131 research outputs found

    On Competitive On-Line Paging with Lookahead

    Get PDF
    This paper studies two methods for improving the competitive efficiency of on-line paging algorithms: in the first, the on-line algorithm canuse more pages; in the second, it is allowed to have a look-ahead, or inother words, some partial knowledge of the future. The paper considers anew measure for the look-ahead size as well as Young's resource-boundedlook-ahead and proves that both measures have the attractive propertythat the competitive efficiency of an on-line algorithm with k extra pagesand look-ahead l depends on k+l. Hence, under these measures, an on-linealgorithm has the same benefit from using an extra page or knowing anextra bit of the future

    On Competitive On-Line Paging with Lookahead

    Full text link

    Online Algorithms for Weighted Paging with Predictions

    Get PDF
    In this paper, we initiate the study of the weighted paging problem with predictions. This continues the recent line of work in online algorithms with predictions, particularly that of Lykouris and Vassilvitski (ICML 2018) and Rohatgi (SODA 2020) on unweighted paging with predictions. We show that unlike unweighted paging, neither a fixed lookahead nor knowledge of the next request for every page is sufficient information for an algorithm to overcome existing lower bounds in weighted paging. However, a combination of the two, which we call the strong per request prediction (SPRP) model, suffices to give a 2-competitive algorithm. We also explore the question of gracefully degrading algorithms with increasing prediction error, and give both upper and lower bounds for a set of natural measures of prediction error

    Combining request scheduling with web caching

    Get PDF
    We extend the classic paging model by allowing reordering of requests under the constraint that a request is delayed by no longer than a predetermined number of time steps. We first give a dynamic programming algorithm to solve the offline case. Then we give tight bounds on competitive ratios for the online case. For caches of size k, we obtain bounds of k + O(1) for deterministic algorithms and Theta(log k) for randomized algorithms. We also give bounds for the case where either the online or the offline algorithm can reorder the requests, but not both. Finally, we extend our analysis to the case where pages have different sizes

    Exact distributional analysis of online algorithms with lookahead

    Get PDF
    In online optimization, input data is revealed sequentially. Optimization problems in practice often exhibit this type of information disclosure as opposed to standard offline optimization where all information is known in advance. We analyze the performance of algorithms for online optimization with lookahead using a holistic distributional approach. To this end, we first introduce the performance measurement method of counting distribution functions. Then, we derive analytical expressions for the counting distribution functions of the objective value and the performance ratio in elementary cases of the online bin packing and the online traveling salesman problem. For bin packing, we also establish a relation between algorithm processing and the Catalan numbers. The paper shows that an exact analysis is strongly interconnected to the combinatorial structure of the problem and algorithm under consideration. Results further indicate that the value of lookahead heavily relies on the problem itself. The analysis also shows that exact distributional analysis could be used in order to discover key effects and identify related root causes in relatively simple problem settings. These insights can then be transferred to the analysis of more complex settings where the introduced performance measurement approach has to be used on an approximative basis (e.g., in a simulation-based optimization)

    Semi-online Scheduling with Lookahead

    Full text link
    The knowledge of future partial information in the form of a lookahead to design efficient online algorithms is a theoretically-efficient and realistic approach to solving computational problems. Design and analysis of semi-online algorithms with extra-piece-of-information (EPI) as a new input parameter has gained the attention of the theoretical computer science community in the last couple of decades. Though competitive analysis is a pessimistic worst-case performance measure to analyze online algorithms, it has immense theoretical value in developing the foundation and advancing the state-of-the-art contributions in online and semi-online scheduling. In this paper, we study and explore the impact of lookahead as an EPI in the context of online scheduling in identical machine frameworks. We introduce a kk-lookahead model and design improved competitive semi-online algorithms. For a 22-identical machine setting, we prove a lower bound of 43\frac{4}{3} and design an optimal algorithm with a matching upper bound of 43\frac{4}{3} on the competitive ratio. For a 33-identical machine setting, we show a lower bound of 1511\frac{15}{11} and design a 1611\frac{16}{11}-competitive improved semi-online algorithm.Comment: 14 pages, 1 figur

    Lookahead scheduling in a real-time context: Models, algorithms, and analysis

    Get PDF
    Our research considers job scheduling, a special type of resource assignment problem. For example, at a cross-docking facility trucks must be assigned to doors where they will be unloaded. The cargo on each truck has various destinations within the facility, and the unloading time for a truck is dependent on the distance from the assigned door to these destinations. The goal is to assign the trucks to doors while minimizing the amount of time to unload all trucks.;We study scheduling algorithms for problems like the cross-docking example that are different from traditional algorithms in two ways. First, we utilize real-time, where the algorithm executes at the same time as when the jobs are handled. Because the time used by the algorithm to make decisions cannot be used to complete a job, these decisions must be made quickly Second, our algorithms utilize lookahead, or partial knowledge of jobs that will arrive in the future.;The three goals of this research were to demonstrate that lookahead algorithms can be implemented effectively in a real-time context, to measure the amount of improvement gained by utilizing lookahead, and to explore the conditions in which lookahead is beneficial.;We present a model suitable for representing problems that include lookahead in a real-time context. Using this model, we develop lookahead algorithms for two important job scheduling systems and argue that these algorithms make decisions efficiently. We then study the performance of lookahead algorithms using mathematical analysis and simulation.;Our results provide a detailed picture of the behavior of lookahead algorithms in a real-time context. Our analytical study shows that lookahead algorithms produce schedules that are significantly better than those without lookahead. We also found that utilizing Lookahead-1, or knowledge of the next arriving job, produces substantial improvement while requiring the least effort to design. When more lookahead information is used, the solutions are better, but the amount of improvement is not significantly larger than a Lookahead-1 algorithm. Further, algorithms utilizing more lookahead are more complex to design, implement, and analyze. We conclude that Lookahead-1 algorithms are the best balance between improvement and design effort

    Topology Matters: Smoothed Competitiveness of Metrical Task Systems

    Get PDF
    We consider online problems that can be modeled as metrical task systems: An online algorithm resides in a graph of n nodes and may move in this graph at a cost equal to the distance. The algorithm has to service a sequence of tasks that arrive over time; each task specifies for each node a request cost that is incurred if the algorithm services the task in this particular node. The objective is to minimize the total request plus travel cost. Borodin, Linial and Saks gave a deterministic work function algorithm (WFA) for metrical task systems having a tight competitive ratio of 2n-1. We present a smoothed competitive analysis of WFA. Given an adversarial task sequence, we add some random noise to the request costs and analyze the competitive ratio of WFA on the perturbed sequence. We prove upper and matching lower bounds. Our analysis reveals that the smoothed competitive ratio of WFA is much better than its (worst case) competitive ratio and that it depends on several topological parameters of the graph underlying the metric, such as maximum degree, diameter, etc. For example, already for moderate perturbations, the smoothed competitive ratio of WFA is O(log(n)) on a clique and O(sqrt{n}) on a line. We also provide the first average case analysis of WFA. For a large class of probability distributions, we prove that WFA has O(log(D)) expected competitive ratio, where D is the maximum degree of the underlying graph
    • …
    corecore