizontal section through the
grouted section. The box specimens were designed with a full size grout thickness of 100 mm,
full size of shear keys (height = 12 mm) and a distance between the shear keys similar to that
used in the full size structures. Because of the symmetry two volumes of grouted connections
were tested as shown in Figure 2. The 180 mm wide plates shown in the horizontal section of
Figure 2 were designed with a stiffness that gave a similar resistance against transverse pressure
as that of radial resistance in large diameter connections. Four box specimens were designed,
fabricated and tested under reversed cyclic loading in the joint industry project. The stiffness of
the box tests corresponds to that of cylindrical diameters of approximately 800 mm, 2200 mm
and 5000 mm.

Grouted connections in jacket structures

The design of the grouted connections in jacket structures has until recently been based on a
control of capacity with respect to axial force in the pile while the effect of the bending moment
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has been neglected, ref. ISO 19902 [7, 8]. In later design of grouted connections it is observed
that the moments in the piles can contribute to more than two times larger stress in the pile
than that due to axial load only. A significant moment can hardly be transferred from the pile
to the sleeve without sliding of the steel against the grout. This sliding is considered to increase
with increasing diameter of the pile. Therefore it is difficult to develop design criteria based
on small scale testing. The contact pressure between grout and steel will lead to compressive
and tensile stresses in the grout. This requires design criteria for compressive stress and tensile
stress in the grout.

Based on a review of capacity of grouted connections the following revisions and additions
were made in Norsok N-004 Annex K during 2013 [9, 10]:

• The capacity for axial load in connections without shear keys is revised as earlier capacity
was non-conservative for assessment of contribution to capacity from plain pipes.

• A check is included for compressive stresses at the lower end of the grout due to bending
moment and shear force in the pile.

• A check is included for fatigue assessment of grouted connection for alternating interface
shear stress due to axial load and bending moment in the pile.

• A check on fatigue of the grout due to compression and shear stresses at the lower end of
the grout due to shear load and bending moment in the pile is included.
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Summary. This paper focuses on the application of isogeometric analysis to model frictionless large
deformation contact between deformable bodies and rigid surfaces that may be represented by analytical
functions. The contact constraints are satisfied exactly with the augmented Lagrangian method, and
treated with a mortar-based approach combined with a simplified integration method to avoid segmenta-
tion of the contact surfaces. The spatial discretization of the deformable body is performed with NURBS
and C0-continuous Lagrange polynomial elements. The numerical examples demonstrate that isogeo-
metric surface discretization delivers more accurate and robust predictions of the response compared to
Lagrange discretizations.

Key words: Isogeometric Analysis, NURBS, Contact Mechanics, Mortar Method, Elastoplasticity

Introduction

Large deformation contact problems in general involve geometrical, material and contact non-
linearities, which need to be solved simultaneously. Non-smooth C0-continuous finite element
discretization techniques still constitute the most widely used approach in solving computational
contact problems. In order to improve the performance of contact algorithms, various smoothing
techniques have been proposed based on, e.g., Hermite C1, Bézier and NURBS discretization of
the contact surface. Although surface smoothing improves the evolution of the contact pressure,
these approaches in general do not preserve consistency between volume and surface discretiza-
tion. Within the framework of isogeometric analysis, which was introduced by Hughes et al. [3],
smooth surface discretization can be achieved by representing the contact geometry by a NURBS
surface that is directly inherited from the NURBS discretization of the volume.

The robustness of contact computations also depends on an accurate and smooth description
of not only the contact geometry but also the contact pressure. It is well-known that node-to-
surface (NTS) contact formulations is affected by several pathologies, and has been shown not to
satisfy the contact patch test, which implies that mesh refinement does not necessarily increase
the accuracy of the contact pressure. Several improvements to the NTS (or knot-to-surface, KTS,
for isogeometric analysis) have been proposed, but they either do not satisfy the contact patch
test or cause LBB-instability. However, the more recent mortar-based approaches constitute a
method for consistently treating the global and local contact interaction, satisfying both the
patch test and LBB-stability, albeit at a higher computational cost [2].

The penalty (PL) method is the simplest and apparently the most widely used approach for
solving contact problems. It leads to a pure displacement formulation where the constraints are
enforced approximately. Furthermore, ill-conditioning may appear as the penalty parameter is
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increased in order to improve the satisfaction of the contact constraints. To avoid the draw-
backs of the PL method, the augmented Lagrangian (AL) method may be adopted. There are
two solution schemes commonly used in the context of the AL method. The so-called Uzawa
method, which combines the AL regularization with a first-order update of the Lagrange mul-
tipliers. Alternatively, a Newton-like solution scheme can be applied to solve the saddle-point
problem for the displacements and Lagrange multipliers simultaneously as proposed by Alart
and Curnier [1]. In view of the ascertained drawbacks of a non-mortar approach, we apply a
mortar-based approach to satisfy the contact constraints combined with the latter version of the
AL method, which is characterized by a remarkable degree of robustness and yields an asymp-
totic quadratic convergence rate in the Newton iterations. For comparison purposes, we have
also implemented the PL method and C0-continuous Lagrange polynomial elements. In this
paper mortar-based isogeometric analysis as formulated by De Lorenzis et al. [4, 5] has been
used to model finite deformation elastoplastic contact problems between deformable and rigid
bodies.

Numerical results

A large deformation plain strain example is considered to demonstrate that isogeometric sur-
face discretization delivers more accurate and robust predictions of the response compared to
Lagrange discretization. A rigid cylinder is pressed vertically into a slab (v = −0.075) and then
moved in the horizontal direction (u = 2). The problem has been assessed in the finite deforma-
tion regime with two different material models. First, the standard compressible neo-Hookean
hyperelastic material behavior is assumed for the slab, with material parameters E = 1 and
ν = 0.3. Second, we consider a J2−finite strain model expressed in principal stretch form, which
represents a hyperelastic extension of J2−flow theory with a standard neo-Hookean model for
the elastic part, and nonlinear isotropic hardening with an associative flow rule based on von
Mises yield criterion with isotropic hardening following a saturation law for the plastic part.
The nonlinear isotropic hardening rule is defined in terms of the yield stress in uniaxial tension,

σy = σ0 + (σ∞ − σ0) (1− exp(−βep)) , (1)

where σ0 = 79.66 is the initial yield stress, σ∞ = 171.26 is the residual yield stress, β = 17.8
is the saturation exponent and ep is the equivalent plastic strain. The material parameters
corresponds to an approximation of a two term extended Voce rule that was used to model
aluminum alloy AA6060 typically used in bumper systems for cars.

The rectangular slab that is fixed at the bottom has width W = 3.0 and height H = 1.0,
while the radius of the rigid cylinder is R = 0.5 (see Figure 1a). The slab is analyzed using
NURBS and Lagrange basis functions of order p = 2, 3, 4, since for p = 1 NURBS and Lagrange
approximations coincide. All NURBS and Lagrange discretizations include 49 basis functions
in the horizontal and 25 in the vertical direction, respectively. We employ a standard Qp pure
displacement formulation for both the NURBS and Lagrange discretizations of the slab with p+1
Gauss-Legendre quadrature points in each direction within each knot span/Lagrange element.

A similar problem has also been studied by De Lorenzis et al. [4]. However, they consider
the cylinder being elastic (E = 1000 and ν = 0.3), account for friction (µ = 0.3) and employed
the PL method. Therefore, for the hyperelastic case, we cannot expect full compliance with the
results obtained in [4].

Since for the hyperelastic case the Lagrange discretization fails due to divergence for p = 4,
the solution in terms of strain energy versus horizontal displacement of the cylinder for NURBS
and Lagrange discretizations presented in Figure 1b only shows results obtained for quadratic
and cubic order. The plot of the strain energy demonstrates the remarkable smoothness obtained
with the NURBS discretizations, while in contrast the Lagrange solutions are stiffer and expe-
rience oscillations. We observe that Lagrange discretizations exhibit oscillations that increase
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Figure 1. Ironing problem: a) Geometry and boundary conditions for the ironing problem. b) Strain
energy for quadratic and cubic order NURBS and Lagrange discretizations for the elastic case. c) External
energy for quadratic, cubic and quartic order NURBS and Lagrange discretizations for the elastoplastic
case. d) Maximum equivalent plastic strain for quadratic, cubic and quartic order NURBS and Lagrange
discretizations for the elastoplastic case.

with polynomial order of the basis functions, while in contrast for NURBS oscillations dimin-
ish with increased polynomial order. As a result Lagrange discretizations exhibit convergence
problems in the Newton iterations while for NURBS the smoothness of the contact pressure
increases monotonically with the order of the basis functions. The obtained results stem from
the higher degree of smoothness which is achieved by representing the contact geometry by a
NURBS surface that is directly inherited from the NURBS discretization of the volume.

Figure 1c shows the solution in terms of external energy versus horizontal displacement
obtained for the elastoplastic material. In contrast to the elastic case the external energy is
similar for all discretizations. Figure 1d shows the maximum equivalent plastic strain versus
horizontal displacement obtained for the various discretizations.

Finally in Figure 2 the L2-projected equivalent plastic strain is plotted on the deformed
configurations for an imposed horizontal displacement of the cylinder u = 0, u = 1 and u = 2 for
the quadratic order of NURBS and Lagrange discretizations, respectively. All results are shown
with different scales adapted to the minimum and maximum values obtained in each case. For
the Lagrange discretizations, we can clearly see oscillation patterns in the solution field for
the equivalent plastic strain, while in contrast the NURBS solutions are smooth. Although we
observe oscillations in the equivalent plastic strain, the global measure in terms of energy is
almost coinciding between the various Lagrange and NURBS discretizations.
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a) b)

c) d)

e) f)

Figure 2. Ironing problem – Equivalent plastic strain: a) Q2 Lagrange, u = 0. b) Q2 NURBS, u = 0. c)
Q2 Lagrange, u = 1. d) Q2 NURBS, u = 1. e) Q2 Lagrange, u = 2. f) Q2 NURBS, u = 2.
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Summary. A review of recent developments in flexibility-based component mode synthesis (F-CMS)
methods is presented. It is shown that F-CMS methods rely on the partitioned solution methods (e.g.,
FETI-based algorithms) such that both the implementation overhead and solution methods are compet-
itive with respect to the stiffness-based Craig-Bampton method. Accuracy of the F-CMS methods are
shown to be superior to existing S-CMS methods, with an associated mode selection capability inherent
with the F-CMS methods. To date, no such mode selection method is available for the Craig-Bampton
method.

Key words: component mode synthesis, flexibility-based, mode selection criterion

Introduction

Historically, after the birth of the structural analysis software labeled as the NASA STRuctural
ANalysis (NASTRAN) based on the stiffness method during the mid-1960s [1, 2], the classical
force method began its steep decline [3]. During the 1990s a new computational paradigm for
exploiting parallel computers gave birth to new solution methods now labeled as domain decom-
position methods. Of a plethora of domain decomposition methods, the finite element tearing
and interconnecting (FETI) method [4] and its subsequent refinements are perhaps one of the
most popular parallel solution algorithms for structural analysis on parallel machines. From a
viewpoint of the present work, the flexibility matrix that is employed to accelerate the solu-
tion process by a family of FETI methods spurred a reemergence of flexibility-based methods,
labeled as dual formulation to the displacement-based method. We hold a view that flexibility-
based methods should extend their applicabilities much beyond the parallel algorithms. While
the potential of flexibility-based methods would extend far beyond the parallel algorithms, the
present paper focuses on a specific extended application of flexibility-based methods, namely,
flexibility-based component mode synthesis (F-CMS) construction of large-scale structural dy-
namic equations, which offers improved accuracy and robustness, and at the same time a mode
selection criterion [5, 6, 7, 8]. Numerical performance indicates that the F-CMS method offers
higher accuracy for low dominant modes as compared with the stiffness-based S-CMS [9].

Representative results

An example problem for the reduced-order model construction involving a hemispheric shell is
shown in Figure 1, which is partitioned into 4 uneven substructures. The target accurate number
of modes is set to be 20 and a reduced-order model consisting of 128 and 190 unknowns is used
(out of 4000 degrees of freedom for the finite element model). As indicated in Figure 2, large
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errors for modes 9 and 10 are observed without the use of the proposed mode selection criterion.
Subsequent improvements by utilizing the proposed mode selection criterion are achieved as
shown in the same figure. Formulation details and the use of mode selection guides will be
presented at the seminar.
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Figure 1. Hemisphere shell problem with two different partition types shown in (a) and (b) (H = 3.804m,
R1 = 2m, R2 = 0.618m, h = 0.05m, E = 69GPa , ν = 0.35, and ρs = 2700kg/m3). Here, Ωj and Γ
denote the jth substructures and the interface boundary, respectively.
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Summary. Recent incidents on the Norwegian shelf showed that the inner steel structure of a flexible
riser, the carcass, can experience extensive axial loading. This resulted in carcass overload followed by
a spin-out and eventually tear-off at the carcass end followed by shutdown of production. The carcass
axial tension capacity has previously not been considered a critical design issue for flexible pipes. The
incidents resulted in an extensive program, initiated by Statoil, to find the root cause of the problem.
Both analytical and computational efforts validated through extensive testing of carcass axial capacity
has been conducted. Advanced finite element analysis was used to establish both the carcass capacity
and also the load level as a function of pitch length. The numerical results are compared and validated
towards experimental data. The results form a basis to suggest operational policies to mitigate the risk
of new failures.

Key words: flexible risers, carcass capacity, finite element analysis

Introduction

Between the years 2010-11 Statoil experienced a number of carcass failures in flexible risers at
their facilities on the Norwegian shelf, Farnes et al.[1]. An inspection program for the remaining
production risers was launched, using internal visual inspection, carcass pitch measurements
tools etc. Inspections showed carcasses that had been torn off in or close to the end-fitting.
The axial overloading resulted in un-spiraling along a substantial length of the carcass. To the
authors’ knowledge, the observed deficiency represents a new failure mode previously unknown
to the industry. Although, comparable failures have been seen in flexible pipes blocked by e.g.
hydrates and exposed to large differential pressures. However, the newly observed scenario has
not been properly addressed in design, manufacturing, installation and operation of the risers.
An extensive investigation was initiated by the operator Statoil to identify the failure mechanism
and the load effects leading to carcass tear-off. The investigation has been performed as a joint
effort by expertise from Statoil, 4Subsea, DNV and Sintef.

To evaluate the carcass axial load present in risers offshore and when investigating recovered
pipes, it has been of great importance to establish measurable relations such as carcass pitch
length as a function of axial loading. In the following sections, analysis covering a range of
carcass dimensions and materials is discussed.

The current paper only addresses one part of the systematic failure mode investigations,
namely the carcass axial capacity and pitch/strain indicators. A more complete picture and
especially the load scenario that eventually leads to un-spiraling of the carcass is discussed in
Farnes et al. [1]. The carcass axial tension capacity is also discussed in Skeie et al. [2].
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Finite Element Analysis

Finite Element Analysis (FEA) complements testing in the way carcass tear-off is understood.
Physical testing has been important for assessing the structural capacity of the carcass and
the test results also forms the basis for validation of carcass capacity assessment using FEA.
Further, the test results serve as assessment of the load acting on the carcass from pitch length
measurements. The FEA allow for variation in parameters, alignment and tilting, that are hard
to include in a physical test.

The carcass models were analyzed using two different solvers; DNV used Abaqus/Explicit
from Dassault Systèmes (2011), while 4subsea used Marc (implicit), MSC Software (2012). The
different carcass geometries listed in Table 1 were modeled based on cross-sectional as-built
records or images taken from extracted samples of the carcass profiles, Figure 1. The two

Type of carcass Inner diameter Profile dimensions Carcass material

A 6 inch 23.4× 4.0× 0.8 316L
B 6 inch 29.1× 5.4× 0.9 316L
C 8 inch 27.1× 5.1× 1.0 316L
D 8 inch 27.1× 5.1× 1.0 316L
E 9 inch 27× 6.0× 1.2 Duplex
F 9 inch 34.9× 7.5× 1.5 316L

Table 1. The carcass as-built properties.

solvers require different methods for setting up the analyses; however the general modeling is
similar. Figures 1 and 2 shows the different FE models:

• The 2D carcass profile is extruded with a pitch to form the 3D carcass spiral.

• Both ends of the carcass profile are constrained using a rigid coupling through tying’s or
rigid surfaces.

• The model is meshed using linear hexahedral elements 2 and 5 elements through the
thickness for Marc and Abaqus/Explicit, respectively. Further,

– Abaqus/Explicit used elements with reduced integration and enhanced hour-glass
control. The Marc solver used first order full integrated hex elements including an
assumed strain formulation.

– The mesh density was set to capture the physical behavior of the carcass during local
to full plasticity of the carcass profile. Also to capture stress concentrations small
radii have been modeled with a dense mesh.

• Contact including friction was modeled between all interacting faces.

The explicit method requires control of the dynamic effects in a quasi-static simulation. In
Abaqus/Explict the time step and loading amplitude was adjusted to reduce the dynamic re-
sponse in the system. Mass scaling was used to optimize the time increment size, but kept
sufficiently low to avoid relative mass change exceeding 10%.

All of the modeled carcasses were made from 316L stainless steel, except one that was
prepared in duplex stainless steel. Young’s modulus was set to 210 GPa and Poisson’s ratio
0.3. Plastic properties of 316L were taken from material tests on specimen extracted from the
fabricated carcass. The yield strength of 316L was found to be 527 MPa, while for duplex it
was found 790 MPa.
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Figure 1. Modeling of the carcass geometry in Abaqus.

In the Abaqus analysis the same hardening curve was used for the whole mesh. In the
Marc analysis the profile bends was given a work hardened higher yield strain, while the rest is
modeled as in Abaqus.

Results from the tests and the FE analyses are summarized in Table 2 and show good
agreement with the experimental tests, typically within ±10%. Figure 3 includes a comparison
between the FE and test results. The FE results show good agreement to the test results,
which shows that the axial failure of a thin plate structure with large plastic deformations may
be analyzed by 3D finite elements with high accuracy. The accuracy depends upon access to
as-built carcass profile geometry and relevant material data.

ID Strip
thickness

Material Axial load capacity [kN]

[“] [mm] Test MSC Marc Abaqus/Explicit

6 0.8 316L 54 57 55
6 0.9 316L 78 76 76
8 1.0 316L 86 89 84
9 1.5 316L 160 169 146
9 1.2 Duplex 155 165 Not

Analyzed

Table 2. Summary of results from tests and FE analyses.

Observations

Finite element analysis has been performed on a number of carcass geometries and the results
comply well with experimental results. Numerical analysis complements the experimental work
and allows effective investigation of sensitivities related to geometric configurations and material
parameters. The pitch versus load relation can be used to evaluate data from inspection that
can be used to support further operation and thus to mitigate the risk of loss of containment
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Figure 2. Modeling of the carcass geometry in Marc.

Figure 3. Carcass FEA results compared to tests, test capacity marked with red arrows.

from carcass tearing.
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Summary. The new paradigm of Isogeometric Analysis, which was introduced by T. Hughes et al. [1],
demonstrates that much is to be gained with respect to efficiency, quality and accuracy in analysis by
replacing traditional finite elements by volumetric NURBS. Herein, we describe techniques that add
vitality to the proposed Isogeometric Analysis concept by use of locally refined splines (LR B-splines)
and immersed boundary techniques.
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Introduction

Computer Aided Design (CAD) and Finite Element Analysis (FEA) are essential technologies
in modern product development. However, the interoperability of these technologies is severely
disturbed by inconsistencies in the mathematical approaches used. The main reason for incon-
sistencies is that the technologies evolved in different communities with the focus on improving
disjoint stages in product development processes, and taking little heed on relations to other
stages. Efficient feedback from analysis to CAD and refinement of the analysis model are essen-
tial for computer-based design optimization and virtual product development. The current lack
of efficient interoperability of CAD and FEA makes refinement and adaptation of the analysis
model cumbersome, slow and expensive.

The new paradigm of Isogeometric Analysis, which was introduced by T. Hughes et al. [1],
demonstrates that much is to be gained with respect to efficiency, quality and accuracy in
analysis by replacing traditional finite elements by volumetric NURBS1 elements. However,
NURBS are not flexible enough to be a common basis for future CAD and FEA due to the lack
of local refinement. The recently proposed LR B-splines [2] have the potential to add versatility
by facilitating adaptive refinement based on a posteriori error estimates [3]. Furthermore, the
immersed boundary technique [4, 5] (see description related to the second example below) may
free the analyst from time consuming work related to establishing a body fitted block mesh.

1NURBS – Non-Uniform Rational B-splines, the generic representation of free-form curves and sculptured
surfaces in CAD-systems.
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Uniform pressure, pz = 1000.0

Internal crack, � = 0.2

Geometry: Length and width: 1.0
Thickness: t = 0.01

Material: E = 2.1× 1011

ν = 0.3
D = Et3

12(1−ν)

Figure 1. Simply supported square plate with an internal crack and uniform pressure load.

Numerical examples

Square plate with internal crack

Figure 1 shows a simply supported square plate with an internal crack, subjected to a uniform
pressure load. The crack is modelled by enforcing the multiplicity p of the LR B-spline mesh
lines along the crack, such that the geometry (and solution) here becomes C−1 continuous. This
introduces a singularity in the solution at each crack tip.

To catch these singularities in the FE solution, it is necessary to focus the degrees of freedom
around the crack tip. This is most effectively done through some adaptive refinement scheme,
where we refine the mesh based on a computed error estimate. Herein, we use the energy norm
error �e∗� =

�
a(w∗ − wh, w∗ − wh), where w∗ represents an enhanced solution obtained by a

global L2-projection of the FE bending moments, mαβ
h onto the Cp−1 continuous basis of the

primary solution, wh.
In Figure 2a) we plot the convergence of the energy norm error for four different simulations;

two uniform refinements with quadratic and cubic basis functions, respectively, and two adaptive
refinements with the same basis. We here clearly see that through adaptive refinement, the LR
B-spline basis is able to reproduce the theoretical convergence rate governed by the polynomial
order (illustrated by the two triangles in the plot), whereas the uniform refinement completely
fails to do so. The refined mesh around the crack after 5 adaptive steps is shown in Figure 2b)
for the case with quadratic basis functions.

a) b)

1.0

1.0

1.0

0.5

Figure 2. Results for the cracked square plate: a) Convergence of the global relative error for two
adaptive simulations and two uniform refinement simulations, using quadratic (p = 2) and cubic (p = 3)
LR B-spline elements. b) 5th adaptively refined mesh around the crack for the quadratic (p = 2) case.
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Geometry: Length: 10.0
Width: 6.0
Thickness: t = 0.1
Holes: D1 = 2.0, D2 = 1.0, D3 = 1.2

Material: E = 2.05× 1011

ν = 0.29

Figure 3. Rectangular plate perforated by three circular holes (initial mesh). The three holes (D1, D2, D3)
are centered at the points (2.0, 2.0), (5.1, 4.4) and (6.3, 1.7), respectively, w.r.t. the lower-left corner.

Perforated rectangular plate

In the next example we consider a simply supported rectangular plate perforated by three
circular holes as illustrated in Figure 3, and subjected to a uniform pressure load.

The three holes are here not modelled physically in the grid, but are resolved using the
Immersed boundary technique [4, 5]. The physical object is then immersed in a Cartesian
regular grid. Each grid cell which is intersected by the physical boundary, is subdivided into
2n sub-cells, in a quadtree/octree manner (n denoting the number of spatial dimensions). The
subdivision is repeated a given number of levels (k) for those sub-cells that are still intersected
by the boundary. A Gauss quadrature scheme is then imposed on the leaf sub-cells, whereas the
FE basis is still according to the regular Cartesian grid.

Only the integration points that are inside the physical domain are included in the FE com-
putations as indicated in Figure 4. Some basis functions may also have support entirely outside
the physical domain. Those functions might be automatically detected, and the associated DOFs
are eliminated as unknowns a priori. The same set of integration points as used for the stiffness
matrix is used in the global L2-projection, and subsequent error norm integration.

In the current analyses, we are using a maximum quad-tree depth equal to 5, and a 4 × 4
Gauss scheme on the finest sub-cells for both quadratic and cubic splines Uniform refinement is
conducted on a series of grids ranging from 10×6 (as shown in Figure 3) to 160×96 knot-spans.
This is compared with adaptive refinement using LR B-splines and 6 refinement steps. The 20%
elements having the highest error are refined in each step. Results in terms of convergence of
the energy norm error for the four different simulations and bending moment distribution on
the 5th adaptively refined cubic mesh are shown in Figure 5.

Figure 4. The immersed boundary concept. (Figure from [4].)
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Figure 5. Results for the perforated rectangular plate: a) Convergence of the global relative error for
two adaptive simulations and two uniform refinement simulations, using quadratic and cubic LR B-spline
elements. b) The mxx moment distribution on the 5th adaptively refined mesh for the cubic case.
The fringe range is from −100.0 (blue) to 2400.0 (red).
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[4] D. Schillinger, L. Dedè, M. A. Scott, J. A. Evans, M. J. Borden, E. Rank, and T. J. R.
Hughes. An Isogeometric Design-through-analysis Methodology based on Adaptive Hierar-
chical Refinement of NURBS, Immersed Boundary Methods, and T-spline CAD Surfaces.
Computer Methods in Applied Mechanics and Engineering, 249–250:116–150, 2012.

[5] D. Schillinger, M. Ruess, N. Zander, Y. Bazilevs, A. Düster, and E. Rank. Small and
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Summary. Injection of cold fluid into hot geothermal reservoirs can be formulated as conservation laws.
The cold front velocity induced during injection has been computed in [6] from conservation of energy
and the method of characteristics applied to an initial boundary value problem. This computed thermal
front velocity is expressed as the ratio of two integrals. In this paper we present a new method for
computing the thermal front velocity by solving a Riemann problem. We show that the unique solution
of the Riemann problem moves at the speed equal to the thermal front velocity. Our result is computed
from the Rankine-Hugoniot shock condition and is much easier to evaluate. It only depend on the flux
function of the conservation laws, the injected fluid temperature and the reservoir temperature. A relative
error of magnitude 10−3 was observed between the two results and the upper bound error of our result
converges at least 133 · 104 times faster to zero then the one obtained in [6]. Convergence rate of about
2 was found when validating the numerical integration using the trapezoidal rule.

Key words: Thermal front velocity, entropy condition, conservation laws

Introduction

In geothermal energy extraction, reinjecting colder fluid into the hot reservoir is an integral part
of resource management [1]. However due to cold injected fluid, cooling of the production wells
can occur, as observed in Beowawe, Nevada and the Geysers Geothermal reservoir in the US
[2], [3]. To mitigate this cooling effect, predicting the velocity of the cold water movement, is
an essential part of reinjection scheme. Bodvarsson [4] derived the thermal front velocity for
constant fluid and rock properties, using the characteristic method. This technique produces
non physical solution when the rock and fluid properties are temperature dependent. By using
the method of characteristics, Stopa and Wajnarowski solved an initial-boundary value problem
for the conservation laws [6]. They derived the thermal front velocity using conservation of
energy.

By formulating the injection problem as the well posed Riemann problem, we relied on the
well established theory of hyperbolic conservation laws. Rather than using the method of char-
acteristics, we used the unique solution for the Riemann problem given in [5]. This solution then
propagates at the speed equal to the thermal front velocity.

Governing equation

A single phase(liquid) fluid flow in porous medium is given respectively by the conservation of
mass and energy [7]:

∂(φρw(u))

∂t
+

∂

∂x
(ρw(u)uw) = 0 (1)
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∂

∂t
(φρw(u)cw(u)u+ (1− φ)ρr(u)cr(u)u) +

∂

∂x
(ρw(u)cw(u)uwu) = λ

∂2u

∂x2
(2)

where u is the temperature, cw(u), cr(u), ρw(u), ρr(u) are the heat capacity of water/rock and
density of water/rock respectively and given in [6]. φ, uw,λ are the porosity, the Darcy velocity
of liquid phase and the heat conduction coefficient respectively. Assuming that the flow is
convection dominated and neglecting conduction as second order effect [7], after rearranging
equation (2) we get

cw(u)u

�
∂φρw(u)

∂t
+

∂

∂x
(ρw(u)uw)

�
+

∂

∂t
((1− φ)ρr(u)cr(u)u) (3)

+φρw(u)
∂

∂t
(cw(u)u) + ρw(u)uw

∂

∂x
(cw(u)u) = 0.

Using (1), the first expression in (3) vanishes:

∂

∂t
((1− φ)ρr(u)cr(u)u) + φρw(u)

∂

∂t
(cw(u)u) + ρw(u)uw

∂

∂x
(cw(u)u) = 0. (4)

Applying the chain rule on (4) and rearranging the terms we end up with

∂u

∂t
+

uw
φ

F (u)
∂u

∂x
=

∂u

∂t
+

∂G

∂x
= 0 (5)

where

F (u) =
φρw(u)

�
∂(cw(u)u)

∂u

�

(1− φ)
�
∂(ρr(u)cr(u)u)

∂u

�
+ φρw(u)

�
∂(cw(u)u)

∂u

� (6)

Result from the theory of conservation laws

Injecting colder water into a hot geothermal reservoir can be formulated as a Riemann problem
associated to (5) : Find the unique solution u of

∂u

∂t
+

∂G

∂x
= 0, u(x, 0) = g(x) (7)

g(x) =

�
ul if x ≤ 0
ur if x ≥ 0 .

satisfying the Rankine-Hugoniot shock condition and the Kruzkov entropy condition [5]. From
[5] we have following theorem:

Theorem 1 The initial value problem (7) with flux function G(u) such that G∪,∩ �= G on finitely
many intervals alternating with interval where they coincide, has a unique weak solution given
by:

u(x, t) =





ul if x ≤ G�
∪(ul)t,

(G�
∪)

−1(xt ) if G�
∪(ul)t ≤ x ≤ G�

∪(ur)t
ur if x ≥ G�

∪(ur)t
(8)

If ul < ur, and:

u(x, t) =





ul if x ≤ G�
∩(ul)t,

(G�
∩)

−1(xt ) if G�
∩(ul)t ≤ x ≤ G�

∩(ur)t
ur if x ≥ G�

∩(ur)t
(9)

if ul > ur
where G∪ is the largest convex function on [ul, ur] smaller than or equal to G and G∩ is the
smallest convex function on [ul, ur] greater than or equal to G.
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Figure 1. F (left) and unique entropy solution u of (7) at t = 30 days (ul = 10, ur = 100)

Thermal front velocity

From Theorem 1, the unique solution of (7) is given by Figure 1 at t = 30 days. This solution
moves with speed s equal to the thermal front velocity VTF given by the Rankine-Hugoniot
shock condition [5]:

s = VTF =
G(ul)−G(ur)

ul − ur

=
Vw

(ur − ul)

�� ur

ul

F (u)du

�
, Vw =

uw
φ

. (10)

where F (u) is given as a function of temperature by (6) and Figure 1. The thermal front velocity
vTF was derived in [6] by using the characteristic method. Equation (7) was formulated as an
initial-boundary value problem. The solution is non physical since there are points with multiple
temperature values, see figure 2. A discontinuity was therefore inserted in the solution such that
the position z of the discontinuity satisfies conservation of energy [6]:

tvw

� ur

ul

U(u)F (u)du = z

� ur

ul

U(u)du (11)

setting vTF = z
t we get

vTF = vw

�∫ ur

ul
U(u)F (u)du
∫ ur

ul
U(u)du

�
(12)

with
U(u) = (1− φ)ρr(u)cr(u) + φρw(u)cw(u). (13)

Figure 2. Non physical solution from the method of characteristics. Graph obtained from [6]
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ul ur VTF (10
−5m/s) from (10) vTF (10

−5m/s) from (12) VTF − vTF

10 100 2.261 2.257 4 ∗ 10−8

55 100 2.15 2.15 0.0
10 55 2.370 2.369 10−8

30 70 2.264 2.263 10−8

Table 1. approximated values for evaluating (10) and (12) using the trapezoidal rule

n E1 (10−6) E2 E3 convergence rate E2/E1(10
6) E3/E1(10

6)

4 351 663.35 469.2 (E1): [1.99, 2.01, 1.98] 2.1 1.34
5 225 425.5 300.31 (E2): [2.00, 1.99, 2.02] 1.9 1.33
6 156 294.8 208.5 (E3): [1.99, 2.00, 1.99] 1.9 1.34
7 115 216 153.2 1.88 1.33

Table 2. Convergence test using the trapezoidal rule

Table 1 shows the values of the thermal front velocity for different range of temperatures.
In Table 2, E1 represent the upper bound error in evaluating (10) while E2 and E3 represent
the upper bound error in evaluating the upper and the lower integral in (12). E1 converge very
rapidly to zero than E2 and E3 as given by the ratio E2/E1 and E3/E1. E1, E2 and E3 where
evaluated using a C code implementation of (10) and (12). The convergence rate is about 2,
which is the order of the error of the trapezoidal rule.

Conclusion

For temperature dependent fluid and rock properties, injecting cold water into a hot geothermal
reservoir can be formulated as a Riemann problem . The thermal front velocity coincide with
the velocity of the discontinuity solution. Our result was compared with the result obtained
in [6]. The error in evaluating the thermal front velocity from our result goes rapidly to zero
compared with the error in evaluating the thermal front velocity obtained in [6].
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Mathematical model of single crystal growth
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Summary. Mathematical model of a specific crystal growth problem is proposed. It incorporates heat
transfer due to conduction, convection and a latent heat release and accounts for a jump in density due to
phase change. Numerical algorithm using finite-element (FE) method and some implementational issues
in FEniCS are presented.

Key words: solidification, heat transfer, FEniCS

Introduction

Vertical Bridgman method serves for a production of high-quality single crystals. Melted mate-
rial is slowly pulled through temperature gradient such that material crystallizes. In work [1] we
developed a model for a description of crystal growth in a particular Bridgman growth apparatus
shown in figure 1. Heating and cooling conditions and pulling rate need to be specifically chosen
to avoid homogeneous nucleation in a melt and to maintain phase interface being convex w.r.t.
solid phase (as shown in figure 1). Hence the aim of the model is to predict temperature field
in the system, position and shape of the phase interface.

Mathematical model

In figure 2 we present computational domains representing the system. On the domains occu-
pied by some fluid – i.e. Ω, Λ and Δ – we solve for heat transfer due to conduction and natural
convection, while in solid regions Φ, Ψ we solve merely heat conduction. Difference in a densities
of solid and liquid PbCl2 at melting point θm = 774 K is about 15%. As a result, the surface
∂Ω∩∂Λ changes its position within ampoule significantly during the whole process. This surface
is material, hence Boussinsq-like mass balance divu = 0 would not be compatible with veloc-
ity boundary/interfacial conditions on ∂Ω and ∂Λ. We therefore use pseudo-incompressibility
constraint instead so that we have balance equations

div(ρu) = α in Ω, Λ, Δ, (1)

ρu̇ = −∇p+ div µ
�
∇u+∇u�

�
− Su+ ρg in

�
Ω ∪ Λ

�◦
, Δ, (2)

ρceffp θ̇ = div(κ∇θ) in
�
Ω ∪ Λ ∪Δ ∪ Φ ∪Ψ

�◦
. (3)

Quantity α approximates −ρ� by a spatial constant in Ω and Λ separately and is taken as
zero in Δ. In fact, we choose its value explicitly every time step to enforce mass conservation of
PbCl2 in Ω.

All the coefficients ρ, µ, S, ceffp and κ are continuous functions of temperature, different in
all of the subdomains Ω, Λ, Δ, Φ, Ψ where applicable. Outside Ω, the coefficient S is zero and
effective heat capacity ceffp is merely heat capacity at constant pressure cp.
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Figure 1. Scaled layout of used Bridgman apparatus. Aspect ratio is not preserved. Only half-section is
shown – axial symmetry applies. On the right, four temperature profiles at the inner wall of furnace are
shown. The points are measured values and the lines are linearly extrapolated from two outer values.

202



z

Ω

Λ

Φ

Ψ

Δ

upull

z

Ω

Λ

Φ

Ψ

Δ

upull

g

Figure 2. Schematic layout of computational domains in subsequent times: Ω – crystal and melt, Λ –
protective atmosphere, Δ – air in furnace, Φ – ampoule, Ψ – holder; velocity boundary conditions:
no-slip, free-slip, not applicable; temperature boundary conditions: Dirichlet cooling
θ = 350 K, Dirichlet heating - see Figure 1, thermal insulation (zero Neumann condition).
Note that domains Ω∪Λ, Φ and Ψ are rigid and they are moving downwards with constant velocity upull

so that Δ is being deformed such that ∂Δ\(Φ ∪Ψ) stays at rest.

There are both solid and liquid phase in domain Ω. We simply choose small numerical
parameter ϵ of temperature dimension and let concentration of liquid phase be the approximate
C0 Heaviside function

c(θ) =





0 θ ≤ θm − ϵ�
θ−θm

� + 1
�
/2 θm − ϵ < θ < θm + ϵ

1 θ ≥ θm + ϵ

. (4)

Then we linearly interpolate material coefficients of solid and liquid PbCl2 using c(θ) to get
temperature dependence of ρ, cp and κ. We add a multiple of the approximate C0 Dirac-δ to
capacity cp so that we obtain effective capacity ceffp incorporating latent heat of crystallization.
No flow condition in solid phase c = 0 is enforced by Darcy-like forcing with S taking large
values for c = 0 and being zero for c = 1. Viscosity of liquid µ = µ(θ) can simply be extended
to a solid phase.

Similar enthalpy formulation with smeared latent heat has been suggesed by Gartling [2]
and Morgan [3]. Darcy-like forcing approach has been proposed by Voller and Prakash [4].
Pseudo-incompressibility constraint is being typically used in Earth sciences.
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Numerical algorithm

Problem (1)–(3) is transformed into a weak formulation using cylindrical coordinates thus ex-
ploiting axial symmetry of the growth system and making the problem two-dimensional. De-
paris [5] gives a technical treatment on the Stokes/Navier-Stokes problem of axially-symmetrical
flow and its FE discretization. We employ P2/P1/P1 spatial discretization.

The described model enables us to use a mesh not fitted to the phase interface. However,
there are moving parts in the system and a mesh needs to be deformed every time-step. We
use the Triangle library [6] to generate constrained Delaunay triangulation fitted to all the
interfaces between Ω, Λ, Δ, Φ, Ψ and deform it in subsequent time-steps – (i) to meet the
external constraint given by pull rate, (ii) to enforce a mass conservation of PbCl2 by moving
the melt surface ∂Ω ∩ ∂Λ, (iii) smoothing unconstrained vertices harmonically. When a mesh
becomes poor-quality, a new one is generated and the fields are projected to respective function
spaces. As a result, a projection error needs to be attenuated well, hence we employ backward
Euler temporal discretization. Also reference frame velocities need to be considered on a moving
mesh in a fashion of the ALE method.

The whole solution procedure is presented as algorithm 1. The algorithm was implemented
using the FEniCS library [7]. Support of coupled calculations on multiple subdomains is cur-
rently under active development in FEniCS. Nevertheless, there is an usual workaround we used
– (i) define unknown FE functions on a whole domain, (ii) eliminate redundant DOFs using the
(algebraic) Dirichlet constraint. This is not optimal as it wastes computational resources. Due
to this deficiency we also had to choose a possibly unrealistic interfacial condition – a continuity
of a tangential velocity on surface ∂Ω ∩ ∂Λ.

We have tried to develop a parallel implementation. As the FEniCS lacks a support for eval-
uation of a FE function on non-matching meshes (needed in a projection step while remeshing)
in parallel so far, we developed a workaround – serial-meshes branch of the DOLFIN library.1

It enables building serial DOLFIN objects out of parallel ones and vice versa. The projection
step is then performed by initializing a serial copy of a parallel function, performing supported
serial projection and finally reconstructing a parallel function. Hence this step does not scale
with available CPUs at all. Moreover, it requires that process performing a serial projection has
memory to accommodate a whole function and both whole meshes thus canceling the opportu-
nity to solve problems limited by memory demands using distributed memory. Next drawback
is that data transfer between parallel and serial parts of the procedure is performed using a file
system. All these properties are making this an inefficient, non-scalable hack.

Unfortunately, we did not succeed getting the parallel computation working reliably. We

1Available at https://bitbucket.org/blechta/dolfin.

prepare initial mesh;
compute initial condition;
while some liquid PbCl2 remains do // time-stepping

if mesh quality is poor then
create new mesh and project fields onto it;

end
pull rigid domains Ω ∪ Λ, Φ, Ψ downwards;
smooth mesh harmonically in Δ;
set reference frame velocity and no-slip condition in Δ;
move vertices on ∂Ω ∩ ∂Λ so that mass in Ω is conserved;
set reference frame velocity, no-slip condition and α in Ω, Λ;
solve field equations;

end
Algorithm 1: Algorithm of entire calculation.
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suspect an outdated OpenMPI library known to causing problems operating on the Karĺın
cluster2 although we cannot exclude possible bug in the our code, the FEniCS, serial-meshes
or a stack of other used libraries.

Resulting discrete nonlinear system was solved using FEniCS built-in Newton method with
an automatic differentiation and LU method for a solution of linear algebraic systems.

Results

Experimental measurements of temperature were performed by Král [8] on the system of interest.
Obtained numerical results were in a qualitative agreement with expected behaviour but quite
large discrepancies were observed in a comparison to the experimental results. We proposed two
sorts of possible explanations – (i) unrealistic boundary conditions for temperature on ∂Ψ were
used for our computations, (ii) the experimental arrangement influences two much the measured
system. To confirm or disprove suggestion (ii), numerical simulations using this experimental
arrangement could be run and compared to the performed simulations of the original growth
system. However, this would require additional development of an efficient preconditioning
algorithm, a transition to Krylov solver and other implementational tweaks – most notably
mesh generation and marking facilities – to handle 3D computations because the aforementioned
experimental arrangement does not preserve axial symmetry.
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Summary. This contribution presents the results of numerical simulations of thrombosis in a patient
specific cerebral aneurysm, deployed with stents of different porosity. The thrombosis models are based
on low wall shear stress constraint and high residence time of fluid. Simulations have been performed
with a massively parallel Lattice Boltzmann solver on 8192 cores of Intel Sandy Bridge processors. Our
studies show that the treatment of a cerebral aneurysm with a flow diverter stent induces thrombosis in
the aneurysm bulge, which is even more intense with a less porous stent, due to enhanced flow diversion.

Key words: cerebral aneurysm, stent, thrombosis, Lattice Boltzmann method

Introduction

A cerebral aneurysm is a weak balloon like bulging of the wall of a brain artery. Rupture of an
aneurysmal sac, termed subarachnoid hemorrhage (SAH) is a lethal condition and endovascular
treatments have proved to be a good alternative over surgical options for their cure. Deployment
of a flow diverter stent is one such treatment, the goal of which is to trigger the process of throm-
bosis inside the aneurysm by changing the local flow properties. Configuration and porosity of
the stent plays a significant role on the aneurysmal fluid dynamics and consequently on throm-
bosis. Thrombosis modeling is a multiscale problem and its application in a patient specific case
requires the use of efficient numerical techniques together with high performance computing
resources [1]. We employ the Lattice Boltzmann method (LBM) with thrombosis models based
on flow properties to qualitatively observe the changes in clotting inside an aneurysm bulge after
the deployment of a stent.

Numerical Method

The Lattice Boltzmann Method
The Lattice Boltzmann method, which is based on the mesoscopic representation of fictional
particle movements, is a numerical technique to simulate incompressible flows. The particles
collide and stream on a fixed grid and in fixed directions, each of which have discrete velocities,
to relax towards a thermodynamic equilibrium. Evolution of these particles over time is described
by the Lattice Boltzmann equation with the BGK collision operator:

fi(r + ciΔt, t + Δt) = fi(r, t) + Ω (f e
i (r, t) − fi(r, t)) (1)

where fi denotes the probability of finding a particle with discrete velocity ci at a position r
at time t. The indices which run from i = 1. . .Q denote the links per element i.e. the discrete
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directions, depending on the chosen stencil (D3Q19 in our case). The BGK collision operator Ω
implies a single relaxation time at which distributions fi relax towards the equilibrium f e

i :

f e
i = wiρ

�
1 + ci · u

c2
s

− u2

2c2
s

+ 1
2

(ci · u)2

c4
s

�
(2)

where wi are the weights for each discrete link, cs is the speed of sound in vacuum and u is the
fluid velocity.

Flekkøy model for convection-diffusion in LBM
The Flekkøy model for passive scalar transport [2] is analogous to the transport of distributions
within the LBM and is used in our thrombosis models to trace the age of the fluid. The transport
counterparts of eqns. 1 & 2 for the Flekkøy model read:

Δi(r + ciΔt, t + Δt) = Δi(r, t) + ΩD(Δe
i (r, t) − Δi(r, t)) (3)

Δe
i = wiρ

�
1 + ci · u

c2
s

�
(4)

where Δi represents the probability distributions for the species, u is taken from the underlying
fluid and the relaxation parameter ΩD is now dependent on the diffusion coefficient. For the
species, a reduced D3Q6 stencil is used. Since the convection-diffusion equation itself does not
contain any quadratic u terms, they are allowed to vanish in the equilibrium distribution Δe

i as
well. The kinematic viscosity and the diffusion coefficient are determined by:

ν = 1
6

�
2
Ω − 1

�
D = 1

6

�
2

ΩD
− 1

�
(5)

Thrombosis models based on flow properties

The thrombosis models used in this study are based on local flow properties namely Wall shear
stress and Residence time of fluid. An additional proximity condition is imposed on both these
models, which allows only those fluid elements to turn into solid which are already attached to
wall or previously formed clot. This condition ensures that no isolated clots appear in the center
of the domain or near the in/outlets.

Wall shear stress constraint
Thrombosis is believed to occur in areas of low wall shear stress (WSS) and being locally
driven by the blood shear rate near the vessel walls, which is controlled by a threshold [3]. This
threshold level is influenced by factors like platelets, tissue, physiology etc. [3]. The occurrence of
thrombosis in areas of low WSS is further supported by the fact that high shear can nevertheless
wash away the onset of thrombosis. Numerically, WSS is computed for each element in the vessel
to allow the decision for solidification together with the proximity condition.

Residence time model
Medical literature illustrates the coagulation of blood as a time dependent process [4]. The
reason is that the activated platelets and procoagulants which are present in the blood need
sufficient time to aggregate and form clots. This inspires the use of a residence time model as an
additional constraint to the WSS for thrombosis modeling [5]. The residence time is computed
by injecting a passive scalar, convection of which traces the age of the underlying fluid. The
decision for solidification of elements in this model thus depends on the residence time and WSS
thresholds along with the proximity condition.
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Simulation Parameters

The patient specific aneurysm and the stent geometry were provided as surface meshes in STL
format. Simulations were performed with our fully parallel Multiphysics framework Apes [6].
The mesh generation tool Seeder [7] created a voxelized mesh that was used by the LBM solver
Musubi [8] for computations, and finally visualized by the post-processing tool Harvester.

The stented aneurysm geometry is shown in fig. 1(a). For a reasonable resolution of the stent,
the mesh was discretized with cubical elements of δx = 65µm which resulted in nearly 45 million
fluid elements. Stent pores which are located towards aneurysmal sac are ∼ 585µm × 295µm
which gave us roughly 55 fluid elements between the pores, whereas the struts were resolved
with nearly 1 element. The parent artery diameter was Dartery ∼ 3.96mm. The simulation time
step was δt = 28.9µs and inlet velocity uin = 9.435 × 10−2m/s. Density and kinematic viscosity
of the blood were respectively set to ρ = 1025kg/m3 and ν = 3.8×10−6m2/s. The parent artery
Reynolds number was 50 based on Dartery, umean = uin/2 and the prescribed blood properties.
The simulations were performed using 8192 cores of the SuperMUC x86 cluster, at LRZ Munich.

Simulation Results

Thrombosis with wall shear stress constraint
Figure 1(b) shows the onset of thrombosis in the stented aneurysm with an upper WSS threshold
of 1.037 × 10−2Pa. The clotting was initiated after the simulation achieved a steady state and
the clots continued to grow up to nearly 8000 iterations after that.

(a) Stented aneurysm (b) Thrombosis
with 1 stent

(c) Cross section of 2 tele-
scoped stents

(d) Thrombosis
with 2 stents

Figure 1: Thrombosis with a wall shear stress threshold of WSS ≤ 1.037 × 10−2P a.

Telescoping stents
A common treatment for wide neck aneurysms is multiple stent-in-stent deployments which are
surgically carried out in a telescoping fashion [9]. Fig. 1(c) shows such an overlay of stents
which decreased the porosity of the original stent by ∼ 1.5×, and consequently increased the
clotting in the bulge dramatically for the same shear threshold (fig. 1(d)).

Thrombosis with residence time model
Figure 2 shows thrombosis growth in the aneurysm, post deployment of a single stent with
thresholds of tthr ≥ 3.88s & WSS ≤ 1.037×10−1Pa. Unlike the WSS model, the clots cultivated

Figure 2: Thrombosis progression with residence time model: 105, 2 ·105, 3 ·105 and 4 ·105, 6.6 ·105 time steps after clotting
initiation. Thresholds are tthr ≥ 3.88s & WSS ≤ 1.037 × 10−1P a. Complete bulge obliterated after 1.3 · 106 time steps.

in layers with this model to eventually obliterate the complete aneurysm bulge. Telescoping of
stents with this model showed similar results, but the complete occlusion was ∼ 1.4 times faster
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as the less porous stent did not only decrease the shear stress, but it also increased the residence
time of fluid inside the bulge markedly.

Conclusions

These results qualitatively show that stent deployment sparks the onset of thrombosis in a side
wall aneurysm and the technique of telescoping stents looks promising for treatment of such
aneurysms. The use of LBM seems very suitable for such simulations due to its ease in handling
complex boundary conditions and resolving a stent. The residence time model puts an additional
constraint to shear stress and mimics biology more meticulously as the clots grow in layers over
time. It is however too early to quantify the performance of different stents with the use of
time independent flow and assuming blood as a Newtonian fluid. Our future work will cover
investigations with pulsating flow due to cardiac cycle and non-Newtonian models on different
classes of aneurysms like those with bifurcation, with physiologically realistic parameters.
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Summary. In this paper, it is investigated how a surface layer of epoxy glue will affect the crack
propagation of a surface crack. The intension is to reduce or even stop the crack propagation by means of
patch layer coating. When adding a patch layer to the surface with small cracks, the layer will attempt
to clamp the free end of the crack, which will reduce the stress intensity factor and subsequently reduce
the crack growth. The considered patch consists of a surface layer of 0.2 mm two component adhesive
Epoxy, 3M DP 460. The models described in this work contains five different crack sizes with a patch
layer on the surface. The stress intensity factor is computed by means of the J-integral and the FE-model
is setup with a nonlinear material model to establish the upper boundary for the patch stress capacity.
A reduction of the stress intensity factor of approximately 2 % and a reduction of the crack growth of
5.4-6.1 % for crack sizes of 0.5, 1 and 2 mm is achieved by applying the patch layer. In the analysis,
cracks of 3 mm and 5 mm are rejected due to plastic strain in the patch layer, consequently the effect of
the patch layer is insignificant.

Key words: Patch repairing, Fatigue life, Stress intensity factor.

Introduction

Repairing of cracks with reinforced patches is applicable for several types of structures. In
the industry the reinforced patch repairing technique is often used where replacement of dam-
aged components is not possible. This is frequently the case in the aircraft industry where the
patch repairing method is used to repair cracks. Cracks, which are repaired with this tech-
nique will normally be fully developed, i.e. these cracks are about 1 mm, and in the case of
a surface crack they will be visible to the naked eye. The patch repairing technique is able
to stop or slow down the crack propagation in a damaged component. The major advantage
of the method compared to the hole-drilling method is that no additional stress concentration
field is established. Consequently the patch repairing technique is straightforward to implement.

The patch is usually a composite of epoxy and carbon fibers, where the epoxy connects the
carbon fibers to the steel or aluminum structure [1]. Further, the epoxy connects the fibers
together, and the fibers add stiffness and strength to the patch. Consequently, the addition of
fibers will unload the crack front significantly, by redistributing the stresses in the cracked area.
Thus, the crack propagation stops or slow down.

The succeeding study investigates how a surface layer of epoxy affects the stress intensity
factor. A patch layer at the surface can reduce the stress intensity factor because the layer will
attempt to maintain the crack surface together. Consequently, the implementation of a patch
layer before finishing with the original painting will slow down the rate of crack propagation [2].
It is the modulus of elasticity of the patch, which controls the reduction of the stress intensity
factor [3]. A limited reduction in stress intensity factor can change the crack growth significantly.
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Figure 1. a. Shows a non-loaded surface crack with a layer of coating, b. Illustrates a loaded crack with
coating.

Figure 1 a) shows a unloaded coated defect and Figure 1 b) shows the mechanical behavier
after loading. Normally the coatings modulus of elasticity is much lower than the component
material. Consequently, the coating will elongate and the crack surfaces will separate as shown
in figure 1 b).

As mentioned the modulus of elasticity controls the separation of the crack surfaces. The
modulus of elasticity of ordinary water-based coating is low compared to the epoxy-based coat-
ings. Further the epoxy-based coatings also has higher strength. Thus, it will be more beneficial
to use epoxy-based coating to take advantage of the higher modulus of elasticity [4]. The mod-
ulus of elasticity can be further increased by intermixing the patch matrix by adding glass or
carbon fibers. If the modulus of elasticity is infinite, no separation occur and the stress intensity
factor is comparable with a center crack. A upper bound for the stress intensity factor of a
coated crack is then a edge crack and the lower bound of the stress intensity factor is a center
crack. Identification of the ratio of the patch effect on the stress intensity factor, is achieved by
dividing the stress intensity factor for a center crack and an edge crack, cf. Eq.1.

KICenter

KIEdge
=

�
1/2σ

√
aπ

1.12σ
√
aπ

= 0.63 (1)

The effect of the coating patch is then calculated to a ratio of 0.63, cf. Eq.1. However, the patch
is not able to obstruct separation of the free end of the crack. In the succeeding FE-analysis
and the J-integral is used to study the stress intensity factor in a case where the free end of the
crack is coated.

Fatigue Damage Calculation

In this case, the crack propagation is the main parameter for the fatigue damage, as the variation
in stress intensity factor govern the crack propagation. The stress intensity factor K is a function
of the far field stress and the crack size and is given in Eq. 2.

ΔK = Δσ
√
πaα (2)

In the analytical expression the influence of the surface layer adjust the α value and thereby
the stress intensity factor. However, in the case of the FE-analysis the stress intensity factor is
calculated by the J-Integral and thereby α can be calculated.

In the estimation of the surface layers influence on the crack propagation, a 5 % crack
propagation is used. The number of cycles before a specific crack length propagates is calculated
with Eq. 3.

Nf =
2

(n− 2)A(Δσ)n(π)3/2αn

�
1

a
(n−2)/2
i

− 1

a
(n−2)/2
f

�
(3)

Where ai and af is the start and stop crack length and Δσ is the stress variation. The material
parameters used in the calculation are A = 6.9 · 10−12m/cycle and n = 3.
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The Finite Element Model

The study is carried out in Ansys Workbench 14.5 and computes the stress intensity factor
for the coated cracks. A 2D model is used to determine the coatings influence on the stress
intensity factor, see figure 2. The number of elements for the 1 mm cracked body is 12060 and
384 elements for the coating layer. The element type used in the analysis is PLANE183 higher
order 2-D elements. Computing of the stress intensity factor for five crack sizes are present.
The crack sizes are 0.5, 1, 2, 3 and 5 mm. The patch layer is added when the crack is closed.
No separation or slip are assumed to occur in the bonding between the crack surfaces and the
coating. In this study, the patch coating material 3M DP460 has limited strength, about 27.6
MPa. To include the limited strength of the patch layer in the FE analysis, a nonlinear material
model is applied. A bilinear material behavior is used in the FE-model, with a Youngs modulus

Figure 2. The crack model used for the FE analysis in Ansys Workbench.

of 2.7 GPa to the yield limit of 27.6 MPa. Beyond yielding the tangent modulus is set to 0
MPa. Further the coating has a thickness at 0.2 mm and is 30 mm wide see figure 2. The far
field stress level is a tension stress state at 100 MPa. The plastic behavior is studied in 11 load
cycles. The crack part is a isotropic elastic material with a young modulus of 200 GPa. The
mesh is shown in figure 3. The mesh of the patch layer contains four elements in thickness and
the crack have six rings of elements surrounding the crack tip.

Figure 3. The mesh for the 1 mm crack with a coating layer at the surface.

Results

Results of the FE solution are shown in table 1. The stress intensity factor has constant ampli-
tudes in cases of a crack size 0.5, 1 and 2 mm.
In the calculations with crack sizes of 3 mm and 5 mm, the stress intensity factor changes for
every load cycle, especially in the first three load cycles the changes are significant. The strain
level in the layer exceeds the elastic limit at 27.6 MPa. Then irreversible strains occur in the
layer and looses its effect on the stress intensity factor. Consequently the calculations of the
3mm and 5mm cracks are not considered relevant. The results of crack sizes 0.5, 1 and 2 mm
shows a reduction in stress intensity factor of 1.7-2.0 %. The number of cycles to propagate
the cracks 5% is calculated, and the result is shown in table 2. In the case of a 1 mm crack,
the number of cycles is increased by 22464 cycles or 6.1%. The α value changes from 1.12 to
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Table 1. Results of the stress intensity factor with and without layer of coating on the surface.

❛❛❛❛❛❛❛❛❛❛❛
Coating Method

Crack Size

0.5 mm 1 mm 2 mm 3 mm 5 mm

Coated 137.7 194.9 276.8 340.8-341 446.3-446.5

Non-coated 140.2 198.8 281.7 346.1 450.0

% changes stress intensity 1.8 2.0 1.7 1.5 0.8

about 1.1 in the cases where the patch layer is applied. However it is clear that the patch layer
changes the stress intensity factors and thereby the α parameter.

Table 2. Result of changes in the number of cycles with and without a layer of coating on the surface.

❛❛❛❛❛❛❛❛❛❛❛

Crack Size

0.5mm 1mm 2mm

α coated 1.0985 1.0996 1.1041

α non-coated 1.1184 1.1217 1.1237

Life coated 777614 387641 191460

Life non-coated 736840 365177 181615

% changes life 5.5 6.1 5.4

Conclusion

The investigation shows that the potential of the patch layer is insignificant due to the low
elastic strength and low modulus of elasticity of the patch layer. It is computed that the patch
layer changes the stress intensity factor by 1.7-2 % for cracks < 2 mm. The changes for a crack
to propagate 5% of the original length are also calculated. This shows that the patch layer
changes the number of cycles for the crack to grow by 5.4-6.1 %. It can be concluded that the
use of pure epoxy as patch repairing method is not beneficial. It is noted that the patch layer
will have an improved impact, if the modulus of elasticity and the elastic strength of the patch
layer is increased.
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Summary. Transport of drugs that are infused in the cerebrospinal fluid (CSF) within the cervical
spinal subarachnoid space (SSS) for chronic neurological conditions is poorly understood. For example,
the impact of fine anatomy on drug movement is not known. The lack of understanding is largely due to
the difficult measurement access to the cervical SSS.

In this work we utilize computational fluid dynamic (CFD) simulations of CSF to provide detailed
information about the impact that nerve roots and denticulate ligaments (NRDL) have on drug movement
in the SSS. We do this by simulating two separate cases of the SSS, one with and the other without the
internal NRDL. We find that the inclusion of NRDL leads to a higher pressure drop throughout the SSS.
Inclusion of NRDL is also found to disturb the flow by setting up a more complex flow pattern with
strong and persistent vortical structures that, even though not turbulent, greatly enhances mixing and
movement of drugs along the SSS.

This work could help the development of new tools to place spinal catheters in the most optimal
location on a subject specific basis and help design improved spinal drug delivery catheters.

Key words: Cerebrospinal fluid, Computational Fluid Dynamics, drug diffusion, nerve roots, denticulate

ligaments, cervical spinal subarachnoid space

Subject specific computational mesh

A three dimensional geometry of cervical SSS is shown in Figure 1. The anatomical model
was constructed based on manual segmentation of T2-weighted magnetic resonance (MR) image
sequences of a healthy volunteer using freely available software ITK-Snap (Version 2.2, Uni-
versity of Pennsylvania). Idealized NRDL were separately constructed and added to the model
using Autodesk Maya (Autodesk Inc., Cleveland, OH). Nonuniform unstructured computational
meshes were generated using ANSYS ICEM CFD (ANSYS Inc., Canonsburg, PA). An example
of the surface elements of the computational mesh is shown in Figure 1 (c). The complete ge-
ometry [Figure 1 (a)] is 18 cm from top to bottom and the two end planes are both placed in
the xz-plane.

CFD simulations

Simulations have been performed using the open source Navier-Stokes solver Oasis [2] - a high-
level/high-performance solver utilizing the Python interface to FEniCS [1]. We solve the in-
compressible Navier-Stokes equations for the fluid flow and a scalar advection equation for the
injected drug. The drug is injected at the same temperature and density as the spinal fluid and
we assume that the total amount of drugs is negligible compared to the total volume of fluid.
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(a) (b) (c)

Figure 1: SSS geometry and computational surface mesh. (a) Complete surface model. (b)
Transparent model showing nerve roots and denticulate ligaments. (c) Surface elements of the
final computational mesh.

Hence there is no feedback to the Navier-Stokes equations from the drug and the injection does
not disturb the flow.

Oasis is set to use regular linear (P1-P1) Lagrange finite elements (higher order can easily
be chosen), collocated for both velocity, pressure and drug. The velocity and pressure are solved
for in a segregated manner, utilizing a second order accurate in time fractional step method
(incremental pressure correction). The discretized system of equations being solved (before
constructing the finite element weak forms) is:

uI − un−1

�t
+ (u ·∇)ũ = ν∇2ũ −∇pn−3/2, (1)

∇2pn−1/2 = ∇2pn−3/2 − 1

�t
∇ · uI , (2)

un = uI −�t∇(pn−1/2 − pn−3/2), (3)

cnα − cn−1
α

�t
+ u ·∇c̃α = Dα∇2c̃α + fα, (4)

where u , ν (10−6 m2s−1), p, cα and Dα (10−7 m2s−1) are, respectively, the velocity vector,
kinematic viscosity, pressure, drug concentration and drug diffusivity. The superscript n denotes
timestep and superscript I is used for an intermediate velocity. The Adams-Bashforth projected
velocity u = 1.5un−1−0.5un−2 and the Crank-Nicolson interpolated velocity ũ = 0.5(uI+un−1)
are both second order accurate in time. The fractional step method can be used both non-
iteratively or with iterations over the pressure velocity system [Eqs. (1) and (2)], but in this work
we have only used it non-iteratively. The drug is computed using Crank-Nicolson interpolation
c̃α = 0.5(cnα+cn−1

α ). There is no added stabilization since we in this work have used a rather large
mass diffusivity to speed up and stabilize calculations. The Schmidt number (ratio of momentum
diffusivity and mass diffusivity) of the drug is as such set to 10. For future reference, stabilization
will be required for more realistic diffusivities with Schmidt number in the order of 1000.
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Table 1: Flow rate, [ml/s] through bottom of geometry. One cycle takes 0.78 sec.

time [s] [ml/s] time [s] [ml/s] time [s] [ml/s] time [s] [ml/s]

0.00 1.74 0.20 -3.43 0.39 -0.75 0.59 0.56
0.07 1.05 0.26 -2.84 0.45 0.16 0.65 0.92
0.13 -1.61 0.33 -2.05 0.52 0.28 0.72 1.41

The flow through the spine is oscillating up and down and the velocity is fixed in the bottom
inlet of the geometry using Dirichlet boundary conditions. The magnitude of the velocity is
taken from 4D MRI measurements that are reproduced in Table 1. The pressure is fixed at zero
in the top outlet of the geometry.

The drug is introduced through the source term fα using a constant spherical source located
in the lower part of the spine centred at y = 6 cm. The source is held fixed for the first two cycles
of flow and is then set to zero. The flow is run for a total of 70 cycles and thus for the last 68
cycles the drug is simply transported throughout the spine due to the flow. The concentration
of the drug is reported as a fraction of the total average concentration of injected drug after two
cycles. The total average concentration of drugs remains constant after 2 cycles until the drug
starts to leave the geometry through the lower outlet.

Results and future work

The spine is simulated with and without the NRDL that are visible in Figure 1 (b). The mesh
that includes the NRDL consists of 15 million tetrahedrons, whereas the mesh without the
nerves consists of 1.5 million tetrahedrons. The mesh is refined close to all solid walls, which
partly explains the need for a denser mesh in the case with NRDL. All simulations are run with
500 timesteps per computed cycle since the flow is assumed to be laminar. Some preliminary
tests with much shorter timesteps have not revealed any significant evidence of transition to
turbulence. Oasis is run on the Abel supercomputer at the University of Oslo using MPI for
parallel performance and 96 CPU compute cores for the large mesh and 16 CPUs for the smaller
mesh. Each timestep takes about 2.5 seconds real time for the large and 0.8 seconds for the
smaller mesh and as such the largest simulation is run for a total of 20 hours whereas the smallest
is run for 8 hours.

The evolution of the average concentration of the drug in two cross-sectional planes relative to

(a) (b)

Figure 2: Average drug concentration in plane located at (a) y = 5 cm and (b) y = 7 cm from
the bottom.
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(a) (b)

Figure 3: Velocity vectors in a plane located 5 cm from the bottom of the computational mesh
at t = 0.6τ , where τ(= 0.78) is the time required for one cycle. Colour represents velocity
magnitude.

the total average concentration after two cycles is shown in Figure 2. The two planes are located
at 1 cm above (b) and 1 cm below (a) the injection center. Evidently, the drug is transported
much faster in the y-direction with the inclusion of the NRDL. There are several reasons for
this. First, the NRDL increases the total internal wall surface area, which increases the drag and
requires a larger applied forcing (pressure gradient in y-direction) to uphold the same flow rate
through the spine. The somewhat lower internal volume of the SSS with NRDL also reduces
the cross sectional area, which speeds up the flow slightly simply due to mass conservation. A
less obvious factor is the effect the NRDL have on the nature of the flow. Snapshots of the
flow fields in both cases at t = 0.6τ , where τ = 0.78 is the time for one cycle, are illustrated in
Figure 3. Here it is evident that the NRDL sets up a much more complex flow field with strong
and persistent vortical structures aligned with the centre axis along the length of the SSS. The
vortices lead to enhanced stretching, rotation, strain and tilting of the fluid elements, much like
observed in a turbulent flow, resulting in greatly enhanced effective mixing rates.

Due to numerical stability issues the molecular drug diffusivity used in this work has been
the order of 100 times larger than realistic. However, even with this unrealistic diffusivity, the
mixing is still dominated by the convective transport of the fluid and it is therefore unlikely
that this parameter would have any significant impact on the results shown in Figure 2. Fur-
thermore, these results are averages over cross-sectional planes, representing only the level of
macromixing (large scale mixing) in the SSS. Macromixing is largely controlled by convective
transport and reveals nothing about the degree of mixing on the fines molecular scale, where
drugs react. Mixing on the molecular level (micromixing) is controlled by molecular diffusion
and thus mathematically by the diffusivity. Future work will assess the significance of diffusion
using more realistic values for the diffusivity and a streamline upwind Petrov-Galerkin method
for stabilization without the addition of artificial diffusion.
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(2)Institute of Mathematics AS CR, Žitná 25, 110 00 Prague, Czech Republic, stebel@math.cas.cz

Key words: incompressible fluid, non-Newtonian fluid, implicit constitutive relation, Bingham fluids

Introduction

There are many flows of various fluids, such as polymeric liquids, powders, food materials,
etc., that exhibit the formation of “dead-zones” - these are subdomains in which the fluid is
merely rotating and translating, and in fact no real flow takes place inside such parts of the
flow container. Such behavior of materials is usually described by the following dichotomy. If
the shear stress is below certain (given) critical value then the corresponding part of the fluid
behaves as a rigid body. On the other hand, if the shear stress exceeds this critical value, the fluid
behaves as a Navier-Stokes fluid or a power-law fluid, depending on the response characterized
by a specific constitutive relation. The critical shear stress whose value plays a key role in
the total response of the material is called the yield stress. Since such response differs from
the behavior of a Navier-Stokes (Newtonian) fluid, the presence of yield stress belongs among
(significant) non-Newtonian phenomena.

The above described fluid behavior is usually written as follows:

|S| ≤ τ∗ ⇔ D = 0,

|S| > τ∗ ⇔ T = −pI+ S = −pI+ τ∗
D

|D| + 2ν(|D|2)D.
(1)

Here, τ∗ > 0 is the yield stress (the critical value in which the activation takes place), T is
the Cauchy stress and S is its deviatoric (traceless) part, p is the mean normal stress, i.e.,
p := −1

3 trT, and D is the symmetric part of the velocity gradient ∇�v, �v being the velocity.
Finally, the specific form of the generalized viscosity ν := R+

0 �→ R+
0 distinguishes between the

fluid of a Bingham or a Herschel-Bulkley type. If ν is constant then the response described by
(1) is associated with a Bingham fluid. If ν depends on trD2 = |D|2 polynomially, one talks
about a Herschel-Bulkley fluid. More complex forms for the generalized viscosity can be however
considered.

It can be observed (see [2], [1]) that the response (1) can be equivalently described by implicit
relation

2ν(|D|2)
�
τ∗ + (|S|− τ∗)+

�
D = (|S|− τ∗)

+ S , (2)
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Figure 1. Bingham fluid response with yield stress τ∗.

where z+ := max{z, 0} for z ∈ R. One can observe that the Bingham and Herschel-Bulkley
fluids are special cases of incompressible fluids described through a general implicit constitutive
equation of the form

G(S,D) = 0. (3)

Bingham fluid

We first consider a steady state, slow flow of an Bingham fluid resulting in a Stokes-like system
of the following form:

div�v = 0,

−∇p+ divS = �f,

G(S,D) = 0,

(4)

where the implicit constitutive relation G(S,D) can be one of two following variants

G(S,D) = 2ντ∗D+ (|S|− τ∗)+(2νD− S), (5)

G(S,D) = 2ντ∗D+ (2ν|D|)+(2νD− S). (6)

We investigate several variants of the mixed finite element discretizations of the system (4)
with respect to its advantages in numerical solution. It leads to a twofold saddle point systems
(see [4]). This can be compared to classical approaches using regularization in [7, 3] or with [6]
where an augmented Lagrangian method is used.

Driven cavity problem

The tests are done on the classical problem of lid driven cavity flow. The domain is the unit
square Ω = (0, 1) × (0, 1). At the top wall of the domain the velocity is prescribed to be
�vD = (16x2(1 − x)2, 0) and noslip boundary condition is prescribed on the remaining parts of
the boundary. In figure 2 the resulting rigid zones of such flow are shown for several yield stress
values.
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Figure 2. Rigid zones for the Bingham fluid flow in a lid driven cavity problem.
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Summary. In this paper a new method for predicting the failure load for glass-epoxy laminated sand-
wich structures containing wrinkle defects is proposed. In previous work the pointwise evaluated, stress
based NU criterion has been used to predict the occurrence of delamination in such defects. The NU cri-
terion only provided information regarding delamination initiation in non-critical parts of the structure,
and thus underpredicted the load carrying capability. In this work cohesive zone modelling is used in the
finite element method together with a modified max stress criterion for failure prediction. This method
provides a greater insight into the failure process.

Key words: composite structures, glass-epoxy, wrinkle defect, cohesive zone modelling, composite mate-

rials, fracture mechanics.

Introduction

This work is conducted at Aalborg University in collaboration with Siemens Wind Power A/S as
a part of a master thesis [1]. Siemens Wind Power A/S is one of the leading manufacturers in the
wind turbine industry. The blades for their turbines are manufactured as glass-epoxy laminated
sandwich structures using balsa wood as core material. In the infusion process of large glass-
epoxy composite structures, such as a wind turbine blades, several types of manufacturing defects
can arise. One of these defects is an out-of-plane misalignment of the glass fibers, also termed a
”wrinkle” defect. The occurrence of wrinkle defects presents a great expense in the production
of the blades since they are, in most cases, repaired due to lack of reliable methods of estimating
the reduction in load carrying capability [2].

The main failure mode of a glass-epoxy laminated structure containing a wrinkle defect is
layerwise delamination in the defect. This has been found in previous work in which, besides a
phenomenological study of the failure mode, the pointwise evaluated, stress based NU-criterion
has been used for predicting the onset of this delamination [2]. In the present work Cohesive
Zone Modeling (CZM) has been used in the framework of the Finite Element (FE) method.
The use of CZM facilitates the simulation of the fracture process and can thus provide more
information regarding the failure process than the NU-criterion.

Methodology

The study has been performed using an advanced parametrised FE model, created in the ANSYS
Parametric Design Language (APDL). Material data, geometry and normalization of results has
been chosen so that comparison to the experimental results obtained in [2] is possible. In Figure
1a one of the wrinkle defects, that has been examined in [2], is shown. These specimens will
henceforth be referred to as the test specimens.
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(a) (b)

Figure 1: (a) Photograph of test specimen with wrinkle defect used in [2]. (b) Illustration of the
meshed model.

ANSYS 14.0, which has been used for the present work, features a basic 3D 8-node isopara-
metric CZM element called INTER205 [4]. This element does not have the required possibilities
for this study, so a new implementation was created and used as a User Programmable Fea-
ture (UPF) [5]. The UPF was implemented as a 3D 8-node isoparametric interface element
using a bilinear constitutive model, the Benzeggagh-Kenane mode interaction criterion [7] and
a 1st order Newton-Cotes integration scheme. For details on the mentioned models and the
element kinematics see [6]. The work carried out concerning the development, implementation
and verification of the UPF is presented in [3].

The FE model was created with one quarter the width of the test specimens for the sake
of reducing the solution time, and this was found not to have any significant influence on the
results. The bulk material was meshed with the SOLID185, a 3D 8-node solid element, using
the enhanced strain formulation [4]. In Figure 1b an example of the meshed model is shown.
Note that the mesh presented in the figure is coarser than the one used for actual computation.
Two types of interfaces were meshed with the UPF: The interface between the balsa core and
the facesheet (C/F-interface), and between individual plies in the facesheet (P-interface).

Figure 2: Boundary conditions for the model.

The model was clamped in one end and a displacement BC was imposed on the other as
shown in Figure 2. The physical specimens were tested under load control. A displacement BC
was chosen in order to avoid unstable behaviour when solving the nonlinear problem. By doing
this the standard Newton-Raphson solver, which provided faster solving than e.g. the arc-length
method, could be used.

Results

In the work of [2] it was found that at 70− 90% of the specimen failure load, a crack developed
in the C/F-interface. This behaviour was reproduced in the FE simulation by manually fitting
the fracture mechanical properties of the CZM constitutive model in this interface. The found
properties indicated a very low interface strength which might be attributed to residual stresses
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in the resin inclusion. In Figures 3a and 3b the transverse shear strain field, γxz, as obtained
from the FE model and DIC measurements, respectively, can be seen. Note that the strains are
normalized w.r.t. the far field normal strain, ϵx, according to [2]. In these figures, CZM elements
have only been used in the C/F-interface. It is seen that the strain fields match well, apart
from a few localized peaks in the DIC measurements which can be attributed to measurement
error/inaccuracy. It was found that the presence of a crack in the C/F-interface increased the
normalised local strain concentrations in the slanted bands seen in Figure 3 compared to those
seen in an uncracked model. Thus the capability of the model to show the crack development
in the C/F-interface increases the predictive capabilities of the simulation.

(a) (b)

Figure 3: The normalised γxz field as obtained from (a) the FE model and (b) using DIC [2].

Complete failure of the specimens occurs when the P-interfaces delaminate. This behaviour
was not possible to reproduce since the required onset tractions of the CZM constitutive model
would require a model with an impractically fine mesh (>2M nodes as compared to the ∼90k
nodes of the present model). When using CZM in predicting crack propagation, the onset
traction is less important than the energy release rate, and can thus in many applications
be lowered without compromising the overall behaviour of the model [3]. However, the failure
process in the examined specimens is very sudden and delamination occurs in all the P-interfaces
simultaneously [2]. This behaviour indicates that crack initiation and complete delamination
occurs at the same load, and the result is that even the smallest crack in the P-interfaces will
be unstable at this load. Therefore the correct onset of crack initiation is important in order to
obtain good predictions from the model. The need for a high onset traction was also evident in
that, with a reduced onset traction, a physically unreasonable compliance in the P-interfaces of
the model was observed at loads much lower than the failure load.

It was found that the delamination in the P-interfaces is governed by the transverse shear
stress. This was both indicated by the stress distribution in the model and by the fact, that CZM
elements in the P-interfaces showed mode II crack development only. Since it was not possible
to simulate the delamination in these interfaces with the proper onset traction, the Max Stress
Criterion was used to predict the onset of crack initiation. For this purpose the transverse shear
strength of the plies was replaced with the maximum transverse shear stress that was observed
in the model at the failure load for one of the specimens. In this way, the model is specifically
adjusted to exactly predict the failure load for the selected specimen.
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Using the described method for failure load prediction, a parametric study has been carried
out, where the height and width of the wrinkle defect (h and w respectively in Figure 1a) are
varied independently. In Figure 4 the results from this study are compared to the experimental
results from [2].

Figure 4: The predicted compressive failure load (surface) and experimental results (points).

From Figure 4 a tendency agreement is apparent although more experimental data would be
required to properly verify this. For the chosen shear delamination strength the model provides
conservative estimates. It should also be noted that increasing the wrinkle width or decreasing
the wrinkle height increases the failure load of the specimen. This conforms well with the
observation, that the transverse shear stress governs the failure process.
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Summary. The estimation of gear stiffness is important for determining the load distribution between
the gear teeth when two sets of teeth are in contact. Two factors have a major influence on the stiffness;
firstly the boundary condition through the gear rim size included in the stiffness calculation and secondly
the size of the contact. In the FE calculation the true gear tooth root profile is applied. The meshing
stiffness’s of gears are highly non-linear, it is however found that the stiffness of an individual tooth can
be expressed in a linear form assuming that the contact length is constant.
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Single gear stiffness

The computations are performed with the same spur gear set as used in [1], the data used are
(z number of teeth, M module, b tooth width)

z1 = 21, z2 = 49, M = 4mm, b = 20mm

i.e. no profile shift is used. The tooth width is not involved in the FE calculations but used
for the specific stiffness values shown. In Figure 1 the pinion gear single tooth of the pinion
(z1 = 21) and the wheel (z2 = 49) are shown, the difference in shape is clear.

t1 t2

Figure 1. Single tooth clamped at the root for two different size gears (M = 4mm). a) 21 teeth gear. b)
49 teeth gear.

In the present paper two factors are shown to have a major influence on the gear teeth
stiffness, these are:

• The contact zone size.

• The gear rim size included in the stiffness calculation

225



The stiffness, Kg, of a structure related to a given load is usually in the linear case defined as
the load Fc (in this paper a contact load) divided by the corresponding load displacement dc.

Kg =
Fc

dc
(1)

The main problem with this definition is that in many cases the displacement does not have a
clear and unique definition. To avoid this we will define the stiffness from the total elastic energy
U (sum of strain energy U� and stress energy Uσ). Often the stress energy is referred to as the
complementary elastic energy. For the linear case we have that U� = Uσ = U/2. Assuming that
we only have one set of loads, that scales proportional to the total load Fc the corresponding
stiffness is given by

U = Fcdc = Fc
Fc

Kg
⇒ Kg =

F 2
c

U
(2)

In the present paper 2D FE analysis is used for finding the elastic energy. The FE calculation is
performed using the COMSOL program ([2]). Assuming linearity we can apply a unit load and
the stiffness is then directly given as the inverse of the total elastic energy. In the FE calculation
of the elastic energy plane stress is assumed.

It is a valid assumption that the contact stress acts as a Hertzian stress, and we know the
radii of curvature; these are s1 and s2, see Figure 2. Idealized, the contact point of two gears

t2

t7

t8

t3 t4

t1

t5

t6

t9

t9

Figure 2. Basic gear geometry, the dot indicates a contact point.

follows the straight line of action. The line of action is the tangent to both base circles. The
sum of the two arc length parameters s1 and s2 is therefore a constant sc, see Figure 2.

Influence from contact zone size

Assuming the load distribution to be Hertzian and applying it at the pitch point of the tooth the
stiffness variation found is as seen in Figure 3. Although it is clear that the stiffness depends on
the contact zone length in a non-negligible way the remaining part of the paper use a = 74.5µm.

Influence from boundary conditions

The second problem of defining a unique stiffness function for a tooth is the boundary condition
applied. In the previous shown cases we clamped the tooth at the root which is a common
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Figure 3. Stiffness of single tooth (Figure 1a) as a function of half the contact length. The load center is
at the pitch point (assuming no profile shift).

assumption applied in the literature. The stiffness is not only controlled by the tooth shape
itself also the rim (or ring) thickness has a non-negligible influence. In the present paper we
estimate the influence from the rim thickness by using a model where the teeth are attached to a
rim with thickness rt. In Figure 4 part of a one tooth and a three teeth model are shown. In the
figure the full rings that are used in the FE calculation are not shown. In the FE calculations
results presented in Figure 5 the inside of the rim is clamped and the load is applied at the pitch
point as done previously.

a)

t1

b)

Figure 4. Part of geometry model here with a rim thickness rt = M . 1) One tooth model. b) Three teeth
model.

By varying the rim thickness the stiffness presented in Figure 5 is found, where the rim
thickness is normalized by the tooth module. From the results it is clear that a one tooth model
is sufficient for the stiffness estimation. The fact that the rim can not be neglected from the
calculation is also evident. In figure 6 a strain energy density colour and contour plot is given.

Stiffness as a function of contact position

The stuffiness’s are presented in Figure 7 as a function of s2. For the problem at hand with
pinion (21 teeth) and wheel (49 teeth) we select to use input shaft diameter 50mm and output
shaft diameter 65mm

In the figures linear curve-fits of the stiffness variation are also given. These linear curve-fits
in the squared s1 and s2 parameters are

K1(s1) = (−8.844 · 102 · (s1/mm)2 + 7.776 · 105)N/mm (3)

K2(s2) = (−2.574 · 102 · (s2/mm)2 + 7.589 · 105)N/mm (4)

These two simple curve-fits can directly be used for estimating mesh stuffiness’s.
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Figure 5. Stiffness of single tooth (Figure 1a) as a function of rim thickness using either 1 tooth model
(Figure 4a) or 3 teeth model (Figure 4b). The load center is at the pitch point (assuming no profile shift).

a) b)

Figure 6. Illustration of the distribution of strain energy density. a) Colour plot. b) Contour plot.
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Figure 7. Stiffness of single tooth shown by the full lines given as a function of squared contact point
position. Linear curve-fits are shown in dashed lines. a) 21 teeth b) 49 teeth.
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Summary. Modelling strategies were developed to determine the stresses for glass structures subjected
to soft body impact loads. A reduced finite element model for determining the stresses of glass panes
subjected to dynamic impact loads was developed and compared to a full dynamic finite element model.
The reduced model is based on the Rayleigh-Ritz method. The Ritz vectors are determined by simple
static load-cases. The model is applicable to centric and eccentric applied impact and to glass of various
support conditions. Structure-acoustic analysis is also used to analyse impact loads on insulated glass
structures with fluid-filled cavities. It is demonstrated that the modelling framework well captures the
features of a test example with four-sided supported glass.

Key words: glass, impact, model reduction, fluid-structure interaction

Introduction

When performing strength design of glass structures, dynamic impact load is one of the load
cases that often need to be included in the analysis. Since glass is a brittle material, it is
sensitive to impact load and it is necessary to accurately determine the stress distribution in the
glass due to this load case. Most often strength design of glass structures subjected to dynamic
impact load is performed by means of experimental tests. The European standard EN-12600,
[7], is available to classify glass for impact strength but also describes a soft body impactor
that can be used for testing of various glass structures. The experimental test method used
for classifying glass for impact strength is shown in Figure 1(a). The arrangement consists of a
glass pane held within a steel frame and an impactor consisting of a weight encased in two tires.
Between the steel frame and the glass there are rubber strips. During the test, the tire is swung
in a pendulum motion into the glass pane. The dimensions of the frame are standardized to 1.95
x 0.887 m2 and the weight of the impactor is 50 kg. The test is considered as a soft impact with
a long pulse time, Figure 1(b).The process of experimental testing is, however, time consuming
when considering parameter variation in strength design.

An alternative to experimental tests is to use finite element simulations. Several authors have
demonstrated the applicability of full transient finite element simulations in order to simulate
the application of impact load to glass structures. However, finite element modeling of transient
impact load is advanced, time consuming and may require access to advanced commercial finite
element programs.

To make the model more computationally efficient the size of the finite element model can
be reduced by means of model reduction techniques. Several methods that are variants of
the Rayleigh-Ritz procedure are available. The methods can be subdivided into the following
main categories: generalised coordinate methods, condensation methods and component mode
synthesis. When generalised coordinates are introduced, the system is described using only a
few deflection shapes of the original system where for example eigenvectors, Lanczos vectors and
Ritz vectors may be utilized. Condensation methods involves removing the degrees of freedom
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Figure 1. Test arrangement for pendulum impact test (a) and example of result (b).

that are not necessary in order to describe the dynamic behavior of the system. This can
be accomplished using for example static (Guyan) condensation, [4] or dynamic condensation,
see for instance [5]. In component mode synthesis the domain of the problem is divided into
subdomains and each subdomain is described by a different set of basis vectors.

Reduced Model for Soft Body Impact on Glass Structures

In the reduced dynamic modeling of the glass pane, including the supports, the Rayleigh-Ritz
method, [3], was adopted. Consequently, the displacements, u(t), were expressed as a linear
combination of shape (Ritz) vectors ψj :

u(t) =

J�

j=1

zj(t)ψj = Ψz(t), (1)

where zj(t) are the generalized coordinates.
The glass pane together with the supports can be represented as a multi-degree-of-freedom sys-
tem with one degree of freedom for each Ritz vector. The equations of motion for an undamped
multi-degree-of-freedom system in free vibration are given as, [3],

mü+ ku = 0, (2)

where m is the mass matrix and k is the stiffness matrix. Substituting (1) into (2) yields

mΨz̈+ kΨz = 0. (3)

Premultiplying each term in (3) by ΨT yields

m̃z̈+ k̃z = 0, (4)

where m̃ = ΨTmΨ and k̃ = ΨTkΨ. m̃ and k̃ are the generalized mass and stiffness matrices.
The impactor is suggested to be represented by a single-degree-of-freedom system with the
displacement degree of freedom ui, and mi and ki are the mass and stiffness of the impactor.
In this work, two Ritz-vectors were selected to represent the glass structure and with the impactor
modelled as a single spring-mass system connected to z1 a three-degree-of-freedom system is
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Figure 2. Load cases applied for determining the two Ritz vectors.

obtained. The two Ritz vectors were determined by solving a static finite element model for
two load cases as shown in Figure 2. When adding additional Ritz vectors there is a trade-
off between increasing the accuracy and decreasing the computational efficiency. The obtained
deformation modes from the two load cases were used as the two Ritz vectors after being scaled
to be one and zero at the location of the impactor, respectively.
A simple contact condition is assumed where the solution is valid only until the contact force
between the glass and the impactor change signs. When the contact force becomes negative, the
impactor is disassembled from the model.
The system is solved using the Newmark procedure, ([2], [3]), as implemented in [1] by means
of MATLAB. Initial values for z̄ and ˙̄z are required. In Figure 3 a comparison is shown of the
reduced model with one and two Ritz vectors as well as a full FE-model with linear and nonlinear
geometry. Setting up and solving the reduced model is made within a few seconds since it only
involves solving a static FE-model for two load cases and then performing the time-stepping for
the reduced three-DOF system. The full model, however, involves a transient solution of a large
model with contact conditions which normally takes hours of computer time.
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Figure 3. Lateral displacement of the midpoint of the glass versus time for a glass whith the in-plane
dimensions according to [7] and 10mm in thickness.
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Figure 4. Lateral displacement of the midpoint of the glass versus time for a 1.2x1.2 m2 window for a
single glass (left) and insulated two-glass structure (right).

Soft Body Impact on Insulated Glass Structures

Insulating glass consists of two or more glass panes with gas filled cavities in between. Insulating
glass units are favorable for use in buildings due to for instance the thermal insulating properties
that the insulating glass possesses.

In this work, structure-acoustic analysis, [6], is used in the finite element modeling of insu-
lated glass subjected to dynamic impact load. In this approach, the gas filled space is modeled
by means of the acoustic wave equation and the interaction between the glass and the gas filled
space is taken into account. A numerical example is made that simulates the pendulum impact
test, [7]. ABAQUS is used for the simulations.
In Figure 4 an example of a result is shown where it is shown that the inner glass plate carries
the greatest part of the load during the impact. In general there is only a small decrease in the
maximum stress when a two-glass structure is used instead of a single glass.

References

[1] P.E. Austrell et al. CALFEM-A Finite Element Toolbox, Version 3.4. KFS, Lund, Sweden,
2004.

[2] K.-J. Bathe. Finite Element Procedures. Prentice Hall, (2006).

[3] A.K. Chopra. Dynamics of Structures-Theory and Applications to Earthquake Engineering.
Pearson Prentice Hall, Upper Saddle River, New Jersey, (2007).

[4] R. Guyan. Reduction of Stiffness and Mass Matrices. AIAA, 3, 380, (1965).

[5] A.Y.T. Leung. An Accurate Method of Dynamic Condensation in Structural Analysis.
International Journal for Numerical Methods in Engineering, 12, 1705-1715, (1978).

[6] G. Sandberg, P.A. Wernberg and P. Davidsson. Fundamentals of Fluid-Structure Interac-
tion. Computational Aspects of Structural Acoustics and Vibration, CISM Courses and
Lectures, G. Sandberg and R. Ohayon (eds), vol. 505. Springer, Wien, Austria, (2008).

[7] SS-EN-12600. Glass in building-Pendulum test-Impact test method and Classification for
flat glass. Swedish Standards Institute, 2003.

232



Proceedings of the 26th Nordic Seminar on Computational Mechanics
A. Logg, K.A. Mardal, A. Massing (Eds.)
c⃝Oslo, 2013
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Summary. An isogeometric beam formulation is derived from a 3D continuum, where large-deformation
kinematics and the St. Venant–Kirchhoff constitutive law are assumed. It is also assumed that the beam
cross-sections are symmetric and planar, and that the director stays normal to the beam cross-section
during the deformation. The beam geometry representation reduces to a curve in 3D space. Four degrees
of freedom are employed in the modeling, three displacement and one rotational, enabling the formulation
to account for membrane, bending and torsional effects.

Key words: Isogeometric analysis, NURBS, Euler-Bernoulli beams, large displacements, non-linear.

Large-deformation beam formulation

Local curvilinear coordinate system

A local curvilinear coordinate system is chosen where ξ1 is the parametric variable used to define
the beam’s middle curve. The functions X(ξ1) and x(ξ1) denote the coordinates of the beam’s
middle curve in the reference and deformed configuration, respectively. The initial configuration
may be curved and twisted an angle φ0 about the middle curve. The displacement of the

X,x 

Y,y 
Z,z 

B 

T 

N 

Reference  
configuration 

n 

b 

t 

Deformed  
configuration

ξ1 

Figure 1. Sketch of the 3D beam in both the undeformed reference configuration and the deformed
current configuration, showing the beam’s middle curve and the local coordinate system consisting of the
tangent (T, t), binormal (B,b) and normal (N,n) vectors.
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Figure 2. Rotation of the local curvilinear coordinate system from the triad {T0,B0,N0} to {T,B,N}
by applying the rotation operators Λ0 and R0.

beam’s middle curve is given by d(ξ1) = x(ξ1)−X(ξ1). The local curvilinear coordinate system
consisting of the tangent (T, t), binormal (B,b) and normal (N,n) vectors is illustrated in
Figure 1. Note that {T ⊥ B ⊥ N} and {t ⊥ b ⊥ n}.

The unit tangent vectors to the middle curve are calculated directly from the beam’s geom-
etry, and are given by

T(ξ1) =
X,ξ1

||X,ξ1 ||
, t(ξ1) =

x,ξ1

||x,ξ1 ||
, (1)

in the reference and current configuration, respectively. Comma denotes differentiation.
The reference configuration normal vectors are calculated by applying two rotation operators,

Λ0 and R0, to the fixed triad {T0,B0,N0} in ξ1 = 0, as shown in Figure 2. Λ0 gives the
geometrical rotation due to bending and R0 the initial rolling twist around the middle curve.
The normal vectors in the reference and current configuration are given by

N(ξ1,φ0(ξ1)) = Λ0(T0,T(ξ1))R0(φ0(ξ1),T0)N0 = Q0N0, (2)

n(ξ1,φ(ξ1)) = Λ(T(ξ1), t(ξ1))R(φ(ξ1),T(ξ1))N = QN, (3)

where φ is the current twist angle. Similarly for the binormal vectors; B = Q0B0 and b = QB.
By Rodriguez formula, with I being the identity matrix, Λ and R are given by

Λ(T, t) = (T · t)I+ (T× t)× I+
1

1 +T · t(T× t)⊗ (T× t), (4)

R(φ,T) = I+ sin(φ)(T)× I+ (1− cos(φ))(T⊗T− I). (5)

Similar derivations for the linear case are found in [1].

Beam geometry description in 3D space

The 3D beam geometry is parametrically defined as

x3D(ξ1, ξ2, ξ3) = x(ξ1) + ξ2b(ξ1) + ξ3n(ξ1), (6)

in the current configuration, and

X3D(ξ1, ξ2, ξ3) = X(ξ1) + ξ2B(ξ1) + ξ3N(ξ1) (7)

in the reference configuration. ξ2 and ξ3 represent the cross-section parameterization. With the
kinematics given by Eq. (6), the beam cross-sections remain planar and normal to the middle
curve in the deformed configuration, the main assumption of the Euler–Bernoulli beam theory.
The authors showed a similar beam formulation without torsion in [2].
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Strain measure

We use the Green-Lagrange strain tensor given by

E =
1

2
(FTF− I) = EαβG

α ⊗Gβ , (8)

Eαβ =
1

2
(gα · gβ −Gα ·Gβ) =

1

2
(x3D

,ξα · x3D
,ξβ

−X3D
,ξα ·X3D

,ξβ
), (9)

where α,β = {1, 2, 3}, summation is applied on repeated indices, Gα and gα are the contravari-
ant basis vectors in the reference and current configuration, respectively, and Gα and gα are
the covariant basis vectors. Gα = Gα/�Gα�2. The strains may be expressed as

E11 = ϵ+ ξ2κb − ξ3κn, E12 =
1

2
ξ3κt, E13 = −1

2
ξ2κt, (10)

where ϵ is the strain due to membrane action, κb and κn the curvature due to bending about
the binormal and the normal, and κt the curvature due to rotation around the tangent vector.

Constitutive equation

We use the second Piola-Kirchhoff stress tensor, S, and introduce a linear constitutive law on
the dimensionless (Ēαβ = Eαβ�Gα��Gβ� and S̄αβ = Sαβ/(�Gα��Gβ�)) stress-strain relation;




S
11

S
12

S
13


 =




Ec 0 0
0 Gc 0
0 0 Gc






E11

2E12

2E13


 , (11)

where Ec is Young’s modulus and Gc is the shear modulus.

Variational equations of equilibrium

The equilibrium of virtual work, δW = δW ext + δW int = 0, is given by

δW ext = −
�

S0

δx ·A0ρ0fb dS −
�

S0

δx · h dS − δx · Fp − δφ · Ft, (12)

δW int =

�

V0

S : δEdV =

�

S0

δϵA0Ecϵ�G1�4 dS +

�

S0

δκnI
n
0Ecκn�G1�4 dS

+

�

S0

δκbI
b
0Ecκb�G1�4 dS +

�

S0

δκtJ0Gcκt�G1�2 dS, (13)

where V0 is the beam volume, A0 the cross-sectional area, S0 is the beam’s middle curve, In0
and Ib0 the beam’s second moments of area and J0 the polar moment, all in the undeformed
configuration. fb are the body forces per unit masss, ρ0 is the beam’s density, h is the applied
traction that has dimensions of force per unit length, Fp are point forces and Ft are torsional
moments. δϵ, δκn, δκb and δκt are the first variations of the membrane strain and the three
curvatures. We find the tangent stiffness matrix by calculating the second variation of the
external and internal virtual work, ΔδW ext and ΔδW int. As second derivatives with respect to
ξ1 will be present in the formulation, we use NURBS of order p ≥ 2 as basis functions, resulting
in C1 or greater continuity across element boundaries.

Numerical example

Clamped semicircular arch with a point load at the tip

We consider a semicircular arch clamped at one end and forced by a point load with magnitude
Fp at the opposite end, see Figure 3a. The load Fp is normalized as �Fp = FpR

2/EcI0 = 1.0, where
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Figure 3. Clamped semicircular arch with a point load at the tip. (a) Problem setup without the bending
strip. (b) Problem setup with the bending strip.

R = 1 is the arch radius. We let t =
�
EcI0/EcA0 denote the length scale of the cross-section

and investigate R/t = 100.0, i.e., a thin arch. For this, we let EcI0 = 1.0, and EcA0 = 104. We
use cubic NURBS with exact representation of the arch geometry. The tip deflection in the x-
and y-direction as a function of the number of elements is plotted in Figure 4. The results are
compared to a benchmark solution obtained using Kirchhoff–Love shell formulation with zero
Poisson’s ratio and appropriate boundary conditions to reproduce the beam-like response [3]. We
consider a single-curve C1-continuous discretization of a 180◦ arc and a two-curve discretization,
90◦ each, joined with a bending strip [3], see Figure 3b. The bending-strip thickness is set to
Eb

c = 100Ec. Rapid convergence to the benchmark solution is obtained for both discretizations.
The converged values of the x- and y-deflections at the tip are 2.000 and 4.713.
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Figure 4. Clamped semicircular arch with a point load at the tip. Tip displacement convergence.
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Summary. The analysis of moderately thin-walled beam cross-sections is based on the representation of
extension, bending, shear and torsion as individual load cases. The weak form equations for the warping
associated with shear and torsion are solved numerical by introducing a cubic-linear isoparametric element
that is able to (a) represent quadratic shear stress variations in the cross-section flanges and (b) describe
fairly curved cross-section geometries. The efficiency is demonstrated by numerical examples.

Key words: Thin-walled beam, cross-section analysis, finite element method, isoparametric element

Introduction

Accurate analysis of beam structures requires a detailed determination of the cross-section prop-
erties, which in technical beam theory are derived from a kinematic formulation that contains
cross-section translations, rotations and warping displacements. In the current approach the six
equilibrium states associated with homogeneous tension, bending, shear and torsion are treated
as individual load cases [1]. This enables the formulation of the governing weak form equations
for the out-of-plane warping functions from pure shear and torsion, and the subsequent determi-
nation of the resulting cross-section stiffness parameters, the location of the elastic center and
the shear center, and the warping functions and shear stresses associated with shear and torsion
loading. The weak form equations are solved numerically by the finite element method, in-
troducing a cubic-linear two-dimensional isoparametric element, suitable for cross-sections with
moderate wall thickness. Because of the cubic displacement interpolation this particular element
accurately represents a quadratic shear stress variation along the wall of the cross-section, and
thus moderately thin-walled cross-sections can be effectively discretized using only a small num-
ber of these cubic-linear elements, see [2]. The ability of the cubic-linear element to represent
curved cross-section geometries, to accurately determine cross-section parameters and to pro-
vide shear stress distributions is demonstrated by numerical examples, where the present finite
element implementation is used to analyze a tubular and a wind turbine blade cross-section.

Load cases and governing equations

The six homogeneous load cases associated with technical beam theory are shown in Fig. 1,
where the tension force N and the bending moments Mα act at the elastic center (c1, c2), while
uncoupling of the shear forces Qα and the torsion moment M identify the shear center (a1, a2).
Greek subscripts represent the cross-section dimensions x1 and x2, while z is the axial coordinate.
The transverse displacements are described by the translations ξα and the angle of twist ϕ as

uα(x, z) = ξα(z)− eαβ
�
xβ − aβ

�
ϕ(z) (1)
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Figure 1. Section forces: (a) tension, (b) bending, (c) shear and (d) torsion.

where eαβ is the permutation tensor. The axial displacement is described in terms of the axial
translation ζ and the cross-section inclinations ηβ as

w(x, z) = ζ(z)−
�
xβ − cβ

�
ηβ(z) + ψβ(x)

�
ξ�β(z)− ηβ(z)

�
− ω(x)ϕ�(z) (2)

where ψβ(x) and ω(x) are the out-of-plane warping functions from shear and torsion, respec-
tively, and the prime denotes differentiation with respect to the longitudinal coordinate z. The
contribution from warping is neglected in the expression for the corresponding normal strain,
whereby the kinematic formulation becomes energetically conjugate to the load cases in Fig. 1.

Cross-section parameters

In the extension-bending problem the normal force and the bending moments in Fig. 1a,b are
N = F ζ and Mα = Iαβη

�
β , where the axial stiffness and bending stiffness are defined as

F =

�

A
E(x) dA , Iαβ =

�

A

�
xα − cα

��
xβ − cβ

�
E(x) dA (3)

The elastic center coordinates cα are found in terms of the static moments Sα as

cα =
Sα

F
, Sα =

�

A
xαE(x) dA (4)

In the pure shear load case a modified warping function χα(x) is introduced so that the contri-
bution to the axial displacement becomes proportional to the generalized shear strain ξ�β + ηβ ,

χα(x)Qα =
� �

xβ − cβ
�
+ ψβ(x)

��
ξ�β + ηβ

�
(5)

The axial stress equilibrium equation is τα,α + σ� = 0. Substitution of the constitutive relations
for the shear stress and the axial stress leads to the differential equation for the warping functions
χα(x). By multiplication with a virtual warping function this can be written in weak form as

�

A
δχ,α(x)G(x)χγ,α(x) dA =

�

A
δχ(x)E(x)I−1

γβ

�
xβ − cβ

�
dA , γ = 1, 2 (6)

This weak form equation is effectively solved in terms of the finite element method, as demon-
strated in [3] and in the following section. The shear flexibility componentsDαβ are subsequently
determined by establishing the elastic energy associated with pure shear. This leads to

Dαβ =

�

A
χγ,α(x)G(x)χγ,β(x) dA (7)
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Figure 2. (a) 8-node cubic-linear, (b) 4-node bilinear elements and (c) 3-node linear triangular element.

In the torsion problem the axial stress vanishes and the stress equilibrium reduces to τα,α = 0.
Thus, the corresponding weak form governing equation for the torsion warping function ω has
a similar left side as in (6), while the loading term on the right side is different,

�

A
δω,α(x)G(x)ω,α(x) dA = −

�

A
δω,α(x)G(x) eαβ

�
xβ − aβ

�
dA (8)

The torsion stiffness is found by forming the elastic energy associated with homogeneous torsion,

K =

�

A
G(x)

�
xα − aα

��
xα − aα

�
dA −

�

A
G(x)ω,α(x)ω,α(x) dA (9)

where the second term reduces the torsion stiffness relative to that of a cylindrical cross-section.

Numerical solutions

The weak form of the governing equations in (6) and (8) is effectively solved numerically in terms
of finite elements. Furthermore, cross-sections with moderate wall thickness are considered,
which means that the shear stress distribution in the main direction of the flanges is of parabolic
order. This leads to the introduction of the two-dimensional 8-node isoparametric element shown
in Fig. 2a, with cubic interpolation of the displacements by four nodes along the sides in the
flange direction and linear interpolation by two nodes in the thickness direction. Junctions and
corners are handled by the 4-node bilinear element and the 3-node triangular element shown in
Fig. 2. The introduction of isoparametric elements enables the use of standard shape functions
and integration rules. Furthermore, quite complicated and curved geometries can be represented
by the 8-node element because of the cubic order interpolation. This is demonstrated for a thin-
walled tubular cross-section in Fig. 3a, where only four 8-node cubic-linear elements are required
for the discretization. Both a closed and an open tubular section are analyzed, where the open
section has a thin cut in the cross-section, as indicated in the figure. For pure torsion Figs. 3b,c
show the warping function for the open section and the shear stress distribution for the closed
section, respectively. It is seen that the numerical results practically reproduce the analytical
results. The cross-section parameters found by the numerical procedure are given in Table 1.

x1

x2

cut

(a)
open

(b)

ω

r2

±3.1439

closed
(c)

τ

Grϕ�
0.9956

Figure 3. Tubular cross-section with radius r and wall thickness t = r/10: (a) discretization by four cubic
elements, (b) torsion warping for open section and (c) torsion shear stress for closed section.
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Table 1. Parameters for open and closed tubular sections with t/r = 0.1.

F

Ert

Iα
Er3t

cα
r

aα

r

GAα

2πGrt

K

Gr3t

Iω
Er5t

Closed section (24 dofs)

6.2931 3.1594 O(10−15) O(10−14)
0.5029
0.5029

6.3187 1.7228 · 10−7

Open section (26 dofs)

— — —
−1.9959
0.0000

0.5029
0.1677

0.0210 8.1476

Figure 4a shows the discretization of a typical wind turbine blade cross-section. The nu-
merical model for this cross-section contains only 66 degrees of freedom because the 8-node
cubic-linear elements are able to effective represent large parts of the curved aerodynamic pro-
file of the cross-section. It is seen that the 4-node bilinear elements are used at junctions and
where the outer profile changes thickness, while two 3-node triangular elements represent the
tail of the section. Figure 4b shows the shear stress distribution from torsion, which shows that
in particular the leading and trailing parts of the blade section carry the load. The shear stress
distributions from the two separate load cases associated with flexure are shown in Figs. 4c,d.
It is seen that while the trailing part is significantly loaded in edgewise flexure, the internal web
and the leading part of the section mainly provide the shear stiffness in the flapwise direction.
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Figure 4. Discretization of wind turbine blade section and shear stress distributions.

References

[1] S. Krenk and B. Jeppesen. Finite elements for beam cross-sections of moderate wall thickness.
Computers and Structures, 32:1035-1043, 1989.

[2] J. Høgsberg and S. Krenk. Analysis of moderately thin-walled beam cross-sections by cubic
isoparametric elements. Submitted for publication, 2013.

[3] V. Giavotto, M. Borri, Ghiringhelli, V. Carmaschi, G.C. Maffioli and F. Mussi. Anisotropic
beam theory and applications. Computers and Structures, 16:403-413, 1989.

240



Proceedings of the 26th Nordic Seminar on Computational Mechanics
A. Logg, K.A. Mardal, A. Massing (Eds.)
c⃝Oslo, 2013

Design of Stroke Amplifying Brace Concepts for Damping
of Wind Turbine Tower Vibrations

Mark Laier Brodersen and Jan Høgsberg

Department of Mechanical Engineering
Technical University of Denmark, DK-2800 Lyngby, Denmark
mlai@mek.dtu.dk, jhg@mek.dtu.dk

Summary. Three stroke amplifying brace concepts are introduced for damping of tower vibrations of
monopile supported offshore wind turbines. Damper stroke and attainable damping are key aspects that
are studied for the three brace concepts. The optimum location of the damper system is at the bottom of
the tower, where it is found that a brace height 4 m results in a damper stroke of 2-5 mm and attainable
damping ratio of 0.013 critical damping.

Key words: Offshore wind turbine, monopile, toggle-brace, attainable damping, damper stroke

Introduction

Design of monopile support structures for offshore wind turbines is often driven by fatigue. For
pronounced wind-wave misalignment tower vibrations lateral to the rotor direction will cause
a large amount of fatigue damage, due to the relatively low inherent damping of the side-side
vibrations [1]. Future offshore wind turbines will be significantly larger and operate at larger
water depths. Thereby the critical tower frequency of the turbines will be lowered and approach
the typical excitation frequencies of large ocean waves. This causes fatigue damage from wave
loading to increase significantly, and under these conditions the monopile support structure may
reach its limit of structural feasibility. A way to extend this limit is to reduce the dynamic
response of the turbine by installing dampers inside the wind turbine to act on the relative
motion of the tower. Critical aspects for the effective implementation of the dampers are the
sufficient damper stroke and the attainable damping. Sufficient damper stroke is achieved by
the use of stroke amplifying braces, while attainable damping is associated with the ability of
the damper system to alter the natural frequency of the structure. In the present paper three
stroke amplifying brace concepts are presented. The damper stroke and the attainable damping
level are studied for these concepts using a realistic benchmark off-shore wind turbine model [2]
implemented in the nonlinear aeroelastic code HAWC2 (www.HAWC2.dk).

Stroke amplifying braces

For the side-side vibration form bending of the tower is the primary deformation mode. The
lower toggle brace in figure 1(a), the upper toggle brace in figure 1(b) and the curvature toggle
brace in figure 1(c) have been designed to maximize the damper stroke when the tower is
vibrating in the side-side vibration form. For all three toggle-braces the two brace members are
of equal length, and the damper is fixed to the two other brace members in the direction normal
to the diagonal, in order to exploit the toggle mechanism in the best possible way. In this way
the angle ψ is determined by the height of the brace and the geometry of the tower. The angle
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Figure 1: lower toggle brace (a), upper toggle brace (b) and curvature toggle brace (c).

θ should be as small as possible in order to increase the damper stroke as much as possible,
while large enough to avoid snap-through of the toggle joint. In all the following computations
θ = 5o, whereby snap-through is avoided for typical vibration amplitudes of the turbine.

Influence vector

The influence of mounting a local damper in the wind turbine tower is described by its influence
vector w and the magnitude of the damper force fd. The load vector is then given as

f(t) = −wfd(t) (1)

The vector w describes the connection of the damper to the tower structure through the stroke
amplifying braces. Considering equilibrium in the undeformed state, consistent with small de-
formation theory, leads to a linear asymptotic expression for w given in terms of the angles ψ
and θ and the radii ra,rb,rc at the points of connection with the tower, see figure 1. Influence
vector for the lower toggle brace, upper toggle brace and curvature toggle brace is respectively
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As the brace is assumed linear and collocated, the damper displacement ud is found by

ud(t) = wTu(t) (2)

where u(t) is the displacement vector of the wind turbine. Whereby, if the damper is assumed
viscous with viscosity c, the load vector is given in terms of the velocity vector u̇(t) as

f(t) = −cwwT u̇(t) (3)

Numerical modeling using HAWC2

In order to study the performance of the three braces, the braces have been implemented into
a HAWC2 model of the OC3 reference wind turbine provided by DTU Wind Energy [4], and
HAWC2 has been used for computing the side-side mode s and side-side eigenfrequency ω by
solving the eigenvalue problem for the OC3 turbine at standstill

�
K− ω2M+ iωcwwT

�
s = 0 (4)
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The mass matrix M and stiffness matrix K are determined by HAWC2 based on the inherent
multi body formulation, while the brace and damper has been included as an external system
as described for a gear box in [3].

Damper stroke

Damper stroke of the three braces is determined by assuming that the tower is vibrating in
the undamped side-side mode s. The mode shape is computed using HAWC2, where after the
damper stroke is computed using (2). The amplitude of the mode shape is fixed so that the top
amplitude of the tower is approximately 0.5 m. The damper stroke is computed for different
positions in the tower for a brace height of 4 m, see figure 2(a), and for different heights of a
brace installed in the bottom of the tower, see figure 2(b). As seen from figure 2(a) the largest
damper stroke is achieved when the brace is positioned in the lower half of the tower, although
the difference to a position in the upper half of the tower is not significant. The curvature
toggle brace performs much better than the lower and upper toggle braces, providing a damper
stroke almost twice as large. When the height is varied the damper stroke is increased as seen
in figure 2(b). There is an almost linear relation between height and damper stroke, and again
the curvature toggle brace performs better than the upper and lower toggle braces. Between
2-5 mm damper stroke can be expected when the brace is installed in the lower half of the tower
with a brace height of 4 m. This may be a small stroke for conventional passive dampers, while
it is sufficient for active damper systems using e.g. hydraulics.

Attainable damping

Attainable damping is associated with the ability of the dampers to lock the wind turbine in a
new modified mode shape. When the change in mode shape is small attainable damping can be
directly related to the frequency change Δω = ω∞−ω0 between the frequency of the undamped
wind turbine ω0 (c = 0) and the turbine where the damper has been locked ω∞ (c = ∞) via the
two-component representation in [5]. The analytical estimate of the modal damping ratio can
be written

ζmax =
Δω

2ω0
(5)
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Figure 2: Damper stroke for a varying position of the brace (a) and varying brace height (b).
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Figure 3: Attainable damping for a varying position of the brace (a) and varying height of the
brace (b).

Using the HAWC2 model of the OC3 turbine eigenfrequency for the side-side mode when the
damper is locked is computed, and from (5) attainable damping is determined. Attainable
damping is computed for different brace locations inside the tower for a brace height of 4 m, see
figure 3(a), and for different heights of the brace, when the brace is installed at the bottom of
the tower, see figure 3(b). As seen from figure 3(a) all three braces perform best when installed
at the bottom of the tower, with an almost linear reduction relative to the location of the brace.
The curvature brace performs better than the lower and the upper toggle braces. The largest
attainable damping is therefore achieved using a curvature brace at the bottom of the tower.
For a brace height of 4 m attainable damping is approximately ζmax = 0.013, which could be
increased to ζmax = 0.025 with two brace system of height 4 m located on top of each other at the
bottom of the tower. Initial estimates performed by the wind energy community indicate that
an increase in damping ratio of about ζ = 0.02 is required to sufficiently reduce the amplitude
level of the side-side vibration mode. As seen from figure 3(b) attainable damping increases with
increasing height of the brace, and again the correlation seems to be almost linear. Therefore,
it appears reasonable to maximize the height of the brace as well.
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